Preclinical Models and Promising Pharmacotherapeutic Strategies in Liver Fibrosis: An Update
Abstract
:1. Introduction
2. Preclinical Models of Liver Fibrosis
2.1. In Vitro Models of Liver Fibrosis
2.2. In Vivo Models of Liver Fibrosis
3. Pharmacotherapeutic Strategies and New Targets in Liver Fibrosis
3.1. Treatment of the Underlying Condition
3.2. Anti-Inflammatory Action and Liver Protection
3.3. Interference or Blockage of HSC Activation and Proliferation
3.4. Inhibition of the ECM Production and Promotion of ECM Degradation
3.5. Gene Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef]
- Wu, K.J.; Qian, Q.F.; Zhou, J.R.; Sun, D.L.; Duan, Y.F.; Zhu, X.; Sartorius, K.; Lu, Y.J. Regulatory T cells (Tregs) in liver fibrosis. Cell Death Discov. 2023, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Jarvis, H.; McGonigle, J.; Bedlington, J.; Dean, J.; Hallsworth, K.; Hanon, E.; Liddle, T.; Luvai, A.; Mansour, D.; et al. Stratification of LIver Disease (SOLID): Protocol for a prospective observational cohort study to determine the optimum biomarker strategies for the detection of advanced liver disease at the primary-secondary care interface. BMJ Open Gastroenterol. 2023, 10, e001092. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Li, H. Hepatic Antifibrotic Pharmacotherapy: Are We Approaching Success? J. Clin. Transl. Hepatol. 2020, 8, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kolaric, T.O.; Nincevic, V.; Kuna, L.; Duspara, K.; Bojanic, K.; Vukadin, S.; Raguz-Lucic, N.; Wu, G.Y.; Smolic, M. Drug-induced Fatty Liver Disease: Pathogenesis and Treatment. J. Clin. Transl. Hepatol. 2021, 9, 731–737. [Google Scholar] [CrossRef]
- Lambrecht, J.; van Grunsven, L.A.; Tacke, F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin. Pharmacother. 2020, 21, 1637–1650. [Google Scholar] [CrossRef]
- Omanovic Kolaric, T.; Kizivat, T.; Mihaljevic, V.; Zjalic, M.; Bilic-Curcic, I.; Kuna, L.; Smolic, R.; Vcev, A.; Wu, G.Y.; Smolic, M. Liraglutide Exerts Protective Effects by Downregulation of PPARγ, ACSL1 and SREBP-1c in Huh7 Cell Culture Models of Non-Alcoholic Steatosis and Drug-Induced Steatosis. Curr. Issues Mol. Biol. 2022, 44, 3465–3480. [Google Scholar] [CrossRef]
- Williams, R.; Aspinall, R.; Bellis, M.; Camps-Walsh, G.; Cramp, M.; Dhawan, A.; Ferguson, J.; Forton, D.; Foster, G.; Gilmore, I.; et al. Addressing liver disease in the UK: A blueprint for attaining excellence in health care and reducing premature mortality from lifestyle issues of excess consumption of alcohol, obesity, and viral hepatitis. Lancet 2014, 384, 1953–1997. [Google Scholar] [CrossRef]
- Wight, T.N.; Potter-Perigo, S. The extracellular matrix: An active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G950–G955. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Sun, H.; Zhang, Y.; Zou, D. New insights into fibrosis from the ECM degradation perspective: The macrophage-MMP-ECM interaction. Cell Biosci. 2022, 12, 117. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef]
- Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef] [PubMed]
- Yanguas, S.C.; Cogliati, B.; Willebrords, J.; Maes, M.; Colle, I.; van den Bossche, B.; de Oliveira, C.P.M.S.; Andraus, W.; Alves, V.A.F.; Leclercq, I.; et al. Experimental models of liver fibrosis. Arch. Toxicol. 2016, 90, 1025–1048. [Google Scholar] [CrossRef] [PubMed]
- Greenwel, P.; Schwartz, M.; Rosas, M.; Peyrol, S.; Grimaud, J.A.; Rojkind, M. Characterization of fat-storing cell lines derived from normal and CCl4-cirrhotic livers. Differences in the production of interleukin-6. Lab. Invest. 1991, 65, 644–653. [Google Scholar] [PubMed]
- Zahmatkesh, E.; Othman, A.; Braun, B.; Aspera, R.; Ruoß, M.; Piryaei, A.; Vosough, M.; Nüssler, A. In vitro modeling of liver fibrosis in 3D microtissues using scalable micropatterning system. Arch. Toxicol. 2022, 96, 1799–1813. [Google Scholar] [CrossRef] [PubMed]
- Mederacke, I.; Hsu, C.C.; Troeger, J.S.; Huebener, P.; Mu, X.; Dapito, D.H.; Pradere, J.P.; Schwabe, R.F. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 2013, 4, 2823. [Google Scholar] [CrossRef]
- van Grunsven, L.A. 3D in vitro models of liver fibrosis. Adv. Drug Deliv. Rev. 2017, 121, 133–146. [Google Scholar] [CrossRef]
- Acharya, P.; Chouhan, K.; Weiskirchen, S.; Weiskirchen, R. Cellular Mechanisms of Liver Fibrosis. Front. Pharmacol. 2021, 12, 671640. [Google Scholar] [CrossRef]
- Herrmann, J.; Gressner, A.M.; Weiskirchen, R. Immortal hepatic stellate cell lines: Useful tools to study hepatic stellate cell biology and function? J. Cell Mol. Med. 2007, 11, 704–722. [Google Scholar] [CrossRef]
- van Os, E.A.; Cools, L.; Eysackers, N.; Szafranska, K.; Smout, A.; Verhulst, S.; Reynaert, H.; McCourt, P.; Mannaerts, I.; van Grunsven, L.A. Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials 2022, 290, 121817. [Google Scholar] [CrossRef]
- Mannaerts, I.; Eysackers, N.; Anne van Os, E.; Verhulst, S.; Roosens, T.; Smout, A.; Hierlemann, A.; Frey, O.; Leite, S.B.; van Grunsven, L.A. The fibrotic response of primary liver spheroids recapitulates in vivo hepatic stellate cell activation. Biomaterials 2020, 261, 120335. [Google Scholar] [CrossRef]
- Bruschi, F.V.; Claudel, T.; Tardelli, M.; Caligiuri, A.; Stulnig, T.M.; Marra, F.; Trauner, M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017, 65, 1875–1890. [Google Scholar] [CrossRef] [PubMed]
- Gevaert, E.; Dollé, L.; Billiet, T.; Dubruel, P.; van Grunsven, L.; van Apeldoorn, A.; Cornelissen, R. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering. PLoS ONE 2014, 9, e105171. [Google Scholar] [CrossRef] [PubMed]
- Roguljic, H.; Nincevic, V.; Bojanic, K.; Kuna, L.; Smolic, R.; Vcev, A.; Primorac, D.; Vceva, A.; Wu, G.Y.; Smolic, M. Impact of DAA Treatment on Cardiovascular Disease Risk in Chronic HCV Infection: An Update. Front. Pharmacol. 2021, 12, 678546. [Google Scholar] [CrossRef]
- Kandasamy, P.; Mori, S.; Matsuda, S.; Erande, N.; Datta, D.; Willoughby, J.L.S.; Taneja, N.; O’Shea, J.; Bisbe, A.; Manoharan, R.M.; et al. Metabolically Stable Anomeric Linkages Containing GalNAc-siRNA Conjugates: An Interplay among ASGPR, Glycosidase, and RISC Pathways. J. Med. Chem. 2023, 66, 2506–2523. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gong, N.; Xue, L.; Billingsley, M.M.; El-Mayta, R.; Shepherd, S.J.; Alameh, M.G.; Weissman, D.; Mitchell, M.J. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 2023, 14, 75. [Google Scholar] [CrossRef]
- Chheda, T.K.; Shivakumar, P.; Sadasivan, S.K.; Chanderasekharan, H.; Moolemath, Y.; Oommen, A.M.; Madanahalli, J.R.; Marikunte, V.V. Fast food diet with CCl4 micro-dose induced hepatic-fibrosis—A novel animal model. BMC Gastroenterol. 2014, 14, 89. [Google Scholar] [CrossRef]
- Cast, A.; Kumbaji, M.; D’Souza, A.; Rodriguez, K.; Gupta, A.; Karns, R.; Timchenko, L.; Timchenko, N. Liver Proliferation Is an Essential Driver of Fibrosis in Mouse Models of Nonalcoholic Fatty Liver Disease. Hepatol. Commun. 2019, 3, 1036–1049. [Google Scholar] [CrossRef]
- Brandon-Warner, E.; Schrum, L.W.; Schmidt, C.M.; McKillop, I.H. Rodent models of alcoholic liver disease: Of mice and men. Alcohol 2012, 46, 715–725. [Google Scholar] [CrossRef]
- Fortea, J.I.; Fernández-Mena, C.; Puerto, M.; Ripoll, C.; Almagro, J.; Bañares, J.; Bellón, J.M.; Bañares, R.; Vaquero, J. Comparison of Two Protocols of Carbon Tetrachloride-Induced Cirrhosis in Rats-Improving Yield and Reproducibility. Sci. Rep. 2018, 8, 9163. [Google Scholar] [CrossRef]
- Wallace, M.C.; Hamesch, K.; Lunova, M.; Kim, Y.; Weiskirchen, R.; Strnad, P.; Friedman, S.L. Standard operating procedures in experimental liver research: Thioacetamide model in mice and rats. Lab. Anim. 2015, 49, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Beyoğlu, D.; Huang, P.; Skelton-Badlani, D.; Zong, C.; Popov, Y.V.; Idle, J.R. Metabolic Hijacking of Hexose Metabolism to Ascorbate Synthesis Is the Unifying Biochemical Basis of Murine Liver Fibrosis. Cells 2023, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Unsal, V.; Cicek, M.; Sabancilar, İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health 2021, 36, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.M.; Taha, A.M.; Eldahshan, O.A.; Sayed, A.A.; Salem, A.M. Modulatory effect of Prosopis juliflora leaves on hepatic fibrogenic and fibrolytic alterations induced in rats by thioacetamide. Biomed. Pharmacother. 2019, 115, 108788. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Murata, S.; Hasegawa, S.; Hatada, Y.; Ohtsuka, M.; Taniguchi, H. Novel liver fibrosis model in Macaca fascicularis induced by thioacetamide. Sci. Rep. 2020, 10, 2450. [Google Scholar] [CrossRef] [PubMed]
- Melhem, M.F.; Rao, K.N.; Kunz, H.W.; Kazanecki, M.; Gill, T.J., 3rd. Genetic control of susceptibility to diethylnitrosamine carcinogenesis in inbred ACP (grc+) and R16 (grc) rats. Cancer Res. 1989, 49, 6813–6821. [Google Scholar]
- Melhem, M.F.; Kazanecki, M.E.; Rao, K.N.; Kunz, H.W.; Gill, T.J., 3rd. Genetics and diet: Synergism in hepatocarcinogenesis in rats. J. Am. Coll. Nutr. 1990, 9, 168–173. [Google Scholar] [CrossRef]
- He, J.Y.; Ge, W.H.; Chen, Y. Iron deposition and fat accumulation in dimethylnitrosamine-induced liver fibrosis in rat. World J. Gastroenterol. 2007, 13, 2061–2065. [Google Scholar] [CrossRef]
- Mehta, K.J.; Farnaud, S.J.; Sharp, P.A. Iron and liver fibrosis: Mechanistic and clinical aspects. World J. Gastroenterol. 2019, 25, 521–538. [Google Scholar] [CrossRef]
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Prim. 2018, 4, 16. [Google Scholar] [CrossRef]
- Beier, J.I.; McClain, C.J. Mechanisms and cell signaling in alcoholic liver disease. Biol. Chem. 2010, 391, 1249–1264. [Google Scholar] [CrossRef] [PubMed]
- Lamas-Paz, A.; Hao, F.; Nelson, L.J.; Vázquez, M.T.; Canals, S.; Gómez Del Moral, M.; Martínez-Naves, E.; Nevzorova, Y.A.; Cubero, F.J. Alcoholic liver disease: Utility of animal models. World J. Gastroenterol. 2018, 24, 5063–5075. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Ji, C.; Kaplowitz, N. Differences in betaine-homocysteine methyltransferase expression, endoplasmic reticulum stress response, and liver injury between alcohol-fed mice and rats. Hepatology 2010, 51, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.F.; Grahame, N.J.; Becker, H.C. Development of ethanol withdrawal-related sensitization and relapse drinking in mice selected for high- or low-ethanol preference. Alcohol Clin. Exp. Res. 2011, 35, 953–962. [Google Scholar] [CrossRef]
- Noh, J.R.; Kim, Y.H.; Gang, G.T.; Hwang, J.H.; Lee, H.S.; Ly, S.Y.; Oh, W.K.; Song, K.S.; Lee, C.H. Hepatoprotective effects of chestnut (Castanea crenata) inner shell extract against chronic ethanol-induced oxidative stress in C57BL/6 mice. Food Chem. Toxicol. 2011, 49, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Meng, X.K.; Dong, C.; Qiao, J.L.; Zhang, R.F.; Yue, G.Q.; Zhong, H.Y. Development of a new animal model of liver cirrhosis in swine. Eur. Surg. Res. 2009, 42, 35–39. [Google Scholar] [CrossRef]
- Brol, M.J.; Rösch, F.; Schierwagen, R.; Magdaleno, F.; Uschner, F.E.; Manekeller, S.; Queck, A.; Schwarzkopf, K.; Odenthal, M.; Drebber, U.; et al. Combination of CCl(4) with alcoholic and metabolic injuries mimics human liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G182–G194. [Google Scholar] [CrossRef]
- Gäbele, E.; Dostert, K.; Dorn, C.; Patsenker, E.; Stickel, F.; Hellerbrand, C. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcohol Clin. Exp. Res. 2011, 35, 1361–1367. [Google Scholar] [CrossRef]
- Farrell, G.C.; Mridha, A.R.; Yeh, M.M.; Arsov, T.; Van Rooyen, D.M.; Brooling, J.; Nguyen, T.; Heydet, D.; Delghingaro-Augusto, V.; Nolan, C.J.; et al. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int. 2014, 34, 1084–1093. [Google Scholar] [CrossRef]
- Wang, F.D.; Zhou, J.; Chen, E.Q. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front. Pharmacol. 2022, 13, 787748. [Google Scholar] [CrossRef]
- Ikenaga, N.; Liu, S.B.; Sverdlov, D.Y.; Yoshida, S.; Nasser, I.; Ke, Q.; Kang, P.M.; Popov, Y. A new Mdr2−/− mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. Am. J. Pathol. 2015, 185, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.D.; Dixon, E.D.; Hendrikx, T.; Mlitz, V.; Wahlström, A.; Ståhlman, M.; Scharnagl, H.; Stojakovic, T.; Binder, C.J.; Marschall, H.U.; et al. Tetrahydroxylated bile acids improve cholestatic liver and bile duct injury in the Mdr2−/− mouse model of sclerosing cholangitis via immunomodulatory effects. Hepatol. Commun. 2022, 6, 2368–2378. [Google Scholar] [CrossRef] [PubMed]
- Kanzler, S.; Lohse, A.W.; Keil, A.; Henninger, J.; Dienes, H.P.; Schirmacher, P.; Rose-John, S.; zum Büschenfelde, K.H.; Blessing, M. TGF-beta1 in liver fibrosis: An inducible transgenic mouse model to study liver fibrogenesis. Am. J. Physiol. 1999, 276, G1059–G1068. [Google Scholar] [CrossRef]
- Zhang, Y.; Alexander, P.B.; Wang, X.F. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb. Perspect. Biol. 2017, 9, a022145. [Google Scholar] [CrossRef]
- Morita, S.Y.; Terada, T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. BioMed Res. Int. 2014, 2014, 954781. [Google Scholar] [CrossRef] [PubMed]
- Larter, C.Z.; Yeh, M.M.; Van Rooyen, D.M.; Teoh, N.C.; Brooling, J.; Hou, J.Y.; Williams, J.; Clyne, M.; Nolan, C.J.; Farrell, G.C. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J. Gastroenterol. Hepatol. 2009, 24, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, M.G.; Cheever, A.W.; Malley, J.D.; Donaldson, D.D.; Wynn, T.A. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology 2001, 34, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, D.; Gao, W.; Yan, J.; Zhou, W.; Hou, X.; Liu, M.; Ren, C.; Wang, S.; Shen, J. Lack of IL-17 signaling decreases liver fibrosis in murine schistosomiasis japonica. Int. Immunol. 2015, 27, 317–325. [Google Scholar] [CrossRef]
- Miyoshi, H.; Rust, C.; Roberts, P.J.; Burgart, L.J.; Gores, G.J. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 1999, 117, 669–677. [Google Scholar] [CrossRef]
- Gijbels, E.; Pieters, A.; De Muynck, K.; Vinken, M.; Devisscher, L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int. 2021, 41, 656–682. [Google Scholar] [CrossRef]
- Iwaisako, K.; Jiang, C.; Zhang, M.; Cong, M.; Moore-Morris, T.J.; Park, T.J.; Liu, X.; Xu, J.; Wang, P.; Paik, Y.H.; et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl. Acad. Sci. USA 2014, 111, E3297–E3305. [Google Scholar] [CrossRef]
- Park, K.C.; Park, J.H.; Jeon, J.Y.; Kim, S.Y.; Kim, J.M.; Lim, C.Y.; Lee, T.H.; Kim, H.K.; Lee, H.G.; Kim, S.M.; et al. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br. J. Pharmacol. 2014, 171, 4820–4830. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, P.; Jochum, W.; Heinrich, S.; Jang, J.H.; Nocito, A.; Dahm, F.; Clavien, P.A. Characterization of time-related changes after experimental bile duct ligation. Br. J. Surg. 2008, 95, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, J.G.; Godfrey, C.B.; Garrett, R.; Kakar, S.; Yeh, B.M.; Corvera, C.U. Reversible surgical model of biliary inflammation and obstructive jaundice in mice. J. Surg. Res. 2010, 164, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Cai, Y.Y.; Ding, Z.Y.; Zhou, Z.Y.; Lv, M.; Liu, H.; Zheng, L.Y.; Li, L.; Luo, Y.H.; Xiao, E.H. Characterizing Fibrosis and Inflammation in a Partial Bile Duct Ligation Mouse Model by Multiparametric Magnetic Resonance Imaging. J. Magn. Reson. Imaging 2022, 55, 1864–1874. [Google Scholar] [CrossRef]
- Sandoval, A.G.W.; Maden, M. Regeneration in the spiny mouse, Acomys, a new mammalian model. Curr. Opin. Genet. Dev. 2020, 64, 31–36. [Google Scholar] [CrossRef]
- Millward, C.A.; Burrage, L.C.; Shao, H.; Sinasac, D.S.; Kawasoe, J.H.; Hill-Baskin, A.E.; Ernest, S.R.; Gornicka, A.; Hsieh, C.W.; Pisano, S.; et al. Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse chromosome 17. Mamm. Genome 2009, 20, 71–82. [Google Scholar] [CrossRef]
- Loggi, E.; Gitto, S.; Gabrielli, F.; Franchi, E.; Seferi, H.; Cursaro, C.; Andreone, P. Virological Treatment Monitoring for Chronic Hepatitis B. Viruses 2022, 14, 1376. [Google Scholar] [CrossRef]
- Ratziu, V.; Sanyal, A.; Harrison, S.A.; Wong, V.W.; Francque, S.; Goodman, Z.; Aithal, G.P.; Kowdley, K.V.; Seyedkazemi, S.; Fischer, L.; et al. Cenicriviroc Treatment for Adults with Nonalcoholic Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology 2020, 72, 892–905. [Google Scholar] [CrossRef]
- Loomba, R.; Lawitz, E.; Mantry, P.S.; Jayakumar, S.; Caldwell, S.H.; Arnold, H.; Diehl, A.M.; Djedjos, C.S.; Han, L.; Myers, R.P.; et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology 2018, 67, 549–559. [Google Scholar] [CrossRef]
- Shiffman, M.; Freilich, B.; Vuppalanchi, R.; Watt, K.; Chan, J.L.; Spada, A.; Hagerty, D.T.; Schiff, E. Randomised clinical trial: Emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2019, 49, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, T.; Chiba, T.; Nakamura, M.; Kaneko, T.; Ao, J.; Qiang, N.; Ma, Y.; Zhang, J.; Kogure, T.; Yumita, S.; et al. Miglustat, a glucosylceramide synthase inhibitor, mitigates liver fibrosis through TGF-β/Smad pathway suppression in hepatic stellate cells. Biochem. Biophys. Res. Commun. 2023, 642, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.Y.; Lee, S.H.; Han, E.; Hwang, J.S.; Han, S.; Kim, M.K.; Jang, B.K. Evogliptin Directly Inhibits Inflammatory and Fibrotic Signaling in Isolated Liver Cells. Int. J. Mol. Sci. 2022, 23, 11636. [Google Scholar] [CrossRef]
- Tang, Q.; Pan, W.; Peng, L. The efficacy and safety of evogliptin for type 2 diabetes mellitus: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 962385. [Google Scholar] [CrossRef]
- Heo, Y.J.; Lee, N.; Choi, S.E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Empagliflozin Reduces the Progression of Hepatic Fibrosis in a Mouse Model and Inhibits the Activation of Hepatic Stellate Cells via the Hippo Signalling Pathway. Biomedicines 2022, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, D.M.; Son, W.C.; Moon, B.G. A Selective Adenosine A3 Receptor Antagonist, HL3501, Has Therapeutic Potential in Preclinical Liver and Renal Fibrosis Models. In Vivo 2022, 36, 2186–2193. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, B.; Xie, J.; Jiang, X.; Xiao, B.; Hu, X.; Xiang, J. Aspirin attenuates liver fibrosis by suppressing TGF-β1/Smad signaling. Mol. Med. Rep. 2022, 25, 181. [Google Scholar] [CrossRef] [PubMed]
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Asp. Med. 2019, 65, 37–55. [Google Scholar] [CrossRef]
- Rampa, D.R.; Feng, H.; Allur-Subramaniyan, S.; Shim, K.; Pekcec, A.; Lee, D.; Doods, H.; Wu, D. Kinin B1 receptor blockade attenuates hepatic fibrosis and portal hypertension in chronic liver diseases in mice. J. Transl. Med. 2022, 20, 590. [Google Scholar] [CrossRef]
- Bu, F.T.; Jia, P.C.; Zhu, Y.; Yang, Y.R.; Meng, H.W.; Bi, Y.H.; Huang, C.; Li, J. Emerging therapeutic potential of adeno-associated virus-mediated gene therapy in liver fibrosis. Mol. Ther. Methods Clin. Dev. 2022, 26, 191–206. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Sun, B. The Molecular Mechanisms of Liver Fibrosis and Its Potential Therapy in Application. Int. J. Mol. Sci. 2022, 23, 12572. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Sun, H.; Xue, T.; Gan, C.; Liu, H.; Xie, Y.; Yao, Y.; Ye, T. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy. Front. Cell Dev. Biol. 2021, 9, 730176. [Google Scholar] [CrossRef] [PubMed]
- Arroyave-Ospina, J.C.; Wu, Z.; Geng, Y.; Moshage, H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants 2021, 10, 174. [Google Scholar] [CrossRef]
- Puengel, T.; Lefere, S.; Hundertmark, J.; Kohlhepp, M.; Penners, C.; Van de Velde, F.; Lapauw, B.; Hoorens, A.; Devisscher, L.; Geerts, A.; et al. Combined Therapy with a CCR2/CCR5 Antagonist and FGF21 Analogue Synergizes in Ameliorating Steatohepatitis and Fibrosis. Int. J. Mol. Sci. 2022, 23, 6696. [Google Scholar] [CrossRef]
- Harrison, S.A.; Wong, V.W.; Okanoue, T.; Bzowej, N.; Vuppalanchi, R.; Younes, Z.; Kohli, A.; Sarin, S.; Caldwell, S.H.; Alkhouri, N.; et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J. Hepatol. 2020, 73, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Frenette, C.; Kayali, Z.; Mena, E.; Mantry, P.S.; Lucas, K.J.; Neff, G.; Rodriguez, M.; Thuluvath, P.J.; Weinberg, E.; Bhandari, B.R.; et al. Emricasan to prevent new decompensation in patients with NASH-related decompensated cirrhosis. J. Hepatol. 2021, 74, 274–282. [Google Scholar] [CrossRef]
- Weinberg, E.M.; Curry, M.P.; Frenette, C.T.; Regenstein, F.G.; Schiff, E.R.; Goodman, Z.D.; Robinson, J.M.; Chan, J.L.; Imperial, J.C.; Reddy, K.R. Multicenter, Double-Blind, Randomized Trial of Emricasan in Hepatitis C-Treated Liver Transplant Recipients with Residual Fibrosis or Cirrhosis. Liver Transpl. 2021, 27, 568–579. [Google Scholar] [CrossRef]
- Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017, 121, 27–42. [Google Scholar] [CrossRef]
- Ali, F.E.; Abd El-Aziz, M.K.; Sharab, E.I.; Bakr, A.G. Therapeutic interventions of acute and chronic liver disorders: A comprehensive review. World J. Hepatol. 2023, 15, 19–40. [Google Scholar] [CrossRef]
- Inagaki, Y.; Okazaki, I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut 2007, 56, 284–292. [Google Scholar] [CrossRef]
- Xiu, L.; Chang, N.; Yang, L.; Liu, X.; Ge, J.; Li, L. Intracellular sphingosine 1-phosphate contributes to collagen expression of hepatic myofibroblasts in human liver fibrosis independent of its receptors. Am. J. Pathol. 2015, 185, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Pineda, M.; Walterfang, M.; Patterson, M.C. Miglustat in Niemann-Pick disease type C patients: A review. Orphanet. J. Rare Dis. 2018, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Torralba-Cabeza, M.; Morado-Arias, M.; Pijierro-Amador, A.; Fernández-Canal, M.C.; Villarrubia-Espinosa, J. Recommendations for oral treatment for adult patients with type 1 Gaucher disease. Rev. Clin. Esp. 2022, 222, 529–542. [Google Scholar] [CrossRef]
- Tacelli, M.; Celsa, C.; Magro, B.; Giannetti, A.; Pennisi, G.; Spatola, F.; Petta, S. Antidiabetic Drugs in NAFLD: The Accomplishment of Two Goals at Once? Pharmaceuticals 2018, 11, 121. [Google Scholar] [CrossRef]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The complex link between NAFLD and type 2 diabetes mellitus-mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef]
- Lu, L.; Finegold, M.J.; Johnson, R.L. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp. Mol. Med. 2018, 50, e423. [Google Scholar] [CrossRef]
- Perez-Aso, M.; Fernandez, P.; Mediero, A.; Chan, E.S.; Cronstein, B.N. Adenosine 2A receptor promotes collagen production by human fibroblasts via pathways involving cyclic AMP and AKT but independent of Smad2/3. FASEB J. 2014, 28, 802–812. [Google Scholar] [CrossRef]
- Poujol-Robert, A.; Boëlle, P.Y.; Conti, F.; Durand, F.; Duvoux, C.; Wendum, D.; Paradis, V.; Mackiewicz, V.; Chazouillères, O.; Corpechot, C.; et al. Aspirin may reduce liver fibrosis progression: Evidence from a multicenter retrospective study of recurrent hepatitis C after liver transplantation. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 570–576. [Google Scholar] [CrossRef]
- Hussein, K.H.; Park, K.M.; Yu, L.; Kwak, H.H.; Woo, H.M. Decellularized hepatic extracellular matrix hydrogel attenuates hepatic stellate cell activation and liver fibrosis. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111160. [Google Scholar] [CrossRef]
- Caligiuri, A.; Gentilini, A.; Pastore, M.; Gitto, S.; Marra, F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021, 10, 2759. [Google Scholar] [CrossRef]
- Yao, H.; Yang, X.; Yan, M.; Fang, X.; Wang, Y.; Qi, H.; Sun, L. Correlation of Serum M-CSF, CER, and TIMP-1 Levels with Liver Fibrosis in Viral Hepatitis. Comput. Math. Methods. Med. 2022, 2022, 6736225. [Google Scholar] [CrossRef]
- Wang, L.; Tu, L.; Zhang, J.; Xu, K.; Qian, W. Stellate Cell Activation and Imbalanced Expression of TGF-. Biomed. Res. Int. 2017, 2017, 2540540. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Schierwagen, R.; Schaefer, L.; Klein, S.; Trepat, X.; Trebicka, J. Extracellular Matrix Remodeling in Chronic Liver Disease. Curr. Tissue Microenviron. Rep. 2021, 2, 41–52. [Google Scholar] [CrossRef]
- Trampuž, S.R.; van Riet, S.; Nordling, Å.; Ingelman-Sundberg, M. The Role of CTGF in Liver Fibrosis Induced in 3D Human Liver Spheroids. Cells 2023, 12, 302. [Google Scholar] [CrossRef]
- Villesen, I.F.; Daniels, S.J.; Leeming, D.J.; Karsdal, M.A.; Nielsen, M.J. Review article: The signalling and functional role of the extracellular matrix in the development of liver fibrosis. Aliment. Pharmacol. Ther. 2020, 52, 85–97. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Falasca, F.; Di Fonzo, F.; Turriziani, O.; Palocci, C. siRNA Transfection Mediated by Chitosan Microparticles for the Treatment of HIV-1 Infection of Human Cell Lines. Materials 2022, 15, 5340. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Aigner, A. Therapeutic siRNA: State-of-the-Art and Future Perspectives. BioDrugs 2022, 36, 549–571. [Google Scholar] [CrossRef] [PubMed]
- Springer, A.D.; Dowdy, S.F. GalNAc-siRNA Conjugates: Leading the Way for Delivery of RNAi Therapeutics. Nucleic Acid Ther. 2018, 28, 109–118. [Google Scholar] [CrossRef]
- Brandon-Warner, E.; Benbow, J.H.; Swet, J.H.; Feilen, N.A.; Culberson, C.R.; McKillop, I.H.; deLemos, A.S.; Russo, M.W.; Schrum, L.W. Adeno-Associated Virus Serotype 2 Vector-Mediated Reintroduction of microRNA-19b Attenuates Hepatic Fibrosis. Hum. Gene Ther. 2018, 29, 674–686. [Google Scholar] [CrossRef]
Cell Type | Characteristics | References |
---|---|---|
Murine cell line (GRX); primary rodent hepatic stellate cells | First-described in vitro liver fibrosis model. Originating from cirrhotic fat-storing cells and normal fat-storing cells. | [24] |
Human hepatic stellate cells (LI90) | First human HSC line. Derived from an epithelioid hemangioendothelioma; good model for the observation of drug targets in HSC activation; deterioration process after a few passages. | [24] |
Primary hepatic stellate cells | Originating from normal liver tissue; used as a model for the screening of pro- and antifibrosis compounds; represent a significant reflection of in vivo liver fibrosis; their life span is limited; responsible for vitamin A storage to a profibrogenic myofibroblast phenotype. | [24] |
Liver sinusoidal endothelial cells, Kupffer cells, and stellate cells | Non-parenchymal cells; preferred in in vitro toxicity studies and drug-induced liver fibrosis in humans. | [24] |
Primary human hepatocytes | Rapidly lose their metabolic capacity when placed in 2D; preferred in in vitro toxicity studies and drug-induced liver fibrosis in humans. | [24,25,26] |
Method | Advantages | Disadvantages |
---|---|---|
Carbon Tetrachloride (CCL4) |
|
|
Thioacetamide (TAA) |
|
|
Dimethylnitrosamine and diethylnitrosamine |
|
|
Ethanol |
|
|
High-fat food |
|
|
Transgenic models |
|
|
Surgical method |
|
|
The Main Mechanism of Action | Therapeutic Agent | References |
---|---|---|
Treatment of the underlying condition | Direct-acting agents | [24] |
Interferons and nucleoside and nucleotide analogues | [68] | |
Anti-inflammatory action and liver protection | Cenicriviroc | [69] |
Selonsertib | [70] | |
Emricasan | [71] | |
Interference or blockage of HSC activation and proliferation | Miglustat | [72] |
Evogliptin | [73,74] | |
Empagliflozin | [75] | |
Selective adenosine A3 receptor antagonist (HL3501) | [76] | |
Aspirin | [77] | |
Inhibition of ECM production and promotion of ECM degradation | Curcumin-/chitosan-coated green silver nanoparticles | [78] |
Bradykinin 1 receptor antagonist (BI 113823) | [79] | |
Gene therapy | N-acetylgalactosamine and lipid-based nanoparticles | [25,26] |
Adeno-associated virus-mediated gene therapy | [80] |
Treatment | Advantages | Disadvantages |
---|---|---|
CVC | Improves F2-F3 liver fibrosis, prevents liver cirrhosis, reduces inflammation biomarkers, has good safety and resistance. | Phase 3 clinical trial showed a lack of efficacy, an uncertain role in patients with mild liver fibrosis [24]. |
Selonsertib | Improves F2-F3 liver fibrosis. | Phase 3 clinical trial in patients with F3 liver fibrosis showed lack of efficacy [24]. |
Emricasan | Reduces hepatic inflammation and hepatocyte apoptosis, safe and well tolerated in combination with immunosuppressants. | Clinically ineffective. |
Miglustat | Prevents and reverses liver fibrosis in human hepatic stellate cells and carbon tetrachloride (CCl4)-treated mice through TGF-β/Smad pathway suppression in HSCs. | Not specific to hepatic stellate cells (HSCs) and may have effects on other cell types in the liver or in other organs. This could potentially lead to off-target effects or unwanted side effects. |
Evogliptin | Direct inhibition of inflammatory and fibrotic signaling in isolated liver cells. | While preclinical studies have shown promising results, further studies are needed to evaluate the safety and efficacy of evogliptin for the treatment of liver disease in humans. |
Empagliflozin | Reduces the progression of hepatic fibrosis in mouse models through inhibition of the Hippo signaling pathway. | While preclinical studies have shown promising results, further studies are needed to evaluate the safety and efficacy of empagliflozin for the treatment of liver disease in humans. |
Selective adenosine A3 receptor antagonist (HL3501) | Inhibits the expression of profibrotic markers in human hepatic stellate cells. | Lack of clinical studies. Possible that HL3501 could have unintended or off-target effects when used in humans. Animal models may not fully reflect human disease. |
Aspirin | Decreases the expression of profibrotic markers in rat model of liver fibrosis. Aspirin is a well-established medication with a known safety profile, especially when used in low doses. | Further studies are needed to determine the optimal dosage, duration, and safety profile of aspirin treatment for liver fibrosis in humans. Animal models may not fully reflect human disease. |
Curcumin-/chitosan-coated green silver nanoparticles | Decrease expression of TIMP1 genes. | Low solubility and bioavailability of curcumin [24]. |
Bradykinin 1 receptor antagonist (BI 113823) | Decreases expression of CTGF, TGF-β, and B1R. | B2R expression is not affected [25,26]. |
Lipid-based nanoparticles | Improve delivery of siRNA. | This study used 3T3-GFP fibroblasts instead of liver-resident HSCs. |
Adeno-associated virus mediated gene therapy | Inhibits activation of HSCs. | No reported clinical trials. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolaric, T.O.; Kuna, L.; Covic, M.; Roguljic, H.; Matic, A.; Sikora, R.; Hefer, M.; Petrovic, A.; Mihaljevic, V.; Smolic, R.; et al. Preclinical Models and Promising Pharmacotherapeutic Strategies in Liver Fibrosis: An Update. Curr. Issues Mol. Biol. 2023, 45, 4246-4260. https://doi.org/10.3390/cimb45050270
Kolaric TO, Kuna L, Covic M, Roguljic H, Matic A, Sikora R, Hefer M, Petrovic A, Mihaljevic V, Smolic R, et al. Preclinical Models and Promising Pharmacotherapeutic Strategies in Liver Fibrosis: An Update. Current Issues in Molecular Biology. 2023; 45(5):4246-4260. https://doi.org/10.3390/cimb45050270
Chicago/Turabian StyleKolaric, Tea Omanovic, Lucija Kuna, Marina Covic, Hrvoje Roguljic, Anita Matic, Renata Sikora, Marija Hefer, Ana Petrovic, Vjera Mihaljevic, Robert Smolic, and et al. 2023. "Preclinical Models and Promising Pharmacotherapeutic Strategies in Liver Fibrosis: An Update" Current Issues in Molecular Biology 45, no. 5: 4246-4260. https://doi.org/10.3390/cimb45050270
APA StyleKolaric, T. O., Kuna, L., Covic, M., Roguljic, H., Matic, A., Sikora, R., Hefer, M., Petrovic, A., Mihaljevic, V., Smolic, R., Bilic-Curcic, I., Vcev, A., & Smolic, M. (2023). Preclinical Models and Promising Pharmacotherapeutic Strategies in Liver Fibrosis: An Update. Current Issues in Molecular Biology, 45(5), 4246-4260. https://doi.org/10.3390/cimb45050270