Host-Based Treatments for Severe COVID-19
Abstract
:1. Introduction
2. Corticosteroids
3. Tyrosine Kinase Inhibitor
4. Anti-Cytokine Treatment
5. Anti-Complement Therapies: Anti-C5a
6. Interferon
7. Anti-GM-CSF
Authors | Title of Article | Design | Drugs | Examined Patients | Results |
---|---|---|---|---|---|
Corticosteroids | |||||
The RECOVERY Collaborative Group (2021) [26] | Dexamethasone in hospitalized patients with COVID-19 | Prospective randomised trial compared with placebo | Dexamethasone 6 mg vs. placebo | 2104 treated vs. 4321 placebo patients hospitalised with confirmed COVID-19 | Lower mortality only in patients needing oxygen support |
Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. (2020) [27] | Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial | Multicentre, randomised, open-label, clinical trial | Dexamethasone 20 mg IV for 5 days, 10 mg for 5 days or until ICU discharge, plus standard care or standard care alone | 151 treated vs. 148 placebo patients with confirmed COVID-19 and moderate to severe ARDS | Patients with COVID-19 and moderate or severe ARDS treated with dexamethasone IV plus standard showed statistically significant increase in the number of ventilator-free days over 28 days |
The COVID STEROID 2 Trial Group (2021) [28] | Effect of 12 mg vs. 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: The COVID STEROID 2 randomized trial | Multicentre, randomised clinical trial | Dexamethasone 12 mg IV vs. Dexamethasone 6 mg IV | 982 adults with confirmed COVID-19 requiring at least 10 L/min of oxygen or mechanical ventilation | No statistical significance on ventilator-free days over 28 days |
The Writing Committee for the REMAP-CAP Investigators, Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, et al. (2020) [29] | Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: The REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial | Bayesian randomised clinical trial | Hydrocortisone (50 mg or 100 mg every 6 h or shock-dependent dosage) vs. no hydrocortisone | 295 treated vs. 108 non-treated adults with severe SARS-CoV-2 pneumonia in ICU | Improvement in organ support-free days within 21 days in patients treated with hydrocortisone |
Dequin P-F, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, et al. (2020) [30] | Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: A randomized clinical trial | Multicentre randomised double-blind sequential trial | Hydrocortisone 200 mg/die tapered to 100 mg and then 50 mg vs. placebo | 76 treated vs. 73 placebo admitted to ICU with ARDS due to COVID-19 infection | No significant reduction in treatment failure in hydrocortisone group The study was stopped early |
Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S, et al. (2020) [31] | Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: Results from a randomised controlled clinical trial | Single-blind, randomised controlled clinical trial | Standard care plus methylprednisolone pulse 250 mg IV vs. standard care alone | 34 treated vs. 34 placebo severe hospitalised patients with confirmed COVID-19 at the early pulmonary phase | Methylprednisolone in early phase improved pulmonary involvement, oxygen saturation, dyspnoea, heart rate, respiratory rate, temperature and inflammatory markers |
Jeronimo CMP, Farias MEL, Val FFA, et al. (2021) [32] | Methylprednisolone as adjunctive therapy for patients hospitalized with coronavirus disease 2019 (COVID-19; Metcovid): A randomized, double-blind, phase IIb, placebo-controlled trial | Randomised, double-blind, phase IIb, placebo-controlled trial | Methylprednisolone 0.5 mg/Kg IV vs. placebo | 208 treated vs. 208 placebo hospitalised patients with COVID-19 | Methylprednisolone did not reduce mortality in the overall population |
Salton F, Confalonieri P, Meduri GU, Santus P, Harari S, Scala R, et al. (2020) [34] | Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia | Multicentre, observational, longitudinal study | Methylprednisolone 80 mg IV, followed by an infusion of 80 mg/d in 240 mL of normal saline at 10 mL/h for at least 8 days, until achieving either a PaO2:FiO2 > 350 mmHg or a CRP < 20 mg/L; then MP 16 mg o.so or 20 mg IV twice daily until CRP reached < 20% of the normal range or a PaO2:FiO2 > 400 (alternative SatO2 ≥ 95% in room air) | 83 patients treated vs. 90 patients in control group with severe COVID-19 pneumonia | Early administration of prolonged, low dose MP treatment was associated with a significantly lower hazard of death and decreased ventilator dependence |
Ranjbar K, Moghadami M, Mirahmadizadeh A, Fallahi MJ, Khaloo V, Shahriarirad R, et al. (2021) [37] | Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: A triple-blinded randomized controlled trial | Prospective triple-blinded randomised controlled trial | Methylprednisolone (2 mg/kg/day; intervention group) or dexamethasone (6 mg/day; control group) | 47 patients in intervention group vs. 46 patients in control group hospitalised with COVID-19 pneumonia | Methylprednisolone results superior to dexamethasone |
Saeed MAM, Mohamed AH, Owaynat AH. (2022) [38] | Comparison between methylprednisolone infusion and dexamethasone in COVID-19 ARDS mechanically ventilated patients | Prospective cohort study | Methylprednisolone 2 mg/kg/day IV vs. 192 dexamethasone 6 mg/day | 222 patients treated with MP vs. 192 patients treated with dexamethasone admitted in ICU with confirmed diagnosis of SARS-CoV-2 pneumonia | Inflammatory markers for cytokine storm were improved in the methylprednisolone group in comparison to the patients treated with dexamethasone |
Salton F, Confalonieri P, Centanni S, Mondoni M, Petrosillo N, Bonfanti P, et al. (2022) [39] | Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: A randomised controlled trial (MEDEAS) | Multicentre, open-label randomised clinical trial | Methylprednisolone 80 mg IV in continuous daily infusion for 8 days followed by slow tapering vs. dexamethasone 6 mg daily | 337 patients treated with methylprednisolone vs. 340 in dexamethasone group with COVID-19 pneumonia requiring oxygen or non-invasive respiratory support | No significant differences in mortality between the two groups |
Tyrosine Kinase Inhibitors | |||||
Ely EW, Ramanan AV, Kartman CE, de Bono S, Liao R, Piruzeli MLB, et al. (2022) [44] | Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: An exploratory, randomised, placebo-controlled trial | Multinational, phase 3, randomised, double-blind, placebo-controlled trial | Baricitinib 4 mg vs. placebo combination with standard of care | 51 patients treated with baricitinib vs. 50 in placebo group hospitalised with laboratory-confirmed SARS-CoV-2 infection, mechanically ventilated or in extracorporeal membrane oxygenation | Treatment with baricitinib significantly reduced 28-day all-cause mortality compared with placebo |
Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. (2021) [45] | Baricitinib plus remdesivir for hospitalized adults with COVID-19 | Double-blind, randomised, placebo-controlled trial | Remdesivir plus baricitinib 4 mg daily or remdesivir alone (control) | 515 patients receiving combination treatment vs. 518 in control group in in hospitalised adults with COVID-19 | Baricitinib plus remdesivir was superior to remdesivir alone in reducing recovery time and accelerating improvement in clinical status |
Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Canè S, et al. (2020) [46] | Baricitinib restrains the immune dysregulation in patients with severe COVID-19 | Observational longitudinal trial | Baricitinib 4 mg twice daily for 2 days, then 4 mg daily for 7 days | 20 patients treated with baricitinib plus standard care vs. 56 patients treated only with standard care | Baricitinib prevented the progression to a severe form of SARS-CoV-2 pneumonia |
Abani O, Abbas A, Abbas F, Abbas J, Abbas K, Abbas M, et al. (2022) [47] | Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial and updated meta-analysis | Randomised, controlled, open-label, platform trial | Baricitinib 4 mg/daily with usual of care vs. standard of care alone | 514 patients receiving baricitinib vs. 546 in standard of care alone group of hospitalised patients with COVID-19 | 13% proportional reduction in mortality in baricitinib group |
Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. (2020) [48] | Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial | Prospective, multicentre, single-blind, randomised controlled phase II trial | Ruxolitinib plus standard-of-care treatment vs. placebo based on standard of care treatment | 22 patients receiving ruxolitinib vs. 21 patients treated with standard of care with severe COVID-19 pneumonia | No statistical difference between the two groups |
Han MK, Antila M, Ficker JH, Gordeev I, Guerreros A, Bernus AL, et al. (2022) [49] | Ruxolitinib in addition to standard of care for the treatment of patients admitted to hospital with COVID-19 (RUXCOVID): A randomised, double-blind, placebo-controlled, phase 3 trial | International, randomised, double-blind, phase 3 trial | Ruxolitinib 5 mg twice daily or placebo plus standard of care | 287 patients treated with ruxolitinib plus standard care vs. 145 patients with only standard of care in patients hospitalised, but not on mechanical ventilation or in the ICU | No benefit in the group treated with ruxolitinib |
Abani O, Abbas A, Abbas F, Abbas M, Abbasi S, Abbass H, et al. (2021) [55] | Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial | Randomised, controlled, open-label, platform trial | Tocilizumab vs. usual care | 621 patients allocated tocilizumab and 729 patients treated with usual care hospitalised with COVID-19 | Tocilizumab improved survival and other clinical outcomes |
Rosas IO, Bräu N, Waters M, Go RC, Hunter BD, Bhagani S, et al. (2021) [56] | Tocilizumab in hospitalized patients with severe COVID-19 pneumonia | Phase 3, international, randomised, double-blind, placebo-controlled trial | Single IV infusion of tocilizumab (8 mg/kg) vs. placebo | 94 patients in the tocilizumab group vs. 144 in the placebo group with severe COVID-19 pneumonia | Tocilizumab did not significantly improve clinical status or lower mortality than placebo at 28 days |
Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. (2021) [57] | Tocilizumab in patients hospitalized with COVID-19 pneumonia | Randomised, double-blind, placebo-controlled, phase 3 trial | One or two IV infusion of tocilizumab (8 mg/kg) vs. placebo | 249 patients in the tocilizumab group and 128 patients in the placebo group with COVID-19 pneumonia not receiving MV | Tocilizumab reduced the likelihood of progression to mechanical ventilation or death, did not improve survival |
Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, et al. (2021) [58] | Tocilizumab for treatment of mechanically ventilated patients with COVID-19 | Single-centre cohort study | Single IV infusion of tocilizumab (8 mg/kg) vs. placebo | 78 patients in tocilizumab vs. 76 in placebo group: tocilizumab needing MV | Tocilizumab treatment resulted in lower mortality despite higher superinfection occurrence |
The REMAP-CAP Investigators (2021) [59] | Interleukin-6 receptor antagonists in critically ill patients with COVID-19 | International, adaptive platform trial | Tocilizumab (8 mg/kg) vs. sarilumab 400 mg vs. standard care (control) | 353 patients in tocilizumab, 48 in sarilumab, and 402 in control group in ICU critically ill patients | Tocilizumab and sarilumab both improved outcomes, including survival in the considered cohort of patients |
Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, et al. (2020) [60] | Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study | Open-label observational study | Sarilumab 400 mg plus standard of care vs. standard care alone | 28 patients in sarilumab group vs. 28 patients in control group with in severe COVID-19 pneumonia and hyperinflammation (elevated inflammatory markers and serum IL-6 levels) | No significant difference in mortality between the two groups at day 28 |
Lescure F-X, Honda H, Fowler RA, Lazar JS, Shi G, Wung P, et al. (2021) [61] | Sarilumab in patients admitted to hospital with severe or critical COVID-19: A randomised, double-blind, placebo-controlled, phase 3 trial | Randomised, double-blind, placebo-controlled, multinational phase 3 trial | Sarilumab 400 mg vs. Sarilumab 200 mg vs. placebo | 84 patients receiving placebo vs. 159 in sarilumab 200 mg vs. 173 sarilumab 400 mg in hospitalised patients with COVID-19 requiring supplemental oxygen | No efficacy in patients treated with sarilumab |
Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G, Tsiakos K, et al. (2021) [62] | Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial | Pivotal, confirmatory, phase 3, double-blind randomised controlled trial | Anakinra vs. placebo | 189 placebo vs. 405 anakinra in patients with rapidly deteriorating respiratory function | Reduction of 28-day mortality and hospital stay |
Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. (2020) [63] | Anakinra for severe forms of COVID-19: A cohort study | Retrospective cohort study | Anakinra subcutaneous plus standard care vs. standard care alone | 52 patients in anakinra group vs. 44 patients in control group with severe bilateral COVID-19 pneumonia | Reduction in need for invasive mechanical ventilation in ICU and mortality |
Kyriazopoulou E, Huet T, Cavalli G, Gori A, Kyprianou M, Pickkers P, et al. (2021) [64] | Effect of anakinra on mortality in patients with COVID-19: A systematic review and patient-level meta-analysis | Systematic review and individual patient-level meta-analysis | Anakinra with standard of care vs. placebo vs. both | 1185 patients with SARS-CoV-2 infection | Anakinra reduced the mortality risk in patients admitted to hospital with moderate to severe COVID-19 pneumonia |
Anti-complement therapies: anti-C5a | |||||
Vlaar APJ, de Bruin S, Busch M, Timmermans SAMEG, van Zeggeren IE, Koning R, et al. (2020) [69] | Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): An exploratory, open-label, phase 2 randomised controlled trial | Exploratory, open-label, randomised phase 2 trial | Vilobelimab with best supportive care vs. best supportive care alone | 15 patients in vilobelimab group vs. 15 patients in control group with severe COVID-19 pneumonia | Assessed safety of vilobelimab |
Vlaar APJ, Witzenrath M, van Paassen P, Heunks LMA, Mourvillier B, de Bruin S, et al. (2022) [70] | Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. | Randomised, double-blind, placebo-controlled, multicentre phase 3 trial | Vilobelimab 800 mg IV for max. 6 days with best supportive care vs. best supportive care alone | 54 patients in the vilobelimab group and 77 patients in control group with SARS-CoV-2 infection receiving invasive mechanical ventilation | Vilobelimab ameliorated survival in invasive ventilated patients and decreased mortality |
Interferon | |||||
Monk PD, Marsden RJ, Tear VJ, Brookes J, Batten TN, Mankowski M, et al. (2021) [71] | Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial | Randomised, double-blind, placebo-controlled, phase 2 pilot trial | Inhaled interferon beta-1a vs. placebo | 48 patients received inhaled interferon and 50 received placebo hospitalised with confirmed COVID-19 infection | Greater odds of improvement and rapid recovery in interferon group |
Kalil AC, Mehta AK, Patterson TF, Erdmann N, Gomez CA, Jain MK, et al. (2021) [72] | Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-blind, randomised, placebo-controlled, phase 3 trial | Double-blind, randomised, placebo-controlled trial | Remdesivir IV and interferon beta-1a or remdesivir | 487 in interferon plus remdesivir group vs. 482 remdesivir group in hospitalised adults with SARS-CoV-2 infection | Adding interferon showed no significant improvement |
Anti-GM-CSF | |||||
Temesgen Z, Assi M, Shweta FNU, Vergidis P, Rizza SA, Bauer PR, et al. (2020) [77] | GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia: A case cohort study | Case cohort study | Lenzilumab 600 mg | 12 patients treated with lenzilumab vs. 27 untreated patients with COVID-19 pneumonia and risk factors for poor outcomes | Assessment of safety of lenzilumab and faster improvement |
8. Current Guidelines
9. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timeline: WHO’s COVID-19 Response. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline (accessed on 13 February 2023).
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 13 February 2023).
- ARDS Definition of Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- World Health Organization. Therapeutics and COVID-19: Living Guideline, 13 January 2023; World Health Organization: Geneva, Switzerland, 2023; WHO/2019-nCoV/therapeutics/2023.1. [Google Scholar]
- Pelosi, P.; Tonelli, R.; Torregiani, C.; Baratella, E.; Confalonieri, M.; Battaglini, D.; Marchioni, A.; Confalonieri, P.; Clini, E.; Salton, F.; et al. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J. Clin. Med. 2022, 11, 1704. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Shen, X.-R.; Geng, R.; Li, Q.; Chen, Y.; Li, S.-F.; Wang, Q.; Min, J.; Yang, Y.; Li, B.; Jiang, R.-D.; et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct. Target. Ther. 2022, 7, 83. [Google Scholar] [CrossRef]
- Sunkara, H.; Dewan, S.M.R. Coronavirus disease-2019: A review on the disease exacerbation via cytokine storm and concurrent management. Int. Immunopharmacol. 2021, 99, 108049. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Natalello, G.; De Luca, G.; Gigante, L.; Campochiaro, C.; De Lorenzis, E.; Verardi, L.; Paglionico, A.; Petricca, L.; Martone, A.M.; Calvisi, S.; et al. Nailfold capillaroscopy findings in patients with coronavirus disease 2019: Broadening the spectrum of COVID-19 microvascular involvement. Microvasc Res. 2021, 133, 104071. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Soldano, S.; Smith, V.; Paolino, S.; Contini, P.; Montagna, P.; Pizzorni, C.; Casabella, A.; Tardito, S.; Sulli, A.; et al. Correlation between circulating fibrocytes and dermal thickness in limited cutaneous systemic sclerosis patients: A pilot study. Rheumatol. Int. 2019, 39, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Bernero, E.; Sulli, A.; Ferrari, G.; Ravera, F.; Pizzorni, C.; Ruaro, B.; Zampogna, G.; Alessandri, E.; Cutolo, M. Prospective capillaroscopy-based study on transition from primary to secondary Raynaud’s phenomenon: Preliminary results. Reumatismo 2013, 65, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Mathew, D.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Greenplate, A.R.; Wu, J.E.; Alanio, C.; Kuri-Cervantes, L.; Pampena, M.B.; D’Andrea, K.; et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020, 369, eabc8511. [Google Scholar] [CrossRef]
- Salton, F.; Confalonieri, P.; Campisciano, G.; Cifaldi, R.; Rizzardi, C.; Generali, D.; Pozzan, R.; Tavano, S.; Bozzi, C.; Lapadula, G.; et al. Cytokine Profiles as Potential Prognostic and Therapeutic Markers in SARS-CoV-2-Induced ARDS. J. Clin. Med. 2022, 11, 2951. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar]
- Meduri, G.U.; Chrousos, G.P. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front. Endocrinol. 2020, 11, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busillo, J.M.; Cidlowski, J.A. The five Rs of glucocorticoid action during inflammation: Ready, reinforce, repress, resolve, and restore. Trends Endocrinol. Metab. 2013, 24, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Confalonieri, M.; Urbino, R.; Potena, A.; Piattella, M.; Parigi, P.; Puccio, G.; Della Porta, R.; Giorgio, C.; Blasi, F.; Umberger, R.; et al. Hydrocortisone Infusion for Severe Community-acquired Pneumonia: A Preliminary Randomized Study. Am. J. Respir. Crit. Care Med. 2005, 171, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Nigro, N.; Christ-Crain, M.; Duplain, H.; Suter-Widmer, I.; Refardt, J.; Mueller, B.; Urwyler, S.A.; Elsaesser, H.; Blum, C.A.; et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015, 385, 1511–1518. [Google Scholar]
- Briel, M.; Spoorenberg, S.M.C.; Snijders, D.; Torres, A.; Fernandez-Serrano, S.; Meduri, G.U.; Gabarrús, A.; Blum, C.A.; Confalonieri, M.; Kasenda, B.; et al. Corticosteroids in Patients Hospitalized with Community-Acquired Pneumonia: Systematic Review and Individual Patient Data Metaanalysis. Clin. Infect. Dis. 2018, 66, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Horita, N.; Otsuka, T.; Haranaga, S.; Namkoong, H.; Miki, M.; Miyashita, N.; Higa, F.; Takahashi, H.; Yoshida, M.; Kohno, S.; et al. Adjunctive Systemic Corticosteroids for Hospitalized Community-Acquired Pneumonia: Systematic Review and Meta-Analysis 2015 Update. Sci. Rep. 2015, 5, 14061. [Google Scholar] [CrossRef] [Green Version]
- Olson, G.; Davis, A.M. Diagnosis and Treatment of Adults With Community-Acquired Pneumonia. JAMA 2020, 323, 885. [Google Scholar] [CrossRef]
- Meduri, G.U.; Annane, D.; Confalonieri, M.; Chrousos, G.P.; Rochwerg, B.; Busby, A.; Ruaro, B.; Meibohm, B. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med. 2020, 46, 2284–2296. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Mandourah, Y.; Al-Hameed, F.; Sindi, A.A.; Almekhlafi, G.A.; Hussein, M.A.; Jose, J.; Pinto, R.; Al-Omari, A.; Kharaba, A.; et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am. J. Respir. Crit. Care Med. 2018, 197, 757–767. [Google Scholar] [CrossRef]
- World Health Organization. WHO R&D Blueprint Informal Consultation on Prioritization of Candidate Therapeutic Agents for Use in Novel Coronavirus 2019 Infection Geneva, Switzerland, 24 January 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307. [Google Scholar] [CrossRef]
- Russell, L.; Uhre, K.R.; Lindgaard, A.L.S.; Degn, J.F.; Wetterslev, M.; Sivapalan, P.; Anthon, C.T.; Mikkelsen, V.S.; la Porta, L.C.; Jensen, T.S.; et al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive without Life Support in Adults with COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. JAMA 2021, 326, 1807. [Google Scholar]
- Angus, D.C.; Derde, L.; Al-Beidh, F.; Annane, D.; Arabi, Y.; Beane, A.; van Bentum-Puijk, W.; Berry, L.; Bhimani, Z.; Bonten, M. Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA 2020, 324, 1317. [Google Scholar]
- Dequin, P.F.; Heming, N.; Meziani, F.; Plantefève, G.; Voiriot, G.; Badié, J.; François, B.; Aubron, C.; Ricard, J.D.; Ehrmann, S. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support among Critically Ill Patients with COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1298. [Google Scholar] [CrossRef]
- Edalatifard, M.; Akhtari, M.; Salehi, M.; Naderi, Z.; Jamshidi, A.; Mostafaei, S.; Najafizadeh, S.R.; Farhadi, E.; Jalili, N.; Esfahani, M.; et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: Results from a randomised controlled clinical trial. Eur. Respir. J. 2020, 56, 2002808. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Netto, R.L.A.; Maciel, A.B.S.; et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized with Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin. Infect. Dis. 2021, 72, e373–e381. [Google Scholar] [CrossRef]
- Nicastri, E.; Petrosillo, N.; Ascoli Bartoli, T.; Lepore, L.; Mondi, A.; Palmieri, F.; D’Offizi, G.; Marchioni, L.; Murachelli, S.; Ippolito, G.; et al. National Institute for the Infectious Diseases “L. Spallanzani” IRCCS. Recommendations for COVID-19 Clinical Management. Infect. Dis. Rep. 2020, 12, 8543. [Google Scholar] [CrossRef]
- Salton, F.; Confalonieri, P.; Meduri, G.U.; Santus, P.; Harari, S.; Scala, R.; Lanini, S.; Vertui, V.; Oggionni, T.; Caminati, A.; et al. Prolonged Low-Dose Methylprednisolone in Patients with Severe COVID-19 Pneumonia. Open Forum Infect. Dis. 2020, 7, ofaa421. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Pastores, S.M.; Rochwerg, B.; Arlt, W.; Balk, R.A.; Beishuizen, A.; Briegel, J.; Carcillo, J.; Christ-Crain, M.; Cooper, M.; et al. Guidelines for the Diagnosis and Management of Critical Illness-Related Corticosteroid Insufficiency (CIRCI) in Critically Ill Patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit. Care Med. 2017, 45, 11. [Google Scholar] [CrossRef] [PubMed]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330. [Google Scholar]
- Ranjbar, K.; Moghadami, M.; Mirahmadizadeh, A.; Fallahi, M.J.; Khaloo, V.; Shahriarirad, R.; Erfani, A.; Khodamoradi, Z.; Saadi, M.H.Z. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: A triple-blinded randomized controlled trial. BMC Infect. Dis. 2021, 21, 337. [Google Scholar] [CrossRef]
- Saeed, M.A.M.; Mohamed, A.H.; Owaynat, A.H. Comparison between methylprednisolone infusion and dexamethasone in COVID-19 ARDS mechanically ventilated patients. Egypt J. Intern. Med. 2022, 34, 19. [Google Scholar] [CrossRef] [PubMed]
- Salton, F.; Confalonieri, P.; Centanni, S.; Mondoni, M.; Petrosillo, N.; Bonfanti, P.; Lapadula, G.; Lacedonia, D.; Voza, A.; Carpenè, N.; et al. Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: A randomised controlled trial (MEDEAS). Eur. Respir. J. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, J.Y.; Yang, J.W.; Lee, K.H.; Effenberger, M.; Szpirt, W.; Kronbichler, A.; Shin, J.I. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021, 11, 316–329. [Google Scholar] [CrossRef]
- Solimani, F.; Meier, K.; Ghoreschi, K. Janus kinase signaling as risk factor and therapeutic target for severe SARS-CoV-2 infection. Eur. J. Immunol. 2021, 51, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Roche, N.; Crichton, M.L.; Goeminne, P.C.; Cao, B.; Humbert, M.; Shteinberg, M.; Antoniou, K.M.; Ulrik, C.S.; Parks, H.; Wang, C.; et al. Update June 2022: Management of hospitalised adults with coronavirus disease 2019 (COVID-19): A European Respiratory Society living guideline. Eur. Respir. J. 2022, 60, 2200803. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Therapeutics and COVID-19: Living Guideline, 16 September 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Ely, E.W.; Ramanan, A.V.; Kartman, C.E.; de Bono, S.; Liao, R.; Piruzeli, M.L.B.; Goldman, J.D.; Saraiva, J.F.K.; Chakladar, S.; Marconi, V.C.; et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: An exploratory, randomised, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 327–336. [Google Scholar] [CrossRef]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus Remdesivir for Hospitalized Adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Canè, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Investig. 2020, 130, 6409–6416. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 2022, 400, 359–368. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J. Allergy Clin. Immunol. 2020, 146, 137–146.e3. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; Antila, M.; Ficker, J.H.; Gordeev, I.; Guerreros, A.; Bernus, A.L.; Roquilly, A.; Sifuentes-Osornio, J.; Tabak, F.; Teijeiro, R.; et al. Ruxolitinib in addition to standard of care for the treatment of patients admitted to hospital with COVID-19 (RUXCOVID): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Rheumatol. 2022, 4, e351–e361. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19)|Drugs. Available online: https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs (accessed on 13 February 2023).
- COVID-19 Treatments. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments (accessed on 13 February 2023).
- Van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.; Pickkers, P.; Derde, L.; Leavis, H.; van Crevel, R.; Engel, J.J.; Wiersinga, W.J.; Vlaar, A.P.J.; Shankar-Hari, M.; et al. A guide to immunotherapy for COVID-19. Nat. Med. 2022, 28, 39–50. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef]
- Potere, N.; Batticciotto, A.; Vecchié, A.; Porreca, E.; Cappelli, A.; Abbate, A.; Dentali, F.; Bonaventura, A. The role of IL-6 and IL-6 blockade in COVID-19. Expert Rev. Clin. Immunol. 2021, 17, 601–618. [Google Scholar] [CrossRef]
- Abani, O.; Abbas, A.; Abbas, F.; Abbas, M.; Abbasi, S.; Abbass, H.; Abbott, A.; Abdallah, N.; Abdelaziz, A.; Abdelfattah, M.; et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar]
- Rosas, I.O.; Bräu, N.; Waters, M.; Go, R.C.; Hunter, B.D.; Bhagani, S.; Skiest, D.; Aziz, M.S.; Cooper, N.; Douglas, I.S.; et al. Tocilizumab in Hospitalized Patients with Severe COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Somers, E.C.; Eschenauer, G.A.; Troost, J.P.; Golob, J.L.; Gandhi, T.N.; Wang, L.; Zhou, N.; Petty, L.A.; Baang, J.H.; Dillman, N.O.; et al. Tocilizumab for Treatment of Mechanically Ventilated Patients With COVID-19. Clin. Infect. Dis. 2021, 73, e445–e454. [Google Scholar] [CrossRef] [PubMed]
- The REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Campochiaro, C.; Cavalli, G.; De Luca, G.; Napolitano, A.; La Marca, S.; Boffini, N.; Da Prat, V.; Di Terlizzi, G.; Lanzillotta, M.; et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study. Ann. Rheum. Dis. 2020, 79, 1277–1285. [Google Scholar] [CrossRef]
- Lescure, F.-X.; Honda, H.; Fowler, R.A.; Lazar, J.S.; Shi, G.; Wung, P.; Patel, N.; Hagino, O.; Bazzalo, I.J.; Casas, M.M.; et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial. Nat. Med. 2021, 27, 1752–1760. [Google Scholar] [CrossRef]
- Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.-M.; Bézie, Y.; Laplanche, S.; et al. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol. 2020, 2, e393–e400. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Huet, T.; Cavalli, G.; Gori, A.; Kyprianou, M.; Pickkers, P.; Eugen-Olsen, J.; Clerici, M.; Veas, F.; Chatellier, G.; et al. Effect of anakinra on mortality in patients with COVID-19: A systematic review and patient-level meta-analysis. Lancet Rheumatol. 2021, 3, e690–e697. [Google Scholar] [CrossRef]
- Afzali, B.; Noris, M.; Lambrecht, B.N.; Kemper, C. The state of complement in COVID-19. Nat. Rev. Immunol. 2022, 22, 77–84. [Google Scholar] [CrossRef]
- Carvelli, J.; Demaria, O.; Vély, F.; Batista, L.; Benmansour, N.C.; Fares, J.; Carpentier, S.; Thibult, M.-L.; Morel, A.; Remark, R.; et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature 2020, 588, 146–150. [Google Scholar] [CrossRef]
- Woodruff, T.M.; Shukla, A.K. The Complement C5a-C5aR1 GPCR Axis in COVID-19 Therapeutics. Trends Immunol. 2020, 41, 965–967. [Google Scholar] [CrossRef]
- Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol. 2020, 20, 343–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaar, A.P.J.; de Bruin, S.; Busch, M.; Timmermans, S.A.M.E.G.; van Zeggeren, I.E.; Koning, R.; Horst, L.T.; Bulle, E.B.; van Baarle, F.E.H.P.; van de Poll, M.C.G.; et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): An exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol. 2020, 2, e764–e773. [Google Scholar] [CrossRef]
- Vlaar, A.P.J.; Witzenrath, M.; van Paassen, P.; A Heunks, L.M.; Mourvillier, B.; de Bruin, S.; Lim, E.H.T.; Brouwer, M.C.; Tuinman, P.R.; Saraiva, J.F.K.; et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2022, 10, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Monk, P.D.; Marsden, R.J.; Tear, V.J.; Brookes, J.; Batten, T.N.; Mankowski, M.; Gabbay, F.J.; Davies, D.E.; Holgate, S.T.; Ho, L.P. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 196–206. [Google Scholar] [CrossRef]
- Kalil, A.C.; Mehta, A.K.; Patterson, T.F.; Erdmann, N.; A Gomez, C.; Jain, M.K.; Wolfe, C.R.; Ruiz-Palacios, G.M.; Kline, S.; Pineda, J.R.; et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Ataya, A.; Knight, V.; Carey, B.C.; Lee, E.; Tarling, E.J.; Wang, T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front. Immunol. 2021, 12, 752856. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, R.S.; Uruchurtu, A.S.S.; Siggins, M.K.; Liew, F.; Russell, C.D.; Moore, S.C.; Fairfield, C.; Carter, E.; Abrams, S.; Short, C.-E.; et al. Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Sci. Immunol. 2021, 6, eabg9873. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Porter, J.C.; Manson, J.J.; Isaacs, J.D.; Openshaw, P.J.M.; McInnes, I.B.; Summers, C.; Chambers, R.C. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: Challenges and opportunities. Lancet Respir. Med. 2020, 8, 822–830. [Google Scholar] [CrossRef]
- Lang, F.M.; Lee, K.M.-C.; Teijaro, J.R.; Becher, B.; Hamilton, J.A. GM-CSF-based treatments in COVID-19: Reconciling opposing therapeutic approaches. Nat. Rev. Immunol. 2020, 20, 507–514. [Google Scholar] [CrossRef]
- Temesgen, Z.; Assi, M.; Shweta, F.; Vergidis, P.; Rizza, S.A.; Bauer, P.R.; Pickering, B.W.; Razonable, R.R.; Libertin, C.R.; Burger, C.D.; et al. GM-CSF Neutralization With Lenzilumab in Severe COVID-19 Pneumonia. Mayo Clin. Proc. 2020, 95, 2382–2394. [Google Scholar] [CrossRef]
- Bosteels, C.; Maes, B.; Van Damme, K.; De Leeuw, E.; Declercq, J.; Delporte, A.; Demeyere, B.; Vermeersch, S.; Vuylsteke, M.; Willaert, J.; et al. Sargramostim to treat patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC): A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 491. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 13 February 2023).
Therapy | FDA Indications | EMA Indications |
---|---|---|
Tocilizumab | Hospitalised adults receiving systemic corticosteroids and requiring oxygen, NIV, IVM, or ECMO | Hospitalised adults receiving corticosteroid via OS or IV and requiring oxygen, NIV, or IVM |
Baricitinib | Hospitalised adults receiving systemic corticosteroids and requiring oxygen, NIV, IV, or ECMO | Not approved in Europe |
Anakinra | Adults with pneumonia requiring supplemental oxygen at risk of progressing to severe respiratory failure and likely to have elevated plasma suPAR * | Adults with pneumonia requiring supplemental oxygen, at risk of developing severe respiratory failure with suPAR blood level of at least 6 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondini, L.; Salton, F.; Trotta, L.; Bozzi, C.; Pozzan, R.; Barbieri, M.; Tavano, S.; Lerda, S.; Hughes, M.; Confalonieri, M.; et al. Host-Based Treatments for Severe COVID-19. Curr. Issues Mol. Biol. 2023, 45, 3102-3121. https://doi.org/10.3390/cimb45040203
Mondini L, Salton F, Trotta L, Bozzi C, Pozzan R, Barbieri M, Tavano S, Lerda S, Hughes M, Confalonieri M, et al. Host-Based Treatments for Severe COVID-19. Current Issues in Molecular Biology. 2023; 45(4):3102-3121. https://doi.org/10.3390/cimb45040203
Chicago/Turabian StyleMondini, Lucrezia, Francesco Salton, Liliana Trotta, Chiara Bozzi, Riccardo Pozzan, Mariangela Barbieri, Stefano Tavano, Selene Lerda, Michael Hughes, Marco Confalonieri, and et al. 2023. "Host-Based Treatments for Severe COVID-19" Current Issues in Molecular Biology 45, no. 4: 3102-3121. https://doi.org/10.3390/cimb45040203
APA StyleMondini, L., Salton, F., Trotta, L., Bozzi, C., Pozzan, R., Barbieri, M., Tavano, S., Lerda, S., Hughes, M., Confalonieri, M., Confalonieri, P., & Ruaro, B. (2023). Host-Based Treatments for Severe COVID-19. Current Issues in Molecular Biology, 45(4), 3102-3121. https://doi.org/10.3390/cimb45040203