FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Chemicals
2.3. Hairy Root Induction
2.4. ABA Treatment Assay
2.5. RNA Extraction for RT-qPCR Analysis
2.6. Measurement of Metabolites Using High-Performance Liquid Chromatography
2.7. Phylogenetic Analysis
2.8. Conserved Motifs of the Key Genes in TB Flavonoid Synthesis Pathway
2.9. Subcellular Localization
2.10. EMSA
2.11. Y1H Assay
2.12. Dual-Luc Assay
2.13. Y2H Assay
2.14. BiFC Assay
2.15. Pull-Down Assay
2.16. Co-IP Assay
2.17. In Vitro Phosphorylation Assay
2.18. Statistical Analysis
3. Results
3.1. Expression Profile Analysis of FtbZIP85 and PA Biosynthesis-Related Genes
3.2. FtbZIP85 Activates the Expression of FtDFR by Binding to Its Promoter
3.3. Subcellular Localization Analysis of FtbZIP85, FtDFR and FtSnRK2.6
3.4. FtbZIP85 Is Phosphorylated by FtSnRK2.6
3.5. ABA Is Involved in PA Biosynthesis by Regulating the Transactivation of FtDFR
4. Discussion
4.1. FtbZIP85 Played a Positive Role in PA Biosynthesis
4.2. FtbZIP85 Is Involved in the Regulation of PA Biosynthesis via Interaction with FtSnRK2.6
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Sun, W.; Ma, Z.; Huang, L.; Chen, H. Genome-wide identification of the SPL gene family in Tartary Buckwheat (Fagopyrum tataricum) and expression analysis during fruit development stages. BMC Plant Biol. 2019, 19, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Feng, J.; Liu, D.; Long, C. Different phenylalanine pathway responses to cold stress based on metabolomics and transcriptomics in Tartary Buckwheat Landraces. J. Agric. Food Chem. 2022, 70, 687–698. [Google Scholar]
- Huang, X.; Zhang, S.; Li, Y.; Yang, X.; Li, N.; Zeng, G.; Chen, F.; Tuo, X. Insight into the binding characteristics of rutin and alcohol dehydrogenase: Based on the biochemical method, spectroscopic experimental and molecular model. J. Photochem. Photobiol. B 2022, 228, 112394. [Google Scholar] [CrossRef]
- Albert, N.W. Subspecialization of R2R3-MYB repressors for anthocyanin and proanthocyanidin regulation in Forage legumes. Front. Plant. Sci. 2015, 6, 1165. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, X.; Li, B.; Zhao, X.; Shen, Y.; Yuan, Z. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC Plant Biol. 2022, 22, 170. [Google Scholar]
- Chen, S.; Wu, F.; Li, Y.; Qian, Y.; Pan, X.; Li, F.; Wang, Y.; Wu, Z.; Fu, C.; Lin, H. NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Front. Plant. Sci. 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Deng, R.; Bai, Y.; Wu, H.; Li, C.; Wu, Q.; Zhao, H. Tartary buckwheat R2R3-MYB gene FtMYB3 negatively regulates anthocyanin and proanthocyanin biosynthesis. Int. J. Mol. Sci. 2022, 23, 2775. [Google Scholar] [CrossRef]
- Akagi, T.; Katayama-Ikegami, A.; Kobayashi, S.; Sato, A.; Kono, A.; Yonemori, K. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant. Physiol. 2012, 158, 1089–1102. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Wang, X.; Zhang, X.; Xu, H.; Hao, Y. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnol. J. 2020, 18, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Han, H.; Li, Y.; Ye, J.; Xu, F. Significance of miRNA in enhancement of flavonoid biosynthesis. Plant Biol. 2022, 24, 217–226. [Google Scholar] [CrossRef]
- Yu, T.; Han, G.; Luan, Z.; Zhu, C.; Zhao, J.; Sheng, Y. Functional analysis of genes GlaDFR1 and GlaDFR2 encoding dihydroflavonol 4-Reductase (DFR) in Gentiana lutea L. Var. Aurantiaca (M. Lainz). Biomed. Res. Int. 2022, 2022, 1382604. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Shi, X.; Gao, L.; Rashid, A.; Li, Y.; Lei, T.; Dai, X.; Xia, T.; Wang, Y. Functional analysis of the dihydroflavonol 4-reductase family of Camellia sinensis: exploiting key amino acids to reconstruct reduction activity. Hortic. Res. 2022, 9, uhac098. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Jie, X.; Li, R.; Yang, H.; Sun, B.; Tang, H. Function and regulation characterization of dihydroflavonol 4 reductase in anthocyanin biosynthesis. Acta Bot. Boreali-Occident. Sin. 2018, 38, 187–196. [Google Scholar]
- Dong, H.; Yue, Y.; Hu, X.; Jiang, J.; Xu, S.; Wang, H.; Su, Y.; Zhang, M.; Zhang, J.; Wang, Z.; et al. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant Cell Environ. 2019, 42, 2090–2104. [Google Scholar]
- Zhao, H.; Yao, P.; Zhao, J.; Wu, H.; Wang, S.; Chen, Y.; Hu, M.; Wang, T.; Li, C.; Wu, Q. A novel R2R3-MYB transcription factor FtMYB22 negatively regulates salt and drought stress through ABA-dependent pathway. Int. J. Mol. Sci. 2022, 23, 14549. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, X.; Zhao, S.; Guo, Y. The PYR-PP2C-CKL2 module regulates ABA-mediated actin reorganization during stomatal closure. New Phytol. 2022, 233, 2168–2184. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, X.; Jia, H.; Li, F.; Ma, Y.; Liesche, J.; Liao, M.; Ding, X.; Liu, C.; Chen, Y.; et al. Persulfidation-induced structural change in SnRK2.6 establishes intramolecular interaction between phosphorylation and persulfidation. Mol. Plant 2021, 14, 1814–1830. [Google Scholar] [CrossRef]
- Ou, X.; Li, T.; Zhao, Y.; Chang, Y.; Wu, L.; Chen, G.; Day, B.; Jiang, K. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. J. Plant Physiol. 2022, 268, 153585. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ebisu, Y.; Shimazaki, K.I. Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. Plant Physiol. 2017, 174, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Sirichandra, C.; Davanture, M.; Turk, B.E.; Zivy, M.; Valot, B.; Leung, J.; Merlot, S. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS ONE 2010, 5, e13935. [Google Scholar] [CrossRef] [Green Version]
- Ahad, A.; Aslam, R.; Gul, A.; Zia, M. Genome-wide analysis of bZIP, BBR, and BRZ transcription factors in Triticum aestivum. PLoS ONE 2021, 16, e0259404. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Yao, J.; Xu, R.; You, C.; Wang, X.; Hao, Y. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. Plant. Cell Environ. 2018, 41, 2678–2692. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Wu, X.; Zhang, K.; Tang, Y.; Jiang, Y.; Ruan, J.; Zhou, M. The overexpression of FtbZIP5 improves accumulation of flavonoid in the hairy roots of Tartary Buckwheat and its salt tolerance. Crops 2021, 203, 1–9. [Google Scholar]
- Jiang, Y.; Liu, C.; Yan, D.; Wen, X.; Liu, Y.; Wang, H.; Dai, J.; Zhang, Y.; Liu, Y.; Zhou, B. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. J. Exp. Bot. 2017, 68, 1055–1069. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fan, R.; Fan, Y.; Liu, R.; Zhang, H.; Chen, T.; Liu, J.; Li, H.; Zhao, X.; Song, C. The flavonoid biosynthesis regulator PFG3 confers drought stress tolerance in plants by promoting flavonoid accumulation. Environ. Exp. Bot. 2022, 196, 104792–104800. [Google Scholar]
- Mi, Y.; Zhu, Z.; Qian, G.; Li, Y.; Shi, Y. Inducing hairy roots by Agrobacterium rhizogenes-Mediated transformation in Tartary Buckwheat (Fagopyrum tataricum). J. Vis. Exp. 2020, 157, e60828. [Google Scholar]
- Xiao, S.; Liu, Y.; Wang, A.; Liu, Y.; Li, X.; Liu, Z.; Li, X.; Yang, Y.; Wang, J. The response of Tartary Buckwheat and 19 bZIP genes to abscisic acid (ABA). Mol. Biol. Rep. 2021, 48, 4341–4350. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhou, L.; You, S.; Deng, H.; Chen, Y.; Alseekh, S.; Yuan, Y.; Fu, R.; Zhang, Z.; et al. MicroTom metabolic network: Rewiring tomato metabolic regulatory network throughout the growth cycle. Mol. Plant 2020, 13, 1203–1218. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K.B. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Naik, J.; Misra, P.; Trivedi, P.K.; Pandey, A. Molecular components associated with the regulation of flavonoid biosynthesis. Plant Sci. 2022, 317, 111196. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Zhang, Q.; Hua, X.; Peng, L.; Li, K.; Yu, Q.; Chen, Y.; Yao, H.; He, J.; et al. Monomerization of abscisic acid receptors through CARKs-mediated phosphorylation. New Phytol. 2022, 235, 533–549. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, H.; Wang, X.; Kang, J.; Lv, B.; Dong, Q.; Li, C.; Chen, H.; Wu, Q. Tartary Buckwheat transcription factor FtbZIP5, regulated by FtSnRK2.6, can improve salt/drought resistance in transgenic Arabidopsis. Int. J. Mol. Sci. 2020, 21, 1123. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Zou, H.F.; Wei, W.; Hao, Y.; Tian, A.; Huang, J.; Liu, Y.; Zhang, J. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 2008, 228, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.; Xiao, X.; Rao, X.; Dixon, R.A. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat. Plants 2018, 4, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Zhao, H.; Huang, Y.; Chen, Y.; Wan, M.; Zeng, Z.; Yao, P.; Li, C.; Wang, X.; Chen, H.; et al. FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary Buckwheat. Plant Mol. Biol. 2020, 104, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, A.; Li, L. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Mol. Genet. Genom. 2021, 296, 953–970. [Google Scholar] [CrossRef]
- Han, T.; Wu, W.; Li, W. Transcriptome analysis Revealed the mechanism of exogenous ABA increasing anthocyanins in blueberry fruit during veraison. Front. Plant Sci. 2021, 12, 758215. [Google Scholar] [CrossRef]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M.J.B. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Yang, T.; Wang, H.; Guo, L.; Wu, X.; Xiao, Q.; Wang, J.; Wang, Q.; Ma, G.; Wang, W.; Wu, Y. ABA-induced phosphorylation of basic Leucine Zipper 29, ABSCISIC ACID INSENSITIVE 19 and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in Maize. Plant Cell 2022, 34, 1933–1956. [Google Scholar] [CrossRef]
- Sun, Z.; Feng, Z.; Ding, Y.; Qi, Y.; Jiang, S.; Li, Z.; Wang, Y.; Qi, J.; Song, C.; Yang, S.; et al. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Mol. Plant 2022, 15, 1192–1210. [Google Scholar] [CrossRef]
- Liu, X.; An, X.; Liu, X.; Hu, D.; Wang, X.; You, C.; Hao, Y. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. J. Exp. Bot. 2017, 68, 2977–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Chen, Y.; Wang, C.; Kong, Y.; Wu, W.; Chen, Y. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J. 2014, 80, 654–668. [Google Scholar] [CrossRef]
- Yektapour, N.; Rezayian, M.; Niknam, V.; Mirmasoumi, M. Study of hairy root formation and plant regeneration in Nicotiana tabaccum. Biologia 2022, 77, 1295–1303. [Google Scholar] [CrossRef]
- Baek, S.; Han, J.; Ho, T.; Park, S. Development of hairy root cultures for biomass and triterpenoid production in Centella asiatica. Plants 2022, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Alcalde, M.; Perez-Matas, E.; Escrich, A.; Cusido, R.; Palazon, J.; Bonfill, M. Biotic elicitors in adventitious and hairy root cultures: A review from 2010 to 2022. Molecules 2022, 27, 5253. [Google Scholar] [CrossRef]
- Vargas Morales, N.; Moreno Anzurez, N.E.; Tellez Roman, J.; Perea-Arango, I.; Valencia-Díaz, S.; Leija-Salas, A.; Díaz-García, E.R.; Nicasio-Torres, P.; Gutiérrez-Villafuerte, M.; Tortoriello-García, J.; et al. Spontaneous regeneration of plant lets derived from hairy root cultures of Lopezia racemosa and the cytotoxic activity of their organic extracts. Plants 2022, 11, 150. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. A comparative metabolomics study of flavonoids in Radish with different skin and flesh colors (Raphanus sativus L.). Agric. Food Chem. 2020, 68, 14463–14470. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, H.; Sun, L.; Wu, W.; Li, C.; Wu, Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genom. 2022, 23, 96–114. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Hou, Y.; Zhu, Y.; Wang, P.; Zhao, Y.; Xie, S.; Batelli, G.; Wang, B.; Duan, C.; Wang, X.; Xing, L.; et al. Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling. PLoS Genet. 2016, 12, e1005835. [Google Scholar] [CrossRef] [Green Version]
- Sirichandra, C.; Gu, D.; Hu, H.; Davanture, M.; Lee, S.; Djaoui, M.; Valot, B.; Zivy, M.; Leung, J.; Merlot, S.; et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 2009, 583, 2982–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzo, G.G.; Unterlander, N. In through the outdoor: Biochemical mechanisms affecting flavonoid glycoside catabolism in plants. Plant Sci. 2021, 308, 110904. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wang, J.; Liu, Z.; Yang, Y.; Li, X. FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat. Curr. Issues Mol. Biol. 2023, 45, 3375-3390. https://doi.org/10.3390/cimb45040221
Liu S, Wang J, Liu Z, Yang Y, Li X. FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat. Current Issues in Molecular Biology. 2023; 45(4):3375-3390. https://doi.org/10.3390/cimb45040221
Chicago/Turabian StyleLiu, Shuangshuang, Jianmei Wang, Zhibin Liu, Yi Yang, and Xiaoyi Li. 2023. "FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat" Current Issues in Molecular Biology 45, no. 4: 3375-3390. https://doi.org/10.3390/cimb45040221
APA StyleLiu, S., Wang, J., Liu, Z., Yang, Y., & Li, X. (2023). FtbZIP85 Is Involved in the Accumulation of Proanthocyanidin by Regulating the Transcription of FtDFR in Tartary Buckwheat. Current Issues in Molecular Biology, 45(4), 3375-3390. https://doi.org/10.3390/cimb45040221