Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools—A Review of the Literature
Abstract
:1. Introduction
2. Etiology and Molecular Mechanisms
2.1. Angiogenic Factors
2.2. Inflammation
2.3. Inflammatory Cytokines
2.4. Maternal Infection
2.5. Obesity and Metabolic Disorders
2.6. Gestational Diabetes Mellitus
2.7. Fetal Disease
2.8. Autoimmune Diseases
3. Clinical Tools
4. First Trimester Screening for Pre-Eclampsia Risk
5. Potential Biomarkers
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-Eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Lu, H.Q.; Hu, R. Lasting Effects of Intrauterine Exposure to Preeclampsia on Offspring and the Underlying Mechanism. AJP Rep. 2019, 9, e275–e291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portelli, M.; Baron, B. Clinical presentation of preeclampsia and the diagnostic value of proteins and their methylation products as biomarkers in pregnant women with preeclampsia and their newborns. J. Pregnancy 2018, 2018, 2632637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Herraiz, I.; Llurba, E.; Verlohren, S.; Galindo, A.; Spanish Group for the Study of Angiogenic Markers in Preeclampsia. Update on the Diagnosis and Prognosis of Preeclampsia with the Aid of the SFlt-1/PlGF Ratio in Singleton Pregnancies. Fetal Diagn. Ther. 2018, 43, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grill, S.; Rusterholz, C.; Zanetti-Dällenbach, R.; Tercanli, S.; Holzgreve, W.; Hahn, S.; Lapaire, O. Potential markers of preeclampsia–a review. Reprod. Biol. Endocrinol. 2009, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10, S4–S9. [Google Scholar] [CrossRef] [Green Version]
- Noori, S.; Donald, A.E.; Angelakopoulou, A.; Hingorani, A.F.; Williams, D.J. Prospective study of Placental Angiogenic Factors \and Maternal Vascular Function Before and After Preeclampsia and Gestational Hypertension. Circulation 2010, 122, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Han, C.Y.; Chiba, T.; McMillen, T.S.; Wang, S.A.; Haw, A.; Kirk, E.A.; O’Brien, K.D.; Chait, A. Dietary Cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor–deficient mice. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 685–691. [Google Scholar] [CrossRef]
- Naruse, K.; Akasaka, J.; Shigemitsu, A.; Tsunemi, T.; Koike, N.; Yoshimoto, C.; Kobayashi, H. Involvement of Visceral Adipose Tissue in Immunological Modulation of Inflammatory Cascade in Preeclampsia. Mediat. Inflamm. 2015, 2015, 325932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spradley, F.T.; Palei, A.C.; Granger, J.P. Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules 2015, 5, 3142–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaMarca, B.D.; Ryan, M.J.; Gilbert, J.S.; Murphy, S.R.; Granger, J.P. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr. Hypertens. Rep. 2007, 9, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Daher, S.; Fonseca, F.; Ribeiro, O.G.; Musatti, C.C.; Gerbase-Delima, M. Tumor necrosis factor during pregnancy and at the onset of labor and spontaneous abortion. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999, 83, 77–79. [Google Scholar] [CrossRef]
- Kupferminc, M.J.; Peaceman, A.M.; Wigton, T.R.; Rehnberg, K.A.; Socol, M.L. Tumor necrosis factor-α is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am. J. Obstet. Gynecol. 1994, 170, 1752–1759. [Google Scholar] [CrossRef]
- Vince, G.S.; Starkey, P.M.; Austgulen, R.; Kwiatkowski, D.; Redman, C.W.G. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with preeclampsia. Br. J. Obstet. Gynaecol. 1995, 102, 20–25. [Google Scholar] [CrossRef]
- Estelles, A.; Gilabert, J.; Grancha, S.; Yamamoto, K.; Thinnes, T.; España, F.; Aznar, J.; Loskutoff, D.J. Abnormal expression’ of type 1 plasminogen activator inhibitor and tissue factor in severe preeclampsia. Thromb. Haemost. 1998, 79, 500–508. [Google Scholar]
- Solomon, C.G.; Seely, E.W. Hypertension in pregnancy a manifestation of the insulin resistance syndrome? Hypertension 2001, 37, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.J.; Chen, C.P.; Schatz, F.; Rahman, M.; Abrahams, V.M.; Lockwood, C.J. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J. Pathol. 2008, 214, 328–336. [Google Scholar] [CrossRef]
- Lockwood, C.J.; Matta, P.; Krikun, G.; Koopman, L.A.; Masch, R.; Toti, P.; Arcuri, F.; Huang, S.T.; Funai, E.F.; Schatz, F. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-α and interleukin-1β in first trimester human decidual cells: Implications for preeclampsia. Am. J. Pathol. 2006, 168, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loudon, I. Some historical aspects of toxaemia of pregnancy. A Rev. BJOG 1991, 98, 853–858. [Google Scholar] [CrossRef] [PubMed]
- DeLee, J. Theories of eclampsia. Am. J. Obestet. 1905, 51, 325–330. [Google Scholar]
- Conde-Agudelo, A.; Romero, R. SARS-COV-2 infection during pregnancy and risk of preeclampsia: A systematic review and meta-analysis. Am. J. Obestet. Gynecol. 2021, 226, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Romero, R.; Tarca, A.L.; Iliodromiti, S.; Rehal, A.; Banerjee, A.; Yu, C.; Peeva, G.; Palaniappan, V.; Tan, L. SARS-COV-2 and the subsequent development of preeclampsia and preterm birth: Evidence of a dose response relationship supporting causality. Am. J. Obstet. Gynecol. 2021, 225, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Conde-Agudelo, A.; Villar, J.; Lindheimer, M. Maternal infection and risk of preeclampsia: Systematic review and metaanalysis. Am. J. Obestet. Gynecol. 2008, 198, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Easter, S.R.; Cantonwine, D.E.; Zera, C.A.; Lim, K.H.; Parry, S.I.; McElrath, T.F. Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia. Am. J. Obestet. Gynecol. 2016, 214, 387.e1–387.e7. [Google Scholar] [CrossRef]
- Yan, L.; Jin, Y.; Hang, H.; Yan, B. The association between urinary tract infection during pregnancy and preeclampsia: A meta-analysis. Medicine 2018, 97, e12192. [Google Scholar] [CrossRef]
- Tambyah, P.A.; Maki, D.G. Catheter-associated urinary tract infection is rarely symptomatic: A prospective study of 1497 catheterized patients. Arch. Intern. Med. 2000, 160, 678–682. [Google Scholar]
- Faas, M.M.; Schuiling, G.A.; Baller, J.F.; Visscher, C.A.; Bakker, W.W. A new animal model for human preeclampsia: Ultra-low-dose endotoxin infusion in pregnant rats. Am. J. Obestet. Gynecol. 1994, 171, 158–164. [Google Scholar] [CrossRef]
- Rosenbloom, J.I.; Raghuraman, N.; Carter, E.B.; Kelly, J.C. Coronavirus disease 2019 infection and hypertensive disorders of pregnancy. Am. J. Obestet. Gynecol. 2021, 224, 623–624. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yang, M.; Wan, C.; Yi, L.X.; Tang, F.; Zhu, H.Y.; Zhang, C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef]
- Thakur, V.; Ratho, R.K.; Kumar, P.; Bhatia, S.K.; Bora, I.; Mohi, G.K.; Saxena, S.K.; Devi, M.; Yadav, D.; Mehariya, S. Multi-Organ Involvement in COVID-19, Beyond Pulmonary Manifestations. J. Clin. Med. 2021, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Garcia-Ruiz, I.; Maiz, N.; Rodo, C.; Garcia-Manau, P.; Serrano, B.; Lopez-Martinez, R.M.; Balcells, J.; Fernandez-Hidalgo, N.; Carreras, E.; et al. Pre-eclampsia-like syndrome induced by severe COVID-19, a prospective observational study. BJOG 2020, 127, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Giardini, V.; Carrer, A.; Casati, M.; Contro, E.; Vergani, P.; Gambacorti-Passerini, C. Increased sFLT-1/PlGF ratio in COVID-19, A novel link to angiotensin II-mediated endothelial dysfunction. Am. J. Hematol. 2020, 95, e188–e191. [Google Scholar] [CrossRef] [PubMed]
- Espino-y-Sosa, S.; Martinez-Portilla, R.J.; Torres-Torres, J.; Solis-Paredes, J.M.; Estrada-Gutierrez, G.; Hernandez-Pacheco, J.A.; Espejel-Nuñez, A.; Mateu-Rogell, P.; Juarez-Reyes, A.; Lopez-Ceh, F.E.; et al. Novel Ratio Soluble Fms-like Tyrosine Kinase-1/Angiotensin-II (sFlt-1/ANG-II) in Pregnant Women Is Associated with Critical Illness in COVID-19. Viruses 2021, 13, 1906. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, I.H.; Sato, T.; Kong, S.W.; Iimura, T. Genetic variation analyses indicate conservedSARS-CoV-2-host interaction and varied genetic adaptation in immune-response factors in modern human evolution. Dev. Growth Differ. 2021, 63, 219–227. [Google Scholar] [CrossRef]
- Choudhary, S.; Sreenivasulu, K.; Mitra, P.; Misra, S.; Sharma, P. Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19. Ann. Lab. Med. 2021, 41, 129–138. [Google Scholar] [CrossRef]
- Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, O.; Goodrich, J.K.; Cullender, T. C; Spor A, Laitinen K, Bäckhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, I.; Miyamoto, J.; Ohue-Kitano, R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 2020, 367, eaaw8429. [Google Scholar] [CrossRef] [PubMed]
- Leshem, A.; Horesh, N.; Elinav, E. Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. Front. Immunol. 2019, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Kazemian, N.; Mahmoudi, M.; Halperin, F.; Wu, J.C.; Pakpour, S. Gut microbiota and cardiovascular disease: Opportunities and challenges. Microbiome 2020, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Dunlop, A.L.; Mulle, J.G.; Ferranti, E.P.; Edwards, S.; Dunn, A.B.; Corwin, E.J. Maternal Microbiome and Pregnancy Outcomes That Impact Infant Health: A Review. Adv. Neonatal Care 2015, 15, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Altemani, F.; Barrett, H.L.; Gomez-Arango, L.; Josh, P.; David McIntyre, H.; Callaway, L.K.; Morrison, M.; Tyson, G.W.; Dekker Nitert, M. Pregnant women who develop preeclampsia have lower abundance of the butyrate-producer Coprococcus in their gut microbiota. Pregnancy Hypertens. 2021, 23, 211–219. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F.M.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J.C.; Buffa, J.A.; Org, E.; Wang, Z.; Levison, B.S.; Zhu, W.; Wagner, M.A.; Bennett, B.J.; Li, L.; DiDonato, J.A.; et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 2015, 290, 5647–5660. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Rodriguez, E.; Egea-Zorrilla, A.; Plaza-Díaz, J.; Aragón-Vela, J.; Muñoz-Quezada, S.; Tercedor-Sánchez, L.; Abadia-Molina, F. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients 2020, 12, 605. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.J.; Li, S.H.; Li, S.C.; Zhong, Z.C.; Duan, H.L.; Tian, C.; Li, H.; He, W.; Chen, M.C.; He, T.W.; et al. Early-Onset Preeclampsia Is Associated With Gut Microbial Alterations in Antepartum and Postpartum Women. Front. Cell. Infect. Microbiol. 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gu, X.; Yang, J.; Wei, Y.; Zhao, Y. Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia. Front. Cell. Infect. Microbiol. 2019, 9, 409. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, P.; Liu, M.; Zheng, H.; He, Y.; Chen, M.X.; Tang, W.; Yue, X.; Huang, Y.; Zhuang, L.; et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 2020, 69, 513–522. [Google Scholar] [CrossRef]
- Sutton, E.F.; Lob, H.E.; Song, J.; Xia, Y.; Butler, S.; Liu, C.-C.; Redman, L.M.; Sones, J.L. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: A characterization of the BPH/5 mouse in postnatal life. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R485–R491. [Google Scholar] [CrossRef]
- Denison, F.C.; Roberts, K.A.; Barr, S.M.; Norman, J.E. Obesity, pregnancy, inflammation, and vascular function. Reproduction 2010, 140, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Lash, G.E. Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb. Perspect. Med. 2015, 5, a023010. [Google Scholar]
- Spradley, F.T.; Spradley, F.T. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R5–R12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism 2015, 64, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, A.; Toro, A.; Vilariño-García, T.; Maymó, J.; Guadix, P.; Dueñas, J.L.; Fernández-Sánchez, M.; Varone, C.; SánchezMargalet, V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med. 2018, 22, 716–727. [Google Scholar] [CrossRef]
- La Cava, A. leptin in inflammation and autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Trapani, L.; Segatto, M.; Pallottini, V. Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic power station. World J. Hepatol. 2012, 4, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Parks, J.S. Dietary cholesterol effects on adipose tissue inflammation. Curr. Opin. Lipidol. 2016, 27, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, M.; Yarrarapu, S.N.S.; Dimri, M. Biochemistry Cholesterol; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, Inflammation and Innate Immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.; Freerksen, N.; Röhrig, S.; Hoeft, B.; Maul, H. Gestational diabetes and preeclampsia—Similar risk factor profiles? Early Hum. Dev. 2012, 88, 179–184. [Google Scholar] [CrossRef]
- Weissgerber, T.L.; Mudd, L.M. Preeclampsia and diabetes. Curr. Diab Rep. 2015, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Duckitt, K.; Harrington, D. Risk factors for pre-eclampsia at antenatal booking: Systematic review of controlled studies. BMJ 2005, 330, 565. [Google Scholar] [CrossRef] [Green Version]
- Lisonkova, S.; Joseph, K.S. Incidence of preeclampsia: Risk factors and outcomes associated with early-versus late-onset disease. Am. J. Obestet. Gynecol. 2013, 209, 544.e1–544.e12. [Google Scholar] [CrossRef]
- Romero, R.; Erez, O.; Huttemann, M.; Maymon, E.; Panaitescu, B.; Conde-Agudelo, A.; Pacora, P.; Yoon, B.H.; Grossman, L.I. Metformin, the aspirin of the 21st century: Its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am. J. Obestet. Gynecol. 2017, 217, 282–302. [Google Scholar] [CrossRef]
- Tarry-Adkins, J.L.; Ozanne, S.E.; Aiken, C.E. Impact of metformin treatment during pregnancy on maternal outcomes: A systematic review/meta-analysis. Sci. Rep. 2021, 11, 9240. [Google Scholar] [CrossRef]
- Alqudah, A.; McKinley, M.C.; McNally, R.; Graham, U.; Watson, C.J.; Lyons, T.J.; McClements, L. Risk of pre-eclampsia in women taking metformin: A systematic review and meta-analysis. Diabet. Med. 2018, 35, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Cluver, C.A.; Hiscock, R.; Decloedt, E.H.; Hall, D.R.; Schell, S.; Mol, B.W.; Brownfoot, F.; Kaitu’u-Lino, T.J.; Walker, S.P.; Tong, S. Use of metformin to prolong gestation in preterm preeclampsia: Randomised, double blind, placebo controlled trial. BMJ 2021, 374, n2103. [Google Scholar] [CrossRef]
- Davenport, M.H.; Ruchat, S.M.; Poitras, V.J.; Jaramillo Garcia, A.; Gray, C.E.; Barrowman, N.; Skow, R.J.; Meah, V.L.; Riske, L.; Sobierajski, F.; et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: A systematic review and metaanalysis. Br. J. Sports Med. 2018, 52, 1367–1375. [Google Scholar] [CrossRef]
- John, A.H.; Duncan, A.S. The maternal syndrome associated with hydrops fetalis. J. Obestet. Gynaecol. Br. Commonw. 1964, 71, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Gedikbasi, A.; Oztarhan, K.; Gunenc, Z.; Yildirim, G.; Arslan, O.; Yildirim, D.; Ceylan, Y. Preeclampsia due to fetal non-immune hydrops: Mirror syndrome and review of literature. Hypertens. Pregnancy 2011, 30, 322–330. [Google Scholar] [CrossRef]
- Broekhuizen, F.F.; Elejalde, R.; Hamilton, P.R. Early-onset preeclampsia, triploidy and fetal hydrops. J. Reprod. Med. 1983, 28, 223–226. [Google Scholar]
- Dotters-Katz, S.K.; Hardisty, E.; Campbell, E.; Vora, N. Trisomy 13-confined placental mosaicism: Is there an increased risk of gestational hypertensive disorders? Prenat. Diagn. 2017, 37, 938–939. [Google Scholar] [CrossRef] [Green Version]
- Giorgione, V.; Bhide, A.; Bhate, R.; Reed, K.; Khalil, A. Are Twin Pregnancies Complicated by Weight Discordance or Fetal Growth Restriction at Higher Risk of Preeclampsia? J. Clin. Med. 2020, 9, 3276. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, D.T. A fluid retention syndrome associated with severe iso-immunization to the rhesus factor. J. Obestet. Gynaecol. Br. Emp. 1956, 63, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, I.H. Ballantyne and triple edema. Am. J. Obestet. Gynecol. 1971, 110, 115–120. [Google Scholar] [CrossRef]
- Rana, S.; Venkatesha, S.; DePaepe, M.; Chien, E.K.; Paglia, M.; Karumanchi, S.A. Cytomegalovirusinduced mirror syndrome associated with elevated levels of circulating antiangiogenic factors. Obestet. Gynecol. 2007, 109, 549–552. [Google Scholar] [CrossRef]
- Brochot, C.; Collinet, P.; Provost, N.; Subtil, D. Mirror syndrome due to parvovirus B19 hydrops complicated by severe maternal pulmonary effusion. Prenat. Diagn. 2006, 26, 179–180. [Google Scholar] [CrossRef]
- Braun, T.; Brauer, M.; Fuchs, I.; Czernik, C.; Dudenhausen, J.W.; Henrich, W.; Sarioglu, N. Mirror syndrome: A systematic review of fetal associated conditions, maternal presentation and perinatal outcome. Fetal Diagn. Ther. 2010, 27, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Ordorica, S.A.; Marks, F.; Frieden, F.J.; Hoskins, I.A.; Young, B.K. Aneurysm of the vein of Galen: A new cause for Ballantyne syndrome. Am. J. Obestet. Gynecol. 1990, 162, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Sherer, D.M.; Sadovksy, E.; Menashe, M.; Mordel, N.; Rein, A.J. Fetal ventricular tachycardia associated with nonimmunologic hydrops fetalis. A case report. J. Reprod. Med. 1990, 35, 292–294. [Google Scholar] [PubMed]
- Midgley, D.Y.; Harding, K. The Mirror Syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 88, 201–202. [Google Scholar] [CrossRef]
- Dorman, S.L.; Cardwell, M.S. Ballantyne syndrome caused by a large placental chorioangioma. Am. J. Obestet. Gynecol. 1995, 173, 1632–1633. [Google Scholar] [CrossRef]
- Kakigano, A.; Mimura, K.; Kanagawa, T.; Nakayama, M.; Kanayama, T.; Fujita, S.; Kinugasa-Taniguchi, Y.; Endo, M.; Tomimatsu, T.; Kimura, T. Imbalance of angiogenic factors and avascular edematous cystic villi in a trisomy 13 pregnancy: A case report. Placenta 2013, 34, 628–630. [Google Scholar] [CrossRef]
- Tuohy, J.F.; James, D.K. Pre-eclampsia and trisomy 13. Br. J. Obstet. Gynaecol. 1992, 99, 891–894. [Google Scholar] [CrossRef]
- Bdolah, Y.; Palomaki, G.E.; Yaron, Y.; Bdolah-Abram, T.; Goldman, M.; Levine, R.J.; Sachs, B.P.; Haddow, J.E.; Karumanchi, S.A. Circulating angiogenic proteins in trisomy 13. Am. J. Obestet. Gynecol. 2006, 194, 239–245. [Google Scholar] [CrossRef]
- Silasi, M.; Rana, S.; Powe, C.; Cohen, B.; Lim, K.H.; Zsengellér, Z.K.; Karumanchi, S.A.; Stillman, I.E. Placental expression of angiogenic factors in Trisomy 13. Am. J. Obestet. Gynecol. 2011, 204, 546.e1–546.e4. [Google Scholar] [CrossRef]
- Heyborne, K.D.; Chism, D.M. Reversal of Ballantyne syndrome by selective second-trimester fetal termination. A case report. J. Reprod. Med. 2000, 45, 360–362. [Google Scholar] [PubMed]
- Okby, R.; Mazor, M.; Erez, O.; Beer-Weizel, R.; Hershkovitz, R. Reversal of mirror syndrome after selective feticide of a hydropic fetus in a dichorionic diamniotic twin pregnancy. J. Ultrasound Med. 2015, 34, 351–353. [Google Scholar] [CrossRef]
- Sarhanis, P.; Pugh, D.H. Resolution of pre-eclampsia following intrauterine death of one twin. Br. J. Obestet. Gynaecol. 1992, 99, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Hladunewich, M.A.; Steinberg, G.; Karumanchi, S.A.; Levine, R.J.; Keating, S.; Kingdom, J.; Keunen, J. Angiogenic factor abnormalities and fetal demise in a twin pregnancy. Nat. Rev. Nephrol. 2009, 5, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.E.; Lash, G.E.; Pretlove, S.J.; Chan, B.C.; Holder, R.; Kilby, M.D. Maternal plasma and amniotic fluid angiogenic factors and their receptors in monochorionic twin pregnancies complicated by twin-to-twin transfusion syndrome. Ultrasound Obestet. Gynecol. 2010, 35, 695–701. [Google Scholar] [CrossRef]
- De Carolis, S.; Garufi, C.; Garufi, E.; De Carolis, M.P.; Botta, A.; Tabacco, S.; Salvi, S. Autoimmune Congenital Heart Block: A Review of Biomarkers and Management of Pregnancy. Front. Pediatr. 2020, 8, 607515. [Google Scholar] [CrossRef]
- Esteve-Valverde, E.; Alijotas-Reig, J.; Belizna, C.; Marques-Soares, J.; Anunciacion-Llunell, A.; Feijóo-Massó, C.; Sáez-Comet, L.; Mekinian, A.; Ferrer-Oliveras, R.; Lefkou, E.; et al. Low complement levels are related to poor obstetric outcomes in women with obstetric antiphospholipid syndrome. Placenta 2023, 136, 29–34. [Google Scholar] [CrossRef]
- Dong, Y.; Yuan, F.; Dai, Z.; Wang, Z.; Zhu, Y.; Wang, B. Preeclampsia in systemic lupus erythematosus pregnancy: A systematic review and meta-analysis. Clin. Rheumatol. 2020, 39, 319–325. [Google Scholar] [CrossRef]
- De Carolis, S.; Moresi, S.; Rizzo, F.; Monteleone, G.; Tabacco, S.; Salvi, S.; Garufi, C.; Lanzone, A. Autoimmunity in obstetrics and autoimmune diseases in pregnancy. Best. Pr. Res. Clin. Obestet. Gynaecol. 2019, 60, 66–76. [Google Scholar] [CrossRef]
- Piccioni, M.G.; Merlino, L.; Deroma, M.; Del Prete, F.; Tabacco, S.; Monti, M.; Benedetti Panici, P. The impact of primary Sjogren’s syndrome on female sexual function. Minerva Ginecol. 2020, 72, 50–54. [Google Scholar] [CrossRef]
- Tabacco, S.; Giannini, A.; Garufi, C.; Botta, A.; Salvi, S.; Del Sordo, G.; Benedetti Panici, P.; Lanzone, A.; De Carolis, S. Complementemia in pregnancies with antiphospholipid syndrome. Lupus 2019, 28, 1503–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carolis, S.; Tabacco, S.; Rizzo, F.; Perrone, G.; Garufi, C.; Botta, A.; Salvi, S.; Benedetti Panici, P.; Lanzone, A. Lupus Association between false-positive TORCH and antiphospholipid antibodies in healthy pregnant women. Lupus 2018, 27, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Saccone, G.; Berghella, V.; Maruotti, G.M.; Ghi, T.; Rizzo, G.; Simonazzi, G.; Rizzo, N.; Facchinetti, F.; Dall’Asta, A.; Visentin, S.; et al. Antiphospholipid antibody profile based obstetric outcomes of primary antiphospholipid syndrome: The PREGNANTS study. Am. J. Obestet. Gynecol. 2017, 216, 525.e1–525.e12. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.M.; Brown, M.A.; Branch, D.W.; Ward, K.; Silver, R.M. Anticardiolipin and anti-beta2- glycoprotein-I antibodies in preeclampsia. Obestet. Gynecol. 2003, 102, 294–300. [Google Scholar]
- De Carolis, S.; Rizzo, F.; Tabacco, S. Hydroxychloroquine as additional treatment in pregnant patients with refractory APS. Am. J. Obestet. Gynecol. 2017, 217, 711–712. [Google Scholar] [CrossRef] [Green Version]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Sáez-Comet, L.; Lefkou, E.; Mekinian, A.; Belizna, C.; Ruffatti, A.; Tincani, A.; Pardos-Gea, J.; et al. EUROAPS Study Group; Bleeding and antithrombotic therapy during pregnancy in women with poor aPL-related obstetric outcomes: A survey of 1075 cases from EUROAPS registry. Eur. J. Anaesthesiol. 2021, 38, 916–922. [Google Scholar] [CrossRef]
- Wallukat, G.; Homuth, V.; Fischer, T.; Indschau, C.; Horstkamp, B.; Jüpner, A.; Baur, E.; Nissen, E.; Vetter, K.; Neichel, D.; et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest. 1999, 103, 945–952. [Google Scholar] [CrossRef]
- Yang, X.; Wang, F.; Chang, H.; Zhang, S.; Yang, L.; Wang, X.; Cheng, X.; Zhang, M.; Ma, X.L.; Liu, H. Autoantibody against AT1 receptor from preeclamptic patients induces vasoconstriction through angiotensin receptor activation. J. Hypertens. 2008, 26, 1629–1635. [Google Scholar] [CrossRef]
- Siddiqui, A.H.; Irani, R.A.; Blackwell, S.C.; Ramin, S.M.; Kellems, R.E.; Xia, Y. Angiotensin receptor agonistic autoantibody is highly prevalent in preeclampsia: Correlation with disease severity. Hypertension 2010, 55, 386–393. [Google Scholar] [CrossRef] [Green Version]
- LaMarca, B.; Wallukat, G.; Llinas, M.; Herse, F.; Dechend, R.; Granger, J.P. Autoantibodies to the angiotensin type I receptor in response to placental ischemia and tumor necrosis factor alpha in pregnant rats. Hypertension 2008, 52, 1168–1172. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, M.W., Jr.; Castillo, J.; Ibrahim, T.; Cornelius, D.C.; Campbell, N.; Amaral, L.; Vaka, V.R.; Usry, N.; Williams, J.M.; LaMarca, B. AT1-AA (Angiotensin II Type 1 Receptor Agonistic Autoantibody) Blockade Prevents Preeclamptic Symptoms in Placental Ischemic Rats. Hypertension 2018, 71, 886–893. [Google Scholar] [CrossRef]
- Li, J.; LaMarca, B.; Reckelhoff, J.F. A model of preeclampsia in rats: The reduced uterine perfusion pressure (RUPP) model. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1–H8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarca, B.; Speed, J.; Ray, L.F.; Cockrell, K.; Wallukat, G.; Dechend, R.; Granger, J. Hypertension in response to IL-6 during pregnancy: Role of AT1-receptor activation. Int. J. Interferon Cytokine Mediat. Res. 2011, 2011, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillion, P.; Wallace, K.; Herse, F.; Cott, J.; Wallukat, G.; Heath, J.; Mosely, J.; Martin, J.N., Jr.; Dechend, R.; LaMarca, B. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R353–R358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, P.; Zhang, L.; Huang, C.; Gao, J.; Li, Y.; Yang, B. Identification of Key Genes and Long Noncoding RNA-Associated Competing Endogenous RNA (ceRNA) Networks in Early-Onset Preeclampsia. Biomed. Res. Int. 2020, 2020, 1673486. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Brocklehurst, P.; Green, M.E.; Unter, R.; Hardy, P.; Juszczak, E.; Linsell, L.; Chiocchia, V.; Greenland, M.; Placzek, A.; et al. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): A randomised controlled trial. Lancet 2019, 394, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt1: PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- ACOG Committee Opinion No. 743. Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018, 132, e44–e52. [Google Scholar]
- Visintin, C.; Mugglestone, M.A.; Almerie, M.Q.; Nherera, L.M.; James, D.; Walkinshaw, S. Management of hypertensive disorders during pregnancy: Summary of NICE guidance. BMJ 2010, 341, c2207. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.Y.; Wright, D.; Syngelaki, A.; Kolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Greco, E.; Wright, A.; Maclagan, K.; et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: Results of SPREE. Ultrasound Obstet. Gynecol. 2018, 51, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Helou, A.; Walker, S.; Stewart, K.; George, J. Management of pregnancies complicated by hypertensive disorders of pregnancy: Could we do better? Aust. N. Z. J. Obstet. Gynaecol. 2017, 57, 253–259. [Google Scholar] [CrossRef]
- Esplin, M.S.; Fausett, M.B.; Fraser, A.; Kerber, R.; Mineau, G.; Carrillo, J.; Varner, M.W. Paternal and maternal components of the predisposition to preeclampsia. N. Engl. J. Med. 2001, 344, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; de Alvarado, M.; Carbone, I.F.; Dutemeyer, V.; Fiolna, M.; Frick, A.; et al. Multicenter screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation: Comparison with NICE guidelines and ACOG recommendations. Ultrasound Obestet. Gynecol. 2017, 49, 756–760. [Google Scholar] [CrossRef]
- Cristofalo, R.; Bannwart-Castro, C.F.; Magalhães, C.G.; Borges, V.T.; Peraçoli, J.C.; Witkin, S.S.; Peraçoli, M.T. Silibinin attenuates oxidative metabolism and cytokine production by monocytes from preeclamptic women. Free Radic Res. 2013, 47, 268–275. [Google Scholar] [CrossRef]
- Aubuchon, M.; Schulz, L.C.; Schust, D.J. Preeclampsia: Animal models for a human cure. Proc. Natl. Acad. Sci. USA 2011, 108, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, S.; Nakashima, A.; Shima, T.; Saito, S. New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front. Immunol. 2019, 10, 573. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Gershater, M.; Slutsky, R.; Romero, R.; Gomez-Lopez, N. Maternal and Fetal T Cells in Term Pregnancy and Preterm Labor. Cell Mol. Immunol. 2020, 17, 693–704. [Google Scholar] [CrossRef]
- Green, S.; Politis, M.; Rallis, K.S.; Saenz de Villaverde Cortabarria, A.; Efthymiou, A.; Mureanu, N.; Saenz de Villaverde Cortabarria, A.; Efthymiou, A.; Mureanu, N.; Dalrymple, K.V.; et al. Regulatory T Cells in Pregnancy Adverse Outcomes: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 737862. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.C.H.; Vong, J.S.L.; Ji, L.; Poon, L.C.Y.; Jiang, P.; Lui, K.O.; Poon, L.C.Y.; Jiang, P.; Lui, K.O.; Ni, Y.B.; et al. Integrative Single-Cell and Cell-Free Plasma RNA Transcriptomics Elucidates Placental Cellular Dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, e7786–e7795. [Google Scholar] [CrossRef]
- Whitehead, C.L.; Walker, S.P.; Tong, S. Measuring Circulating Placental RNAs to non-Invasively Assess the Placental Transcriptome and to Predict Pregnancy Complications. Prenat. Diagn. 2016, 36, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, B.; Zhao, Y. Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Front. Immunol. 2022, 13, 883404. [Google Scholar] [CrossRef]
- McDonald, S.D.; Malinowski, A.; Zhou, Q.; Yusuf, S.; Devereaux, P.J. Cardiovascular sequelae of preeclampsia/eclampsia: A systematic review and meta-analyses. Am. Heart J. 2008, 156, 918–930. [Google Scholar] [CrossRef]
- Brown, M.C.; Best, K.E.; Pearce, M.S.; Waugh, J.; Robson, S.C.; Bell, R. Cardiovascular disease risk in women with pre-eclampsia: Systematic review and meta-analysis. Eur. J. Epidemiol. 2013, 28, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Basit, S.; Wohlfahrt, J.; Boyd, H.A. Pre-eclampsia and risk of dementia later in life: Nationwide cohort study. BMJ 2018, 363, k4109. [Google Scholar] [CrossRef] [Green Version]
- Rolnik, D.L.; Wright, D.; Poon, L.C.Y.; Yngelaki, A.; O’Gorman, N.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. ASPRE trial: Performance of screening for preterm pre-eclampsia. Ultrasound. Obestet. Gynecol. 2017, 50, 492–495. [Google Scholar] [CrossRef]
- Armaly, Z.; Jadaon, J.E.; Jabbour, A.; Abassi, Z.A. Preeclampsia: Novel Mechanisms and Potential Therapeutic Approaches. Front. Physiol. 2018, 9, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simsek, F.; Turunc, E.; Keskin-Arslan, E.; Erol, H.; Acar, S.; Atakul, B.K.; Aydogmus, S.; Temiz, T. Molecular mechanisms involved in pre-eclampsia through expressional regulation of endothelin-1. Placenta 2022, 124, 55–61. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabacco, S.; Ambrosii, S.; Polsinelli, V.; Fantasia, I.; D’Alfonso, A.; Ludovisi, M.; Cecconi, S.; Guido, M. Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools—A Review of the Literature. Curr. Issues Mol. Biol. 2023, 45, 6202-6215. https://doi.org/10.3390/cimb45080391
Tabacco S, Ambrosii S, Polsinelli V, Fantasia I, D’Alfonso A, Ludovisi M, Cecconi S, Guido M. Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools—A Review of the Literature. Current Issues in Molecular Biology. 2023; 45(8):6202-6215. https://doi.org/10.3390/cimb45080391
Chicago/Turabian StyleTabacco, Sara, Silvia Ambrosii, Valentina Polsinelli, Ilaria Fantasia, Angela D’Alfonso, Manuela Ludovisi, Sandra Cecconi, and Maurizio Guido. 2023. "Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools—A Review of the Literature" Current Issues in Molecular Biology 45, no. 8: 6202-6215. https://doi.org/10.3390/cimb45080391
APA StyleTabacco, S., Ambrosii, S., Polsinelli, V., Fantasia, I., D’Alfonso, A., Ludovisi, M., Cecconi, S., & Guido, M. (2023). Pre-Eclampsia: From Etiology and Molecular Mechanisms to Clinical Tools—A Review of the Literature. Current Issues in Molecular Biology, 45(8), 6202-6215. https://doi.org/10.3390/cimb45080391