Length-Dependent Translation Efficiency of ER-Destined Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell lines, Culture Conditions and Transfections
2.2. Reporter Design
2.3. Quantitative Real-Time PCR
2.4. Flow Cytometry Analysis
2.5. SDS-PAGE and Western Blotting
2.6. Preparation of Cell Lysates for Ribo Mega-SEC
2.7. Polysome Separation Using Ribo Mega-SEC
2.8. Fractionation via Sequential Detergent Extraction
2.9. Databases
Statistical Analysis
3. Results
3.1. Single IgL Domain Decreases Translation Efficiency Similarly to Poly-A Sequence
3.2. Translation of IgL Does Not Induce Ribosome Stalling
3.3. The Number of Short ER-Destined Proteins Does Not Correlate with the Respective mRNAs
3.4. Length-Dependent Association of mRNA with Intracellular Membranes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munro, A.; Jackson, R.; Korner, A. Studies on the Nature of Polysomes. Biochem. J. 1964, 92, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.K.; Gilbert, W.V. MRNA Length-Sensing in Eukaryotic Translation: Reconsidering the “Closed Loop” and Its Implications for Translational Control. Curr. Genet. 2017, 63, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Martindale, J.; Gorospe, M. Polysome Fractionation to Analyze MRNA Distribution Profiles. Bio-Protocol 2017, 7, e2126. [Google Scholar] [CrossRef] [PubMed]
- Arpat, A.B.; Liechti, A.; De Matos, M.; Dreos, R.; Janich, P.; Gatfield, D. Transcriptome-Wide Sites of Collided Ribosomes Reveal Principles of Translational Pausing. Genome Res. 2020, 30, 985–999. [Google Scholar] [CrossRef]
- Shoemaker, C.J.; Green, R. Translation Drives MRNA Quality Control. Nat. Struct. Mol. Biol. 2012, 19, 594–601. [Google Scholar] [CrossRef]
- Flanagan, J.J.; Chen, J.-C.; Miao, Y.; Shao, Y.; Lin, J.; Bock, P.E.; Johnson, A.E. Signal Recognition Particle Binds to Ribosome-Bound Signal Sequences with Fluorescence-Detected Subnanomolar Affinity That Does Not Diminish as the Nascent Chain Lengthens. J. Biol. Chem. 2003, 278, 18628–18637. [Google Scholar] [CrossRef] [PubMed]
- Lingappa, V.R.; Blobel, G. Early Events in the Biosynthesis of Secretory and Membrane Proteins: The Signal Hypothesis. In Proceedings of the 1979 Laurentian Hormone Conference; Elsevier: Amsterdam, The Netherlands, 1980; pp. 451–475. [Google Scholar]
- Blobel, G. Protein Targeting (Nobel Lecture). ChemBioChem 2000, 1, 86–102. [Google Scholar] [CrossRef]
- Ellgaard, L.; McCaul, N.; Chatsisvili, A.; Braakman, I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016, 17, 615–638. [Google Scholar] [CrossRef]
- Nandi, D.; Tahiliani, P.; Kumar, A.; Chandu, D. The Ubiquitin-Proteasome System. J. Biosci. 2006, 31, 137–155. [Google Scholar] [CrossRef]
- Sitia, R.; Braakman, I. Quality Control in the Endoplasmic Reticulum Protein Factory. Nature 2003, 426, 891–894. [Google Scholar] [CrossRef]
- McCaffrey, K.; Braakman, I. Protein Quality Control at the Endoplasmic Reticulum. Essays Biochem. 2016, 60, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Juszkiewicz, S.; Hegde, R.S. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol. Cell 2017, 65, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Larance, M.; Harney, D.J.; Sundaramoorthy, R.; Ly, T.; Owen-Hughes, T.; Lamond, A.I. Efficient Analysis of Mammalian Polysomes in Cells and Tissues Using Ribo Mega-SEC. eLife 2018, 7, e36530. [Google Scholar] [CrossRef]
- Jagannathan, S.; Nwosu, C.; Nicchitta, C.V. Analyzing MRNA Localization to the Endoplasmic Reticulum via Cell Fractionation; Humana Press: Totowa, NJ, USA, 2011; pp. 301–321. [Google Scholar]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Herrmann, C.J.; Simonovic, M.; Szklarczyk, D.; Mering, C. Version 4.0 of PaxDb: Protein Abundance Data, Integrated across Model Organisms, Tissues, and Cell-lines. Proteomics 2015, 15, 3163–3168. [Google Scholar] [CrossRef]
- Walter, P.; Blobel, G. Translocation of Proteins across the Endoplasmic Reticulum III. Signal Recognition Protein (SRP) Causes Signal Sequence-Dependent and Site-Specific Arrest of Chain Elongation That Is Released by Microsomal Membranes. J. Cell Biol. 1981, 91, 557–561. [Google Scholar] [CrossRef]
- Reid, D.W.; Nicchitta, C.V. Diversity and Selectivity in MRNA Translation on the Endoplasmic Reticulum. Nat. Rev. Mol. Cell Biol. 2015, 16, 221–231. [Google Scholar] [CrossRef]
- Pyhtila, B.; Zheng, T.; Lager, P.J.; Keene, J.D.; Reedy, M.C.; Nicchitta, C.V. Signal Sequence- and Translation-Independent MRNA Localization to the Endoplasmic Reticulum. RNA 2008, 14, 445–453. [Google Scholar] [CrossRef]
- Li, G.-W.; Burkhardt, D.; Gross, C.; Weissman, J.S. Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell 2014, 157, 624–635. [Google Scholar] [CrossRef]
- Yan, X.; Hoek, T.A.; Vale, R.D.; Tanenbaum, M.E. Dynamics of Translation of Single MRNA Molecules In Vivo. Cell 2016, 165, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.K.; Rojas-Duran, M.F.; Gangaramani, P.; Gilbert, W. V The Ribosomal Protein Asc1/RACK1 Is Required for Efficient Translation of Short MRNAs. eLife 2016, 5, e11154. [Google Scholar] [CrossRef]
- Tomek, W.; Wollenhaupt, K. The “Closed Loop Model” in Controlling MRNA Translation during Development. Anim. Reprod. Sci. 2012, 134, 2–8. [Google Scholar] [CrossRef]
- Rogers, D.W.; Böttcher, M.A.; Traulsen, A.; Greig, D. Ribosome Reinitiation Can Explain Length-Dependent Translation of Messenger RNA. PLoS Comput. Biol. 2017, 13, e1005592. [Google Scholar] [CrossRef]
- Guo, J.; Lian, X.; Zhong, J.; Wang, T.; Zhang, G. Length-Dependent Translation Initiation Benefits the Functional Proteome of Human Cells. Mol. BioSystems 2015, 11, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Levanon, E.Y. Human Housekeeping Genes Are Compact. Trends Genet. 2003, 19, 362–365. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahinbegovic, H.; Vdovin, A.; Snaurova, R.; Durech, M.; Nezval, J.; Sobotka, J.; Hajek, R.; Jelinek, T.; Simicek, M. Length-Dependent Translation Efficiency of ER-Destined Proteins. Curr. Issues Mol. Biol. 2023, 45, 6717-6727. https://doi.org/10.3390/cimb45080425
Sahinbegovic H, Vdovin A, Snaurova R, Durech M, Nezval J, Sobotka J, Hajek R, Jelinek T, Simicek M. Length-Dependent Translation Efficiency of ER-Destined Proteins. Current Issues in Molecular Biology. 2023; 45(8):6717-6727. https://doi.org/10.3390/cimb45080425
Chicago/Turabian StyleSahinbegovic, Hana, Alexander Vdovin, Renata Snaurova, Michal Durech, Jakub Nezval, Jiri Sobotka, Roman Hajek, Tomas Jelinek, and Michal Simicek. 2023. "Length-Dependent Translation Efficiency of ER-Destined Proteins" Current Issues in Molecular Biology 45, no. 8: 6717-6727. https://doi.org/10.3390/cimb45080425
APA StyleSahinbegovic, H., Vdovin, A., Snaurova, R., Durech, M., Nezval, J., Sobotka, J., Hajek, R., Jelinek, T., & Simicek, M. (2023). Length-Dependent Translation Efficiency of ER-Destined Proteins. Current Issues in Molecular Biology, 45(8), 6717-6727. https://doi.org/10.3390/cimb45080425