Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Chemicals
2.3. Fluorescence-Activated Cell Sorting Analysis
2.4. Cell Proliferation and Cytotoxicity Assay
2.5. Tube Formation Assay
2.6. Apoptosis Assay
2.7. Caspase Assays
2.8. Cytochrome c Release
2.9. Western Blot Analysis
2.10. Real-Time Quantitative PCR Analysis
2.11. Mitochondrial Membrane Potential Measurements
2.12. Intracellular ROS Measurement
2.13. Statistical Analysis
3. Results
3.1. ATO Induces Apoptotic Cell Death in LECs
3.2. ATO Activates Both the Intrinsic and Extrinsic Apoptotic Pathways in Human Lymphatic Endothelial Cells
3.3. ATO Triggers Apoptosis through Mitochondrial Pathway but Is Independent of Induction of ROS in LECs
3.4. Induction of Cell Death Markers by ATO Treatment
3.5. ATO Reduces the Expression of Important Endothelial Cell Receptors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paul, N.P.; Galván, A.E.; Yoshinaga-Sakurai, K.; Rosen, B.P.; Yoshinaga, M. Arsenic in medicine: Past, present and future. BioMetals 2023, 36, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Hoonjan, M.; Jadhav, V.; Bhatt, P. Arsenic trioxide: Insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem. 2018, 23, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Soignet, S.L.; Maslak, P.; Wang, Z.G.; Jhanwar, S.; Calleja, E.; Dardashti, L.J.; Corso, D.; DeBlasio, A.; Gabrilove, J.; Scheinberg, D.A.; et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 1998, 339, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, U.; Mathews, V. Evolving Chemotherapy Free Regimens for Acute Promyelocytic Leukemia. Front. Oncol. 2021, 11, 621566. [Google Scholar] [CrossRef] [PubMed]
- Korsos, V.; Miller, W.H., Jr. How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy. J. Mol. Endocrinol. 2022, 69, T69–T83. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Kantarjian, H.; Ravandi, F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021, 11, 123. [Google Scholar] [CrossRef]
- Min, G.J.; Cho, B.S.; Park, S.S.; Park, S.; Jeon, Y.W.; Yahng, S.A.; Shin, S.H.; Yoon, J.H.; Lee, S.E.; Eom, K.S.; et al. Safety and efficacy of arsenic trioxide and all-trans retinoic acid therapy in acute promyelocytic leukemia patients with a high risk for early death. Ann. Hematol. 2020, 99, 973–982. [Google Scholar] [CrossRef]
- Sahin, U.; de Thé, H.; Lallemand-Breitenbach, V. Sumoylation in Physiology, Pathology and Therapy. Cells 2022, 11, 814. [Google Scholar] [CrossRef]
- Huang, C.H.; Lee, Y.C.; Chiou, J.T.; Shi, Y.J.; Wang, L.J.; Chang, L.S. Arsenic trioxide-induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1-positive leukemia cells. Toxicol. Appl. Pharmacol. 2020, 397, 115013. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Wang, L.; Dai, Z.; Yang, K. Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells. Cell. Mol. Biol. Lett. 2018, 23, 13. [Google Scholar] [CrossRef]
- Meister, M.T.; Boedicker, C.; Graab, U.; Hugle, M.; Hahn, H.; Klingebiel, T.; Fulda, S. Arsenic trioxide induces Noxa-dependent apoptosis in rhabdomyosarcoma cells and synergizes with antimicrotubule drugs. Cancer Lett. 2016, 381, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tchounwou, P.B. Arsenic trioxide reduces the expression of E2F1, cyclin E, and phosphorylation of PI3K signaling molecules in acute leukemia cells. Environ. Toxicol. 2021, 36, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, Y.; Ma, C.; Song, Y.; Xu, H.; Yu, H.; Xu, S.; Mu, Q.; Li, H.; Chen, Y.; et al. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget 2016, 7, 12682–12692. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, C.; Chen, Y.; Wu, P.; Li, P.; Xiong, X.; Peng, X.; Wang, Z.; Li, Y. Arsenic trioxide induces the differentiation of retinoic acid-resistant neuroblastoma cells via upregulation of HoxC9. Adv. Clin. Exp. Med. 2022, 31, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Chang, K.J.; Li, B.; Chen, W.S. Arsenic Trioxide Suppresses Tumor Growth through Antiangiogenesis via Notch Signaling Blockade in Small-Cell Lung Cancer. BioMed Res. Int. 2019, 2019, 4647252. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhang, X.; Du, R.; Gao, W.; Luo, N.; Zhao, S.; Li, Y.; Chen, R.; Wang, H.; Bao, Y.; et al. Low dosage of arsenic trioxide (As2O3) inhibits angiogenesis in epithelial ovariancancer without cell apoptosis. J. Biol. Inorg. Chem. 2018, 23, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, I.; Christofori, G. Molecular mechanisms of lymphangiogenesis in development and cancer. Int. J. Dev. Biol. 2011, 55, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, L.C.; Tacconi, C.; Ducoli, L.; Detmar, M. Lymphatic vessels in cancer. Physiol. Rev. 2022, 102, 1837–1879. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Chen, X.; Liu, S.X.; Wu, D.D.; Ren, L.F. Effect of arsenic trioxide on vascular endothelial growth factor-C and its receptor (VEGFR-3) in nude mice with gastric cancer. J. Exp. Hematol. 2008, 16, 1303–1307. [Google Scholar]
- Hrgovic, I.; Doll, M.; Kleemann, J.; Wang, X.F.; Zoeller, N.; Pinter, A.; Kippenberger, S.; Kaufmann, R.; Meissner, M. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer 2016, 16, 763. [Google Scholar] [CrossRef]
- Carpentier, G.; Berndt, S.; Ferratge, S.; Rasband, W.; Cuendet, M.; Uzan, G.; Albanese, P. Angiogenesis Analyzer for ImageJ—A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay”. Sci. Rep. 2020, 10, 11568. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; Dorn, B.; Grasmik, T.; Doll, M.; Meissner, M.; Jakob, T.; Hrgovic, I. Apremilast effectively inhibits TNFα-induced vascular inflammation in human endothelial cells. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Raica, M.; Jitariu, A.A.; Cimpean, A.M. Lymphangiogenesis and Anti-lymphangiogenesis in Cutaneous Melanoma. Anticancer Res. 2016, 36, 4427–4435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, D.; Gong, M.; Wen, L.; Liao, C.; Zou, L. High lymphatic vessel density and presence of lymphovascular invasion both predict poor prognosis in breast cancer. BMC Cancer 2017, 17, 335. [Google Scholar] [CrossRef] [PubMed]
- Moy, A.P.; Mochel, M.C.; Muzikansky, A.; Duncan, L.M.; Kraft, S. Lymphatic invasion predicts sentinel lymph node metastasis and adverse outcome in primary cutaneous melanoma. J. Cutan. Pathol. 2017, 44, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Yajima, R.; Tatsuki, H.; Suto, T.; Morita, H.; Tsutsumi, S.; Kuwano, H. Significance of lymphatic invasion combined with size of primary tumor for predicting sentinel lymph node metastasis in patients with breast cancer. Anticancer Res. 2015, 35, 3581–3584. [Google Scholar]
- Sun, Z.; Li, M.; Bai, L.; Fu, J.; Lu, J.; Wu, M.; Zhou, C.; Zhang, Y.; Wu, Y. Arsenic trioxide inhibits angiogenesis in vitro and in vivo by upregulating FoxO3a. Toxicol. Lett. 2019, 315, 1–8. [Google Scholar] [CrossRef]
- Yang, M.H.; Chang, K.J.; Zheng, J.C.; Huang, H.; Sun, G.Y.; Zhao, X.W.; Li, B.; Xiu, Q.Y. Anti-angiogenic effect of arsenic trioxide in lung cancer via inhibition of endothelial cell migration, proliferation and tube formation. Oncol. Lett. 2017, 14, 3103–3109. [Google Scholar] [CrossRef]
- Ge, H.Y.; Han, Z.J.; Tian, P.; Sun, W.J.; Xue, D.X.; Bi, Y.; Yang, Z.H.; Liu, P. VEGFA Expression Is Inhibited by Arsenic Trioxide in HUVECs through the Upregulation of Ets-2 and miRNA-126. PLoS ONE 2015, 10, e0135795. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.M.; Li, S.; Wang, K.K.; Guo, B.B.; Fu, Y.; Liu, L.Y.; Zhang, Y.; Jiang, H.Y.; Wu, C.J. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol. Med. Rep. 2018, 17, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Dugo, E.B.; Yedjou, C.G.; Stevens, J.J.; Tchounwou, P.B. Therapeutic Potential of Arsenic Trioxide (ATO) in Treatment of Hepatocellular Carcinoma: Role of Oxidative Stress in ATO-Induced Apoptosis. Ann. Clin. Pathol. 2017, 5, 1101. [Google Scholar] [PubMed]
- Yu, Y.; Yang, Y.; Wang, J. Anti-apoptotic and apoptotic pathway analysis of arsenic trioxide-induced apoptosis in human gastric cancer SGC-7901 cells. Oncol. Rep. 2014, 32, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Boyko-Fabian, M.; Niehr, F.; Distel, L.; Budach, V.; Tinhofer, I. Increased growth-inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PLoS ONE 2014, 9, e98867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, L.; Chen, L.; Cai, G.H.; Ren, Q.Y.; Chen, J.Z.; Shi, H.J.; Xie, Y.H. As2O3 induces apoptosis in human hepatocellular carcinoma HepG2 cells through a ROS-mediated mitochondrial pathway and activation of caspases. Int. J. Clin. Exp. Med. 2015, 8, 2190–2196. [Google Scholar]
- Stevens, J.J.; Graham, B.; Dugo, E.; Berhaneselassie-Sumner, B.; Ndebele, K.; Tchounwou, P.B. Arsenic Trioxide Induces Apoptosis via Specific Signaling Pathways in HT-29 Colon Cancer Cells. J. Cancer Sci. Ther. 2017, 9, 298–306. [Google Scholar] [CrossRef]
- Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol. 2021, 125, 73–120. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive Oxygen Species (ROS): Key Components in Cancer Therapies. Anticancer Agents Med. Chem. 2022, 22, 215–222. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, J.; Wu, F.; Wei, F.; Han, W.; Xu, X.; Zhang, Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers 2023, 15, 1169. [Google Scholar] [CrossRef]
- Wu, M.; Du, Y.; Liu, Y.; He, Y.; Yang, C.; Wang, W.; Gao, F. Low molecular weight hyaluronan induces lymphangiogenesis through LYVE-1-mediated signaling pathways. PLoS ONE 2014, 9, e92857. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Wu, D.D.; Liu, S.X.; Chen, X.; Ren, L.F. Effect of arsenic trioxide on vascular endothelial cell proliferation and expression of vascular endothelial growth factor receptors Flt-1 and KDR in gastric cancer in nude mice. World J. Gastroenterol. 2007, 13, 6498–6505. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrgovic, I.; Zöller, E.; Doll, M.; Hailemariam-Jahn, T.; Jakob, T.; Kaufmann, R.; Meissner, M.; Kleemann, J. Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors. Curr. Issues Mol. Biol. 2024, 46, 67-80. https://doi.org/10.3390/cimb46010006
Hrgovic I, Zöller E, Doll M, Hailemariam-Jahn T, Jakob T, Kaufmann R, Meissner M, Kleemann J. Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors. Current Issues in Molecular Biology. 2024; 46(1):67-80. https://doi.org/10.3390/cimb46010006
Chicago/Turabian StyleHrgovic, Igor, Eva Zöller, Monika Doll, Tsige Hailemariam-Jahn, Thilo Jakob, Roland Kaufmann, Markus Meissner, and Johannes Kleemann. 2024. "Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors" Current Issues in Molecular Biology 46, no. 1: 67-80. https://doi.org/10.3390/cimb46010006
APA StyleHrgovic, I., Zöller, E., Doll, M., Hailemariam-Jahn, T., Jakob, T., Kaufmann, R., Meissner, M., & Kleemann, J. (2024). Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors. Current Issues in Molecular Biology, 46(1), 67-80. https://doi.org/10.3390/cimb46010006