Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Preparation of Suspension
2.2. Chlorine Dioxide Preparation and Measurement
2.3. Determination of MBC Values
2.4. Morphological Analysis and Cytoplasmic Membrane Integrity Assays
2.5. Intracellular Protein Leakage Assays
2.6. ATPase Activity Assays
2.7. Lipid Peroxidation Assays
2.8. Gel Electrophoresis and DNA Damage Analysis
2.9. Statistical Analysis
3. Results
3.1. MBC Values
3.2. Ultrastructural Changes in BHS Treated with Chlorine Dioxide
3.3. Bacterial Intracellular Protein Leakage Assay
3.4. Results of Intracellular ATPase Activity Assay of Bacteria
3.5. Results of Lipid Peroxidation Assay in Bacterial Cells
3.6. Determination of DNA Damage in Streptococcal Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jefri, U.H.N.M.; Khan, A.; Lim, Y.C.; Lee, K.S.; Bin Liew, K.; Kassab, Y.W.; Choo, C.-Y.; Al-Worafi, Y.M.; Ming, L.C.; Kalusalingam, A. A systematic review on chlorine dioxide as a disinfectant. J. Med. Life 2022, 15, 313–318. [Google Scholar] [CrossRef]
- Han, J.; Zhang, X.; Li, W.; Jiang, J. Low chlorine impurity might be beneficial in chlorine dioxide disinfection. Water Res. 2021, 188, 116520. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, Y.; Matsuura, A.; Uekusa, M.; Ito, Y.; Hayashi, T. A study of the properties of chlorine dioxide gas as a fumigant. Exp. Anim. 2016, 65, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Guo, Y.; Yu, P.; Wang, X.; Zhang, X.; Dong, W.; Liu, X.; Guo, C. Chlorine dioxide inhibits the replication of porcine reproductive and respiratory syndrome virus by blocking viral attachment. Infect. Genet. Evol. 2018, 67, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, N.; Xu, B.; Yasugi, M.; Morino, H.; Tagishi, H.; Miura, T.; Shibata, T.; Yamasaki, S. Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite. J. Hosp. Infect. 2021, 118, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-Y.; Lin, Y.-L.; Zhang, T.-Y.; Hu, C.-Y.; Tang, Y.-L.; Deng, J.; Xu, B. Chlorine dioxide-based oxidation processes for water purification: A review. J. Hazard. Mater. 2022, 436, 129195. [Google Scholar] [CrossRef]
- Lancioni, N.; Parlapiano, M.; Sgroi, M.; Giorgi, L.; Fusi, V.; Darvini, G.; Soldini, L.; Szeląg, B.; Eusebi, A.L.; Fatone, F. Polyethylene pipes exposed to chlorine dioxide in drinking water supply system: A critical review of degradation mechanisms and accelerated aging methods. Water Res. 2023, 238, 120030. [Google Scholar] [CrossRef]
- Li, J.; Cassol, G.S.; Zhao, J.; Sato, Y.; Jing, B.; Zhang, Y.; Shang, C.; Yang, X.; Ao, Z.; Chen, G.; et al. Superfast degradation of micropollutants in water by reactive species generated from the reaction between chlorine dioxide and sulfite. Water Res. 2022, 222, 118886. [Google Scholar] [CrossRef]
- Totaro, M.; Badalucco, F.; Papini, F.; Grassi, N.; Mannocci, M.; Baggiani, M.; Tuvo, B.; Casini, B.; Fabris, G.B.M.; Baggiani, A. Effectiveness of a Water Disinfection Method Based on Osmosis and Chlorine Dioxide for the Prevention of Microbial Contamination in Dental Practices. Int. J. Environ. Res. Public Health 2022, 19, 10562. [Google Scholar] [CrossRef]
- Meyers, C.; Milici, J.; Robison, R. The ability of two chlorine dioxide chemistries to inactivate human papillomavirus-contaminated endocavitary ultrasound probes and nasendoscopes. J. Med. Virol. 2020, 92, 1298–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malka, S.K.; Park, M.-H. Fresh Produce Safety and Quality: Chlorine Dioxide’s Role. Front. Plant Sci. 2022, 12, 775629. [Google Scholar] [CrossRef] [PubMed]
- Luu, P.; Chhetri, V.S.; Janes, M.E.; King, J.M.; Adhikari, A. Effectiveness of Aqueous Chlorine Dioxide in Minimizing Food Safety Risk Associated with Salmonella, E. coli O157:H7, and Listeria monocytogenes on Sweet Potatoes. Foods 2020, 9, 1259. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z. Application of chlorine dioxide-based hurdle technology to improve microbial food safety–A review. Int. J. Food Microbiol. 2022, 379, 109848. [Google Scholar] [CrossRef]
- Kalay, T.S.; Kara, Y.; Karaoglu, S.A.; Kolayli, S. Evaluation of Stabilized Chlorine Dioxide in Terms of Antimicrobial Activity and Dentin Bond Strength. Comb. Chem. High Throughput Screen. 2022, 25, 1427–1436. [Google Scholar] [CrossRef]
- Lee, H.; Ryu, J.-H.; Kim, H. Antimicrobial activity of gaseous chlorine dioxide against Aspergillus flavus on green coffee beans. Food Microbiol. 2020, 86, 103308. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Liu, Y.M.; Wang, Y.F.; Zhang, X.Y.; Liu, X.T.; Wang, H.L.; Xu, F.; Lu, Y.Q.; Chen, X.J.; Li, X.B. Experiment on Killing Effect of Chlorine Dioxide Solution on Swine Fever Virus. Chin. J. Vet. Med. 2020, 56, 44–47. [Google Scholar]
- Liu, J.; Xu, F.; Zhang, J.J.; Liu, C.S.; Li, X.B. Evaluation of Germicidal Efficacy and Germicidal Mechanism of Chlorine Dioxide Teat Disinfectant. China Anim. Husb. Vet. Med. 2021, 48, 2635–2643. [Google Scholar] [CrossRef]
- Bridges, D.F.; Lacombe, A.; Wu, V.C.H. Integrity of the Escherichia coli O157:H7 Cell Wall and Membranes After Chlorine Dioxide Treatment. Front. Microbiol. 2020, 11, 888. [Google Scholar] [CrossRef]
- Callahan, K.L.; Beck, N.K.; Duffield, E.A.; Shin, G.; Meschke, J.S. Inactivation of Methicillin-Resistant Staphylococcus aureus (MRSA) and Vancomycin-Resistant Enterococcus faecium (VRE) on Various Environmental Surfaces by Mist Application of a Stabilized Chlorine Dioxide and Quaternary Ammonium Compound-Based Disinfectant. J. Occup. Environ. Hyg. 2010, 7, 529–534. [Google Scholar] [CrossRef]
- Wang, T.; Wu, J.; Qi, J.; Hao, L.; Yi, Y.; Zhang, Z. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space. Appl. Environ. Microbiol. 2016, 82, 3061–3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.S.; Du, L.Y. Medical Microbiology and Parasitology; China Medical Science and Technology Press: Beijing, China, 2016; pp. 67–70. [Google Scholar]
- Li, Z.G.; Li, D.W. Food Microbiological Testing Techniques; China Light Industry Press: Beijing, China, 2016; Volume 1, pp. 116–118. [Google Scholar]
- Bauer, R.; Neffgen, N.; Grempels, A.; Furitsch, M.; Mauerer, S.; Barbaqadze, S.; Haase, G.; Kestler, H.; Spellerberg, B. Heterogeneity of Streptococcus anginosus ß-hemolysis in relation to CRISPR/Cas. Mol. Oral Microbiol. 2020, 35, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Yu, D.; Cheng, J.; Wang, Y.; Yang, Z.; Yao, X.; Luo, Y. Identification and pathogenicity analysis of Streptococcus equinus FMD1, a beta-hemolytic strain isolated from forest musk deer lung. J. Vet. Med. Sci. 2020, 82, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, G.P.; DerVartanian, M.E. Factors Influencing the Effectiveness of Swimming Pool Bactericides. Appl. Environ. Microbiol. 1967, 15, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-J.; Jung, S.-Y. Growth Inhibitory Effects of Chlorine Dioxide on Bacteria. Biomed. Sci. Lett. 2018, 24, 270–274. [Google Scholar] [CrossRef]
- Silva, B.N.; Faria, A.S.; Cadavez, V.; Teixeira, J.A.; Gonzales-Barron, U. Technological Potential of Lactic Acid Bacteria Isolated from Portuguese Goat’s Raw Milk Cheeses. Biol. Life Sci. Forum 2021, 6, 9. [Google Scholar]
- Zhang, Z.B. Determination of the content and evaluation of the disinfection effect of a chlorine dioxide solution. Chin. Acad. Agric. Sci. 2020, 7–8. [Google Scholar] [CrossRef]
- Yi, G.M.; Su, L.Y.; Li, J.; Li, J.X.; Hu, J.L.; Zhang, Y.; Wang, R.R. Comparison of the checkerboard method and multiple microdilution method based on drug screening in combined treatment of anti-Candida albicans. J. Yunnan Minzu Univ. (Nat. Sci. Ed.) 2019, 28, 246–250. [Google Scholar]
- Cortés-Ríos, J.; Zárate, A.M.; Figueroa, J.D.; Medina, J.; Lemus, E.F.; Rodríguez-Fernández, M.; Aliaga, M.; López-Alarcón, C. Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Anal. Biochem. 2020, 608, 113904. [Google Scholar] [CrossRef]
- Chen, L.; Jia, P.; Liu, Y.; Wang, R.; Yin, Z.; Hu, D.; Ning, H.; Ge, Y. Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. Ecotoxicol. Environ. Saf. 2023, 254, 114718. [Google Scholar] [CrossRef]
- Tsaturyan, V.; Poghosyan, A.; Toczyłowski, M.; Pepoyan, A. Evaluation of Malondialdehyde Levels, Oxidative Stress and Host–Bacteria Interactions: Escherichia coli and Salmonella Derby. Cells 2022, 11, 2989. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Nie, K.; Xu, Y.; Zhang, H.; Xie, F.; Xu, L.; Zhang, Z.; Ding, Y.; Yin, Z.; Zhang, X. Fecal Microbial Structure and Metabolic Profile in Post-Weaning Diarrheic Piglets. Genes 2023, 14, 1166. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Ullah, S.; Ahmad, I.; Qureshi, A.K.; Balkhair, K.S.; Rehman, M.A. Green biocides, a promising technology: Current and future applications to industry and industrial processes. J. Sci. Food Agric. 2014, 94, 388–403. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, X.; Shu, L.; Yang, X. Kinetics and Mechanisms of Virus Inactivation by Chlorine Dioxide in Water Treatment: A Review. Bull. Environ. Contam. Toxicol. 2021, 106, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Qiu, W.; Zhang, W.; Zhang, J.; Chen, R.; Chen, F.; Wang, K.-J. A Novel Antimicrobial Peptide Sp-LECin with Broad-Spectrum Antimicrobial Activity and Anti-Pseudomonas aeruginosa Infection in Zebrafish. Int. J. Mol. Sci. 2022, 24, 267. [Google Scholar] [CrossRef]
- Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol. 2020, 310, 151435. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wu, M.S.; Wang, X.S.; Huang, N.N.; Zhou, X.Y. Review of basic properties and influence factors related to stability of chlorine dioxide. Inorg. Chem. Ind. 2021, 53, 18–23. [Google Scholar]
- Zhang, S.; Wang, Y.; Lu, J.; Yu, Z.; Song, H.; Bond, P.L.; Guo, J. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. ISME J. 2021, 15, 2969–2985. [Google Scholar] [CrossRef]
- Wen, G.; Xu, X.; Huang, T.; Zhu, H.; Ma, J. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. Water Res. 2017, 125, 132–140. [Google Scholar] [CrossRef]
- Ogata, N. Denaturation of Protein by Chlorine Dioxide: Oxidative Modification of Tryptophan and Tyrosine Residues. Biochemistry 2007, 46, 4898–4911. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.-R.; Zhang, X.-M.; Jin, T.; Li, B.-Q.; Zhang, Z.-Q.; Tian, S.-P. Inhibitory of grey mold on green pepper and winter jujube by chlorine dioxide (ClO2) fumigation and its mechanisms. LWT 2018, 100, 335–340. [Google Scholar] [CrossRef]
- Epstein, W.; Walderhaug, M.O.; Polarek, J.W.; Hesse, J.E.; Dorus, E.; Daniel, J.M.; Green, N.M.; Broome-Smith, J. The bacterial Kdp K+-ATPase and its relation to other transport ATPases, such as the Na+/K+- and Ca2+-ATPases in higher organisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1990, 326, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.; Stockwell, B. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Kato, Y. Chapter 2: The Formation of Lipid Hydroperoxide-Derived Amide-Type Lysine Adducts on Proteins: A Review of Current Knowledge. Sub-Cell. Biochem. 2014, 77, 21–39. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, H.-M.; Tang, Y.; Deng, S.-G. Efficacy of a Fructus mume Extract Combination with Stable Chlorine in Preventing Bacterial Contamination in Frozen Mackerel (Scomber japonicus) Fillets. J. Aquat. Food Prod. Technol. 2016, 25, 458–470. [Google Scholar] [CrossRef]
- Wei, M.K.; Wu, Q.P.; Wang, D.P.; Wu, J.L.; Zhang, J.M. Effects of Chlorine Dioxide on Deoxyribonucleoside Triphosphate and Plasmid. Microbiol. China 2008, 1224–1229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, J.; Liu, J.; Cao, G.; Xu, F.; Li, X. Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210. Curr. Issues Mol. Biol. 2023, 45, 5132-5144. https://doi.org/10.3390/cimb45060326
Liu H, Zhang J, Liu J, Cao G, Xu F, Li X. Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210. Current Issues in Molecular Biology. 2023; 45(6):5132-5144. https://doi.org/10.3390/cimb45060326
Chicago/Turabian StyleLiu, Huan, Jingju Zhang, Jing Liu, Guangjie Cao, Fei Xu, and Xiubo Li. 2023. "Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210" Current Issues in Molecular Biology 45, no. 6: 5132-5144. https://doi.org/10.3390/cimb45060326
APA StyleLiu, H., Zhang, J., Liu, J., Cao, G., Xu, F., & Li, X. (2023). Bactericidal Mechanisms of Chlorine Dioxide against Beta-Hemolytic Streptococcus CMCC 32210. Current Issues in Molecular Biology, 45(6), 5132-5144. https://doi.org/10.3390/cimb45060326