Study of The Molecular Nature of Congenital Cataracts in Patients from The Volga–Ural Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, P.J.; Berry, V.; Bhattacharya, S.S.; Moore, A.T. The genetics of childhood cataract. J. Med. Genet. 2000, 37, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jing, Q.; Jiang, Y. The identification and characterization of the p.G91 deletion in CRYBA1 in a Chinese family with congenital cataracts. BMC Med. Genet. 2019, 20, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodenough, D.A.; Goliger, J.A.; Paul, D.L. Connexins, Connexons, and Intercellular Communication. Annu. Rev. Biochem. 1996, 65, 475–502. [Google Scholar] [CrossRef]
- Zinchenko, R.A.; Murzabaeva, S.S.; Greenberg, Y.I.; Galkina, V.A.; Khlebnikova, O.V.; Dadali, E.L.; Fedotov, V.P.; Hidiyatova, I.M.; Khusnutdinova, E.K.; Ginter, E.K. Genetic epidemiological study of Bashkortostan Republic: The di-versity of monogenic hereditary diseases in five districts. Russ. J. Genet. 2009, 45, 593–604. [Google Scholar] [CrossRef]
- Khlebnikova, O.V.; Bessonova, L.A.; Kadyshev, V.V.; Khidiatova, I.I.; Zinchenko, R.A. Medical-genetic study of the Bash-kortostan Republic. IX. Spectrum and load of a hereditary pathology of the eyes in 8 districts. Med. Genet. 2011, 11, 43–48. [Google Scholar]
- Graw, J.; Klopp, N.; Illig, T.; Preising, M.N.; Lorenz, B. Congenital cataract and macular hypoplasia in humans associated with a de novo mutation in CRYAA and compound heterozygous mutations in P. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 912–919. [Google Scholar] [CrossRef]
- Kumar, M.; Agarwal, T.; Khokhar, S.; Kumar, M.; Kaur, P.; Tara Sankar Roy, T.S.; Dada, R. Mutation screening and genotype phenotype correlation of α-crystallin, γ-crystalline and GJA8 gene in congenital cataract. Mol. Vis. 2011, 17, 693–707. [Google Scholar]
- Yang, G.; Xing, B.; Liu, G. A novel mutation in the GJA3 (connexin46) gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol. Vis. 2011, 17, 1070–1073. [Google Scholar]
- Shiels, A.; Hejtmancik, J.F. Genetics of human cataract. Clin. Genet. 2013, 84, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, C.E.; Arab, S.; Gandhi, R.; Zeinali, S.; Arab, S.; Luk, D.; Billingsley, G.; Munier, F.L.; Héon, E. A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract. J. Med. Genet. 2003, 40, e124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beby, F.; Morle, L.; Michon, L.M.B.; Edery, P.; Burillon, C.; Denis, P. Transmission génétique de la cataracte congénitale [The genetics of hereditary cataract]. J. Fr. Ophtalmol. 2003, 26, 400–408. [Google Scholar] [PubMed]
- Kumar, M.; Agarwal, T.; Kaur, P.; Kumar, M.; Khokhar, S.; Dada, R. Molecular and structural analysis of genetic variations in congenital cataract. Mol. Vis. 2013, 19, 2436–2450. [Google Scholar] [PubMed]
- Raju, I.; Abraham, E.C. Congenital Cataract Causing Mutants of αA-Crystallin/sHSP Form Aggregates and Aggresomes Degraded through Ubiquitin-Proteasome Pathway. PLoS ONE 2011, 6, e28085. [Google Scholar] [CrossRef] [Green Version]
- Raju, I.; Oonthonpan, L.; Abraham, E.C. Mutations in Human αA-Crystallin/sHSP Affect Subunit Exchange Interaction with αB-Crystallin. PLoS ONE 2012, 7, e31421. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 1992, 89, 10449–10453. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, J. Alpha-crystallin. Exp. Eye Res. 2003, 76, 145–153. [Google Scholar] [CrossRef]
- Andley, U.P. Effects of Alpha-Crystallin on Lens Cell Function and Cataract Pathology. Curr. Mol. Med. 2009, 9, 887–892. [Google Scholar] [CrossRef]
- Guo, Y.; Su, D.; Li, Q.; Yang, Z.; Ma, Z.; Ma, X.; Zhu, S. A nonsense mutation of CRYGC associated with autosomal dominant congenital nuclear cataracts and microcornea in a Chinese pedigree. Mol. Vis. 2012, 18, 1874–1880. [Google Scholar]
- Reddy, M.; Francis, P.J.; Berry, V.; Bhattacharya, S.S.; Moore, A.T. Molecular genetic basis of inherited cataract and associated phenotypes. Surv. Ophthalmol. 2004, 49, 300–315. [Google Scholar] [CrossRef]
- Qi, Y.; Jia, H.; Huang, S.; Lin, H.; Gu, J.; Su, H.; Zhang, T.; Gao, Y.; Qu, L.; Li, D.; et al. A deletion mutation in the betaA1/A3 crystallin gene (CRYBA1/A3) is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Hum. Genet. 2004, 114, 192–197. [Google Scholar] [CrossRef]
- De Jong, W.W.; Terwindt, E.C.; Bloemendal, H. The amino acid sequence of the A chain of human α-crystallin. FEBS Lett. 1975, 58, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Wistow, G. Domain structure and evolution in α-crystallins and small heat-shock proteins. FEBS Lett. 1985, 181, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, J.G.; Clark, J.I. Insights into the domains required for dimerization and assembly of human alpha B crystalline. Protein. Sci. 2005, 14, 684–695. [Google Scholar] [CrossRef] [Green Version]
- Berengian, A.R.; Bova, M.P.; Mchaourab, H.S. Structure and function of the conserved domain in alphaA-crystallin. Site directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry 1997, 36, 9951–9957. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.R.; Yao, W.; Vijayalakshmi, P.; Sergeev, Y.V.; Sundaresan, P.; Hejtmancik, J.F. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol. Vis. 2008, 14, 1157–1170. [Google Scholar] [PubMed]
- Hansen, L.; Yao, W.; Eiberg, H.; Kjaer, K.W.; Baggesen, K.; Hejtmancik, J.F.; Rosenberg, T. Genetic Heterogeneity in Microcornea-Cataract: Five Novel Mutations inCRYAA,CRYGD, andGJA8. Investig. Opthalmol. Vis. Sci. 2007, 48, 3937–3944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, D.S.; Andley, U.P.; Shiels, A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur. J. Hum. Genet. 2003, 11, 784–793. [Google Scholar] [CrossRef] [Green Version]
- Santhiya, S.T.; Soker, T.; Klopp, N.; Illig, T.; Prakash, M.V.S.; Selvaraj, B.; Gopinath, P.M.; Graw, J. Identification of a novel, putative cataract-causing allele in CRYAA (G98R) in an Indian family. Mol. Vis. 2006, 12, 768–773. [Google Scholar]
- Litt, M.; Kramer, P.; LaMorticella, D.M.; Murphey, W.; Lovrien, E.W.; Weleber, R.G. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum. Mol. Genet. 1998, 7, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Pras, E.; Frydman, M.; Levy-Nissenbaum, E.; Bakhan, T.; Raz, J.; I Assia, E.; Goldman, B.; Pras, E. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Investig. Opthalmol. Vis. Sci. 2000, 41, 3511–3515. [Google Scholar]
- Chang, B.; Hawes, N.; Roderick, T.; Smith, R.; Eckenlively, J.; Horwitz, J.; Davisson, M. Identification of a missense mutation in the αA-crystallin gene of the lop18 mouse. Mol. Vis. 1999, 5, 21. [Google Scholar]
- Khan, A.O.; Aldahmesh, M.A.; Meyer, B. Recessive Congenital Total Cataract with Microcornea and Heterozygote Carrier Signs Caused by a Novel Missense CRYAA Mutation (R54C). Am. J. Ophthalmol. 2007, 144, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Cartier, M.; Breitman, M.L.; Tsui, L.-C. A frameshift mutation in the gamma-E-crystallin gene of the Elo mouse. Nat. Genet. 1992, 2, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.P.; Garland, D.; Duglas-Tabor, Y.; Robison, W.G.; Groome, A.; Wawrousek, E.F. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. USA 1997, 94, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Vanita, V.; Singh, J.R.; Hejtmancik, J.F.; Nuernberg, P.; Hennies, H.C.; Singh, D.; Sperling, K. A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family. Mol. Vis. 2006, 12, 518–522. [Google Scholar]
- Marakhonov, A.V.; Voskresenskaya, A.A.; Ballesta, M.J.; Konovalov, F.A.; Vasilyeva, T.A.; Blanco-Kelly, F.; Pozdeyeva, N.A.; Kadyshev, V.V.; López-González, V.; Guillen, E.; et al. Expanding the phenotype of CRYAA nucleotide variants to a complex presentation of anterior segment dysgenesis. Orphanet J. Rare Dis. 2020, 15, 207. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, C.; Jiao, H.; Kere, J.; Tang, X.; Zhao, F.; Zhang, X.; Zhao, K.; Larsson, C. Two Chinese families with pulverulent congenital cataracts and deltaG91 CRYBA1 mutations. Mol. Vis. 2007, 13, 1154–1160. [Google Scholar]
- Ferrini, W.; Schorderet, D.F.; Othenin-Girard, P.; Uffer, S.; Héon, E.; Munier, F.L. CRYBA3/A1 gene mutation associated with suture-sparing autosomal dominant congenital nuclear cataract: A novel phenotype. Investig. Opthalmol. Vis. Sci. 2004, 45, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Mohebi, M.; Akbari, A.; Babaei, N.; Sadeghi, A.; Heidari, M. Identification of a de novo 3bp deletion in CRYBA1/A3 Gene in autosomal dominant congenital cataract. Acta Med. Iran. 2016, 54, 778–783. [Google Scholar]
- Sergouniotis, P.I.; Barton, S.J.; Waller, S.; Perveen, R.; Ellingford, J.M.; Campbell, C.; Hall, G.; Gillespie, R.L.; Bhaskar, S.S.; Ramsden, S.C.; et al. The role of small in-frame insertions/deletions in inherited eye disorders and how structural modelling can help estimate their pathogenicity. Orphanet J. Rare Dis. 2016, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Yun, J.; Li, Z.-K.; Xu, C.-T.; Pan, B.-R. Epidemiology and molecular genetics of congenital cataracts. Int. J. Ophthalmol. 2011, 4, 422–432. [Google Scholar] [CrossRef]
- Thomas, B.C.; Minogue, P.J.; Valiunas, V.; Kanaporis, G.; Brink, P.R.; Berthoud, V.M.; Beyer, E.C. Cataracts Are Caused by Alterations of a Critical N-Terminal Positive Charge in Connexin50. Investig. Opthalmol. Vis. Sci. 2008, 49, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Ray, K.; Sengupta, M. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants. BioMed Res. Int. 2014, 2014, 673895. [Google Scholar] [CrossRef] [Green Version]
- Vanita, V.; Singh, J.R.; Singh, D.; Varon, R.; Sperling, K. A novel mutation in GJA8 associated with jellyfish-like cataract in a family of Indian origin. Mol. Vis. 2008, 14, 323–326. [Google Scholar]
- Devi, R.R.; Vijayalakshmi, P. Novel mutations in GJA8 associated with autosomal dominant congenital cataract and micro-cornea. Mol. Vis. 2006, 12, 190–195. [Google Scholar]
- Ma, Z.W.; Zheng, J.Q.; Yang, F.; Ji, J.; Li, X.R.; Tang, X.; Yuan, X.Y.; Zhang, X.M.; Sun, H.M. Two novel mutations of connexin genes in Chinese families with autosomal dominant congenital nuclear cataract. Br. J. Ophthalmol. 2005, 89, 1535–1537. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.B.; Verselis, V.K.; Bennett, M.V.; A Bargiello, T. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc. Natl. Acad. Sci. USA 1992, 89, 3820–3824. [Google Scholar] [CrossRef] [Green Version]
- Berry, V.; Mackay, D.; Khaliq, S.; Francis, P.J.; Hameed, A.; Anwar, K.; Mehdi, S.Q.; Newbold, R.J.; Ionides, A.; Shiels, A.; et al. Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum. Genet. 1999, 105, 168–170. [Google Scholar] [CrossRef]
- Banks, E.A.; Toloue, M.M.; Shi, Q.; Zhou, Z.J.; Liu, J.; Nicholson, B.; Jiang, J.X. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J. Cell Sci. 2009, 122 Pt 3, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.; Shagina, I.; Khlebnikova, O.; Evgrafov, O. Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin. Genet. 2001, 60, 476–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graw, J.; Schmidt, W.; Minogue, P.J.; Rodriguez, J.; Tong, J.-J.; Klopp, N.; Illig, T.; Ebihara, L.; Berthoud, V.M.; Beyer, E.C. The GJA8 allele encoding CX50I247M is a rare polymorphism, not a cataract-causing mutation. Mol. Vis. 2009, 15, 1881–1885. [Google Scholar] [PubMed]
- Xu, X.; Berthoud, V.; Beyer, E.; Ebihara, L. Functional Role of the Carboxyl Terminal Domain of Human Connexin 50 in Gap Junctional Channels. J. Membr. Biol. 2002, 186, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeRosa, A.M.; Mui, R.; Srinivas, M.; White, T.W. Functional Characterization of a Naturally Occurring Cx50 Truncation. Investig. Opthalmol. Vis. Sci. 2006, 47, 4474–4481. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; He, W. Molecular characteristics of inherited congenital cataracts. Eur. J. Med. Genet. 2010, 53, 347–357. [Google Scholar] [CrossRef]
- Wang, K.J.; Zhu, S.Q. A novel p.F206I mutation in Cx46 associated with autosomal dominant congenital cataract. Mol. Vis. 2012, 18, 968–973. [Google Scholar]
- Cruciani, V.; Mikalsen, S.O. Connexins, gap junctional intercellular communication and kinases. Biol. Cell 2002, 94, 433–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, M.; Harris, A.L. Gap junction channel structure in the early 21st century: Facts and fantasies. Curr. Opin. Cell Biol. 2007, 19, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Mackay, D.; Ionides, A.; Kibar, Z.; Rouleau, G.; Berry, V.; Moore, A.; Shiels, A.; Bhattacharya, S. Connexin46 Mutations in Autosomal Dominant Congenital Cataract. Am. J. Hum. Genet. 1999, 64, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Pal, J.D.; Liu, X.; Mackay, D.; Shiels, A.; Berthoud, V.M.; Beyer, E.C.; Ebihara, L. Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. Am. J. Physiol. Physiol. 2000, 279, 596–602. [Google Scholar] [CrossRef]
- Zhou, D.; Ji, H.; Wei, Z.; Guo, L.; Li, Y.; Wang, T.; Zhu, Y.; Dong, X.; Wang, Y.; He, L.; et al. A novel insertional mutation in the connexin 46 (gap junction alpha 3) gene associated with autosomal dominant congenital cataract in a Chinese family. Mol. Vis. 2013, 19, 789–795. [Google Scholar] [PubMed]
- Hejtmancik, J.F. Congenital cataracts and their molecular genetics. Semin. Cell Dev. Biol. 2008, 19, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, L.; Wang, J.; Dong, B.; Li, Y. Coralliform cataract caused by a novel connexin46 (GJA3) mutation in a Chinese family. Mol. Vis. 2012, 18, 203–210. [Google Scholar] [PubMed]
- Deng, H.; Yuan, L. Molecular genetics of congenital nuclear cataract. Eur. J. Med. Genet. 2014, 57, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, Q.; Ma, X.; Zhu, S.Q. Mutation Analysis in Chinese Families with Autosomal Dominant Hereditary Cataracts. Curr. Eye Res. 2014, 40, 1225–1231. [Google Scholar] [CrossRef]
- Yuan, L.; Guo, Y.; Yi, J.; Xiao, J.; Yuan, J.; Xiong, W.; Xu, H.; Yang, Z.; Zhang, J.; Deng, H. Identification of a Novel GJA3 Mutation in Congenital Nuclear Cataract. Optom. Vis. Sci. 2015, 92, 337–342. [Google Scholar] [CrossRef]
Gene | Nucleotide Substitution (Amino Acid Substitution) | SIFT | Poly-Phen2 | LRT_Score | Mutation Taster | Mutation Assessor | FATHMM | PROVEAN | MetaLR | M-CAP | CADD | MAF «1000 Genomes» and ExAc | Clinical Relevance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CRYAA | c.253C > T (p.L85F) | 0.002 (D) | 0.999 (D) | 0.0 (D) | 1 (D) | 0.894 (M) | 0.937 (D) | 0.650 (D) | 0.961 (D) | 0.940 (D) | 27.5 (M) | - | likely pathogenic (PM1, PM2, PP1, PP3) |
c.291C > G (p.H97Q) | 0.121 (T) | 0.458 (P) | 0.0 (D) | 0.997 (D) | 0.263 (L) | 0.920 (D) | 0.733 (D) | 0.814 (D) | 0.749 (D) | 20.2 (M) | 0.00000832 (ExAc) | likely pathogenic (PM1, PM2, PP2,PP3 | |
CRYGD | c.130A > G (p.M44V) rs61731517 | 0.37 (T) | 0.063 (B) | 0.0 (D) | 0.995 (D) | 0.025 (N) | 0.707 (T) | 0.391 (N) | 0.097 (T) 0.364 | - | 9.771 (M) | 0.006 (1000 G-all) 0.008 (ExAc-all) | likely benign (BS2, BP4, PP4) |
c.376G > A (p.V126M) rs150318966 | 0.03 (D) | 0.999 (D) | 0.0 (D) | 1.0 (D) | 0.983 (H) | 0.860 (D) | 0.580 (D) | 0.830 (D) | 0.125 (D) | 32.0 (M) | 0.006 (1000 G-all) 0.002 (ExAc-all) | likely benign (BS2, PP4) | |
CRYBA1 | c.272_274delGAG (p.G91del) | - | - | - | - | - | - | - | - | - | - | - | pathogenic (PS3, PM2, PM4, PP1) |
GJA8 | c.133_142del (p.W45Sfs*72) | - | - | - | - | - | - | - | - | - | - | - | pathogenic (PVS1, PM1, PM2) |
c.68G > C (p.R23T) | 0.002 (D) | 1.0 (D) | 0.0 (D) | 1.0 (D) | 0.745 (M) | 0.992 (D) | 0.686 (D) | 0.977 (D) | 0.900 (D) | 25.4 (M) | - | pathogenic (PM1, PP1, PP3, PS3) | |
c.179G > A (p.G60D) | 0.0 (D) | 1.0 (D) | 0.0 (D) | 1.0 (D) | 0.944 (M) | 0.998 (D) | 0.935 (D) | 0.995 (D) | 0.934 (D) | 27.8 (M) | - | likely pathogenic (PM1, PM2, PP3) | |
c.143A > G (p.E48G) | 0.0 (D) | 1.0 (D) | 0.0 (D) | 1.0 (D) | 0.941 (H) | 0.996 (D) | 0.935 (D) | 0.997 (D) | 0.993 (D) | 26.8 (M) | -- | likely pathogenic (PM1, PM2, PM5, PP3) | |
c.741T > G (p.I247M) rs80358202 | 0.154 (T) | 0.468 (P) | 0.0 (D) | 0.00 (A) | 0.170 (N) | 0.976 (D) | 0.084 (N) | 0.851 (D) | - | 0.023 (M) | 0.0008 (1000 G-all) 0.003 (ExAc-all) | uncertain significance (PS4, PP4, BS3) | |
GJA3 | c.1126_1139del (p.D376Qfs*69) | - | - | - | - | - | - | - | - | - | - | - | pathogenic (PM4, PM2, PP1, PP4) |
c.398G > A (p.R133Q) rs149933083 | 0.02 (D) | 0.708 (P) | 0.01 (U) | 1.0 (D) | 0.801 (M) | 0.978 (D) | (0.672) (D) | 0.884 (D) | 0.302 (D) | 22.4 (M) | 0.001 (1000 G-all) 0.004 (ExAc-all) | likely benign (BS2, PP4) | |
c.231C > T (p.Phe77=) rs143508620 | - | - | - | - | - | - | - | - | - | 9.085 (Low) | 0.002 (1000 G-all) 0.003 (ExAc-all) | likely benign (BS2, PP4) |
Gene | Nucleotide Substitution (Amino Acid Substitution) | Number of Unrelated Families, Ethnic Group | Inheritance Type | Cataract Phenotype |
---|---|---|---|---|
CRYAA | c.253C > T (p.L85F) | 1, Tatar | AD | patients 1, 2—nuclear cataract, combined with microphthalmos and microcornea, later—nystagmus and convergent strabismus |
c.291C > G (p.H97Q) | 2, Bashkir | family 1—? family 2—AД | patient 1—posterior polar cataract patient 2—cataract type—? + lens subluxation | |
CRYBA1 | c.272_274delGAG (p.G91del) | 1, Russian | AD | patients 1, 2, 3—zonular cataract |
GJA8 | c.68G > C (p.R23T) | 2, Russian | AD | patient 1—punctate cataract patient 2—nuclear cataract |
c.133_142del (p.W45Sfs*72) | 1, Bashkir | AD | anterior polar cataract | |
c.179G > A (p.G60D) | 1, Russian | AD | zonular cataract associated with microphthalmos and microcornea | |
c.143A > G (p.E48G) +c.741T > G (p.I247M) | 1, Russian | AR | zonular cataract | |
GJA3 | c.1126_1139del (p.D376Qfs*69) | 1, Tatar | AD | zonular cataract |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khidiyatova, I.; Khidiyatova, I.; Zinchenko, R.; Marakhonov, A.; Karunas, A.; Avkhadeeva, S.; Aznzbaev, M.; Khusnutdinova, E. Study of The Molecular Nature of Congenital Cataracts in Patients from The Volga–Ural Region. Curr. Issues Mol. Biol. 2023, 45, 5145-5163. https://doi.org/10.3390/cimb45060327
Khidiyatova I, Khidiyatova I, Zinchenko R, Marakhonov A, Karunas A, Avkhadeeva S, Aznzbaev M, Khusnutdinova E. Study of The Molecular Nature of Congenital Cataracts in Patients from The Volga–Ural Region. Current Issues in Molecular Biology. 2023; 45(6):5145-5163. https://doi.org/10.3390/cimb45060327
Chicago/Turabian StyleKhidiyatova, Irina, Indira Khidiyatova, Rena Zinchenko, Andrey Marakhonov, Alexandra Karunas, Svetlana Avkhadeeva, Marat Aznzbaev, and Elza Khusnutdinova. 2023. "Study of The Molecular Nature of Congenital Cataracts in Patients from The Volga–Ural Region" Current Issues in Molecular Biology 45, no. 6: 5145-5163. https://doi.org/10.3390/cimb45060327
APA StyleKhidiyatova, I., Khidiyatova, I., Zinchenko, R., Marakhonov, A., Karunas, A., Avkhadeeva, S., Aznzbaev, M., & Khusnutdinova, E. (2023). Study of The Molecular Nature of Congenital Cataracts in Patients from The Volga–Ural Region. Current Issues in Molecular Biology, 45(6), 5145-5163. https://doi.org/10.3390/cimb45060327