Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extracts
2.2. Cell Culture
2.3. Measuring the Effect of Active Plant Extract on Cell Adhesion
2.4. Measuring the Effect the Active Plant Extract Had on Cell Invasion
2.5. Scratch Assay for Migration Analysis
2.6. Antioxidant Assay
2.7. Determining the Molecular Composition of the Water-Soluble Extract
2.8. Next-Generation Sequencing to Measure the Transcript Levels of Genes Involved in Proliferation and Metastasis
2.9. Statistical Analysis
3. Results
3.1. Effect of the Extract on Cell Adhesion
3.2. Effect of the Extract on Cell Invasion
3.3. Measuring the Effect of the Active Plant Extract on Cell Migration
3.4. Determination of Antioxidant Activity Using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical-Scavenging Method
3.5. Identification of Compounds Using NMR
3.6. Transcription Profiles of Genes Involved in Adhesion, Invasion, and Metastasis
4. Discussion
4.1. Cell Invasion, Migration, and Adhesion Assays
4.2. Assay for Antioxidant Activity
4.3. Effect of the Identified Compounds on Metastasis and Invasion
4.4. Transcript Analysis of Genes Involved in Migration, Invasion, and Adhesion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, V.Y.; Siu, J.M.; Cheuk, I.; Ng, E.K.; Kwong, A. Circulating cell-free miRNAs as biomarker for triple-negative breast cancer. Br. J. Cancer 2015, 112, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Hanna, W.M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S.A. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat. 2009, 115, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef]
- Carey, L.A.; Dees, E.C.; Sawyer, L.; Gatti, L.; Moore, D.T.; Collichio, F.; Ollila, D.W.; Sartor, C.I.; Graham, M.L.; Perou, C.M. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2007, 13, 2329–2334. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P. Triple-negative breast cancer: Epidemiological considerations and recommendations. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23 (Suppl. S6), vi7–vi12. [Google Scholar] [CrossRef] [PubMed]
- Lara-Medina, F.; Pérez-Sánchez, V.; Saavedra-Pérez, D.; Blake-Cerda, M.; Arce, C.; Motola-Kuba, D.; Villarreal-Garza, C.; González-Angulo, A.M.; Bargalló, E.; Aguilar, J.L.; et al. Triple-negative breast cancer in Hispanic patients: High prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer 2011, 117, 3658–3669. [Google Scholar] [CrossRef]
- Fostira, F.; Tsitlaidou, M.; Papadimitriou, C.; Pertesi, M.; Timotheadou, E.; Stavropoulou, A.V.; Glentis, S.; Bournakis, E.; Bobos, M.; Pectasides, D.; et al. Prevalence of BRCA1 mutations among 403 women with triple-negative breast cancer: Implications for genetic screening selection criteria: A Hellenic Cooperative Oncology Group Study. Breast Cancer Res. Treat. 2012, 134, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Bamidele, O.; Ali, N.; Papadopoulos, C.; Randhawa, G. Exploring factors contributing to low uptake of the NHS breast cancer screening programme among Black African women in the UK. Divers. Equal. Health Care 2017, 14, 212–219. [Google Scholar] [CrossRef]
- Newman, L.A.; Stark, A.; Chitale, D.; Pepe, M.; Longton, G.; Worsham, M.J.; Nathanson, S.D.; Miller, P.; Bensenhaver, J.M.; Proctor, E.; et al. Association Between Benign Breast Disease in African American and White American Women and Subsequent Triple-Negative Breast Cancer. JAMA Oncol. 2017, 3, 1102–1106. [Google Scholar] [CrossRef]
- Shah, S.P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012, 486, 395–399. [Google Scholar] [CrossRef]
- Vagia, E.; Mahalingam, D.; Cristofanilli, M. The Landscape of Targeted Therapies in TNBC. Cancers 2020, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Giltnane, J.M.; Balko, J.M.; Schwarz, L.J.; Guerrero-Zotano, A.L.; Hutchinson, K.E.; Nixon, M.J.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; et al. MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab. 2017, 26, 633–647.e7. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Zielinski, C.C. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23 (Suppl. S6), vi46–vi51. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.F.; Thor, A.D.; Dressler, L.G.; Weaver, D.; Edgerton, S.; Cowan, D.; Broadwater, G.; Goldstein, L.J.; Martino, S.; Ingle, J.N.; et al. HER2 and response to paclitaxel in node-positive breast cancer. N. Engl. J. Med. 2007, 357, 1496–1506. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, L.; Huang, Z.; Li, B.; Nice, E.C.; Xu, J.; Huang, C. Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants 2022, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, C.L.; Weigel, K.J.; Schafer, Z.T. Cancer cell survival during detachment from the ECM: Multiple barriers to tumour progression. Nat. Rev. Cancer 2014, 14, 632–641. [Google Scholar] [CrossRef]
- Schafer, Z.T.; Grassian, A.R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H.Y.; Gao, S.; Puigserver, P.; Brugge, J.S. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461, 109–113. [Google Scholar] [CrossRef]
- DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475, 106–109. [Google Scholar] [CrossRef]
- Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 2014, 6, 221ra215. [Google Scholar] [CrossRef]
- Liu, M.M.; Huang, Y.; Wang, J. Developing phytoestrogens for breast cancer prevention. Anti-Cancer Agents Med. Chem. 2012, 12, 1306–1313. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed. Pharmacother. = Biomed. Pharmacother. 2020, 123, 109730. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Mans, D.R.; da Rocha, A.B.; Schwartsmann, G. Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist 2000, 5, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, Z.; Wang, Q.; Chai, Y.; Xia, P. Pharmacokinetic comparison of seven major bioactive components in normal and depression model rats after oral administration of Baihe Zhimu decoction by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 148, 119–127. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. = Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef]
- Van Wyk, B.-E.; Oudtshoorn, B.v.; Gericke, N. Medicinal Plants of South Africa; Briza: Pretoria, South Africa, 1997. [Google Scholar]
- Motadi, L.R.; Choene, M.S.; Mthembu, N.N. Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci. Rep. 2020, 10, 12924. [Google Scholar] [CrossRef]
- Takaidza, S.; Kumar, A.M.; Ssemakalu, C.C.; Natesh, N.S.; Karanam, G.; Pillay, M. Anticancer activity of crude acetone and water extracts of Tulbaghia violacea on human oral cancer cells. Asian Pac. J. Trop. Biomed. 2018, 8, 456–462. [Google Scholar]
- Saibu, G.M.; Katerere, D.; Rees, J.; Meyer, M. Evaluation of the anti-cancer phytotherapeutic potential of Tulbaghia violacea plant. FASEB J. 2011, 25, 962.4. [Google Scholar] [CrossRef]
- Saibu, G.M.; Katerere, D.R.; Rees, D.J.; Meyer, M. In vitro cytotoxic and pro-apoptotic effects of water extracts of Tulbaghia violacea leaves and bulbs. J. Ethnopharmacol. 2015, 164, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 1962, 115, 453–466. [Google Scholar] [CrossRef]
- Todaro, G.J.; Lazar, G.K.; Green, H. The initiation of cell division in a contact-inhibited mammalian cell line. J. Cell. Physiol. 1965, 66, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Blois, M. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Sharma, G.; Sapkota, B.; Lamichhane, G.; Adhikari, M.; Kunwar, P. Antioxidant Activity of Selected Medicinal Plants of Nepal. Int. J. Med. Biomed. Sci. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Güven, L.; Erturk, A.; Miloğlu, F.D.; Alwasel, S.; Gulcin, İ.J.P. Screening of antiglaucoma, antidiabetic, anti-alzheimer, and antioxidant activities of Astragalus alopecurus pall—Analysis of phenolics profiles by LC-MS/MS. Pharmaceuticals 2023, 16, 659. [Google Scholar] [CrossRef]
- Polat Kose, L.; Bingol, Z.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Durmaz, L.; Koksal, E.; Alwasel, S.H.; Gülçin, İ. Anticholinergic and antioxidant activities of avocado (Folium perseae) leaves–phytochemical content by LC-MS/MS analysis. Int. J. Food Prop. 2020, 23, 878–893. [Google Scholar] [CrossRef]
- Cuvelier, M.-E.; Richard, H.; Berset, C. Comparison of the antioxidative activity of some acid-phenols: Structure-activity relationship. Biosci. Biotechnol. Biochem. 1992, 56, 324–325. [Google Scholar] [CrossRef]
- Gulcin, I.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Topal, M.; Bingol, Z.; Cetin Çakmak, K.; Ozturk Sarikaya, S.B.; Durmaz, L.; Alwasel, S. Anticholinergic, antidiabetic and antioxidant activities of cinnamon (Cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019, 22, 1511–1526. [Google Scholar] [CrossRef]
- Bingol, Z.; Kızıltaş, H.; Gören, A.C.; Kose, L.P.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, I.J.H. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.)—Profiling of phenolic compounds by LC-HRMS. Heliyon 2021, 7, e06986. [Google Scholar] [CrossRef]
- Oktay, M.; Gülçin, İ.; Küfrevioğlu, Ö.İ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT-Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Kızıltas, H.; Bingol, Z.; Goren, A.; Alwasel, S.; Gulcin, I. Verbascum speciousum Schrad: Analysis of phenolic compounds by LC-HRMS and determination of antioxidant and enzyme inhibitory properties. Rec. Nat. Prod 2023, 17, 485–500. [Google Scholar]
- Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A.C.; Alwasel, S.H.; Köksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11, 556–566. [Google Scholar] [CrossRef]
- Ban, J.O.; Hwang, I.G.; Kim, T.M.; Hwang, B.Y.; Lee, U.S.; Jeong, H.S.; Yoon, Y.W.; Kimz, D.J.; Hong, J.T. Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-kappaB in human colon cancer cells. Arch. Pharmacal Res. 2007, 30, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Sorm, F.; Jakubovic, A.; Slechta, L. The anticancerous action of 6-azauracil (3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine). Experientia 1956, 12, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wade Wei, T.Y.; Wu, P.Y.; Herrebout, W.; Tsai, M.D.; Vincent, S.P. Nonhydrolyzable Heptose Bis- and Monophosphate Analogues Modulate Pro-inflammatory TIFA-NF-κB Signaling. Chembiochem. Eur. J. Chem. Biol. 2020, 21, 2982–2990. [Google Scholar] [CrossRef]
- Tsai, K.D.; Liu, Y.H.; Chen, T.W.; Yang, S.M.; Wong, H.Y.; Cherng, J.; Chou, K.S.; Cherng, J.M. Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells. Nutrients 2016, 8, 318. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Xu, Q.Z.; Wang, L.; Sui, J.L.; Bai, B.; Zhou, P.K. Vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde-elicited apoptosis and G2/M arrest of Jurkat cells proceeds concurrently with DNA-PKcs cleavage and Akt inactivation. Int. J. Oncol. 2006, 29, 1167–1172. [Google Scholar] [CrossRef]
- Ozma, M.A.; Ghotaslou, R.; Asgharzadeh, M.; Abbasi, A.; Rezaee, M.A.; Kafil, H.S. Cytotoxicity assessment and antimicrobial effects of cell-free supernatants from probiotic lactic acid bacteria and yeast against multi-drug resistant Escherichia coli. Lett. Appl. Microbiol. 2024, 77, ovae084. [Google Scholar] [CrossRef]
- Sajjad, F.; You, Q.; Xing, D.; Fan, H.; Reddy, A.G.K.; Hu, W.; Dong, S. Synthesis and biological evaluation of substituted pyrrolidines and pyrroles as potential anticancer agents. Arch. Pharm. 2020, 353, e2000136. [Google Scholar] [CrossRef]
- Lv, X.J.; Zhao, L.J.; Hao, Y.Q.; Su, Z.Z.; Li, J.Y.; Du, Y.W.; Zhang, J. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis. Int. J. Clin. Exp. Med. 2015, 8, 6926–6936. [Google Scholar]
- Baker, D.M.; Jones, J.A.; Nguyen-Van-Tam, J.S.; Lloyd, J.H.; Morris, D.L.; Bourke, J.B.; Steele, R.J.; Hardcastle, J.D. Taurolidine peritoneal lavage as prophylaxis against infection after elective colorectal surgery. Br. J. Surg. 1994, 81, 1054–1056. [Google Scholar] [CrossRef]
- Aydin, E.; Türkez, H.; Geyikoğlu, F. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia 2013, 68, 1004–1009. [Google Scholar] [CrossRef]
- Duan, X.; Yang, Y.; Yang, A.; Zhao, Y.; Fan, F.; Niu, L.; Hao, N. Terbutaline attenuates LPS-induced injury of pulmonary microvascular endothelial cells by cAMP/Epac signaling. Drug Dev. Res. 2022, 83, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Paul, A. Antidiarrheal agents. In Introduction to Basics of Pharmacology Toxicology: Volume 2: Essentials of Systemic Pharmacology: From Principles to Practice; Springer: Singapore, 2021; pp. 605–611. [Google Scholar]
- Matin, M.A.; Jaffery, F.N.; Kar, P.P. Role of striatal acetylcholine and free ammmonia in the central stimulatory effects of pp’DDT in rats. Protective effects of barbiturates. Arch. Toxicol. 1980, 45, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Slevin, J.T. Restless legs syndrome. Am. J. Health-Syst. Pharm. 2006, 63, 1599–1612. [Google Scholar] [CrossRef]
- Refat, M.S.; Hamza, R.Z.; Adam, A.; Saad, H.A.; Gobouri, A.A.; Al-Salmi, F.A.; Altalhi, T.; El-Megharbel, S.M. Synthesis of N,N′-bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-oxopyrazol-4-yl) sebacamide that ameliorate osteoarthritis symptoms and improve bone marrow matrix structure and cartilage alterations induced by monoiodoacetate in the rat model: “Suggested potent anti-inflammatory agent against COVID-19”. Hum. Exp. Toxicol. 2021, 40, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Parkes, J. Clinical pharmacology of amantadine and derivatives. In Early Diagnosis and Preventive Therapy in Parkinson’s Disease; Springer: Vienna, Austria, 1989; pp. 335–341. [Google Scholar]
- Hammoudi Halat, D.; Krayem, M.; Khaled, S.; Younes, S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022, 14, 2104. [Google Scholar] [CrossRef]
- Ma, Y.-Z.; Qiang, G.-F.; Du, G.-H. Cyclandelate. In Natural Small Molecule Drugs from Plants; Du, G.-H., Ed.; Springer: Singapore, 2018; pp. 227–230. [Google Scholar]
- Bu, R.; Xie, J.; Yu, J.; Liao, W.; Xiao, X.; Lv, J.; Wang, C.; Ye, J.; Calderón-Urrea, A. Autotoxicity in cucumber (Cucumis sativus L.) seedlings is alleviated by silicon through an increase in the activity of antioxidant enzymes and by mitigating lipid peroxidation. J. Plant Biol. 2016, 59, 247–259. [Google Scholar] [CrossRef]
- Parker, F.S. Drugs, Pharmaceuticals, and Pharmacological Applications. In Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Parker, F.S., Ed.; Springer: Boston, MA, USA, 1971; pp. 390–417. [Google Scholar]
- van der Galiën, R.; Boveneind-Vrubleuskaya, N.V.; Peloquin, C.; Skrahina, A.; Touw, D.J.; Alffenaar, J.C. Pharmacokinetic Modeling, Simulation, and Development of a Limited Sampling Strategy of Cycloserine in Patients with Multidrug-/Extensively Drug-Resistant Tuberculosis. Clin. Pharmacokinet. 2020, 59, 899–910. [Google Scholar] [CrossRef]
- Smith, J.M.; Misiak, H. Critical flicker frequency (CFF) and psychotropic drugs in normal human subjects-a review. Psychopharmacologia 1976, 47, 175–182. [Google Scholar] [CrossRef]
- Arken, N. Schizandrol A reverses multidrug resistance in resistant chronic myeloid leukemia cells K562/A02. Cell. Mol. Biol. 2019, 65, 78–83. [Google Scholar] [CrossRef]
- Stedjan, M.K.; Augspurger, J.D. Ring strain energy in ether-and lactone-containing spiro compounds. J. Phys. Org. Chem. 2015, 28, 298–303. [Google Scholar] [CrossRef]
- Omoruyi, B.E.; Afolayan, A.J.; Bradley, G. The inhibitory effect of Mesembryanthemum edule (L.) bolus essential oil on some pathogenic fungal isolates. BMC Complement. Altern. Med. 2014, 14, 168. [Google Scholar] [CrossRef]
- Zheng, A.; Dzombak, D.A.; Luthy, R.G. Formation of free cyanide and cyanogen chloride from chloramination of publicly owned treatment works secondary effluent: Laboratory study with model compounds. Water Environ. Res. Res. Publ. Water Environ. Fed. 2004, 76, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.L.; McKeithen, D.; Odero-Marah, V.A. Snail negatively regulates cell adhesion to extracellular matrix and integrin expression via the MAPK pathway in prostate cancer cells. Cell Adhes. Migr. 2011, 5, 249–257. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, R.; Zeng, C.; Lu, Q.; Huang, D.; Shi, C.; Zhang, W.; Deng, L.; Yan, R.; Rao, H.; et al. Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling. PLoS ONE 2014, 9, e88386. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Huang, X.H.; Wang, Q.; Huang, J.Q.; Zhang, L.J.; Chen, X.L.; Lei, J.; Cheng, Z.X. Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis 2013, 34, 10–19. [Google Scholar] [CrossRef]
- Aravani, D.; Morris, G.E.; Jones, P.D.; Tattersall, H.K.; Karamanavi, E.; Kaiser, M.A.; Kostogrys, R.B.; Ghaderi Najafabadi, M.; Andrews, S.L.; Nath, M.; et al. HHIPL1, a Gene at the 14q32 Coronary Artery Disease Locus, Positively Regulates Hedgehog Signaling and Promotes Atherosclerosis. Circulation 2019, 140, 500–513. [Google Scholar] [CrossRef]
- Drosten, M.; Dhawahir, A.; Sum, E.Y.; Urosevic, J.; Lechuga, C.G.; Esteban, L.M.; Castellano, E.; Guerra, C.; Santos, E.; Barbacid, M. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J. 2010, 29, 1091–1104. [Google Scholar] [CrossRef]
- Huang, C.; Jacobson, K.; Schaller, M.D. MAP kinases and cell migration. J. Cell Sci. 2004, 117, 4619–4628. [Google Scholar] [CrossRef]
- Singh, S.P.; Paschke, P.; Tweedy, L.; Insall, R.H. AKT and SGK kinases regulate cell migration by altering Scar/WAVE complex activation and Arp2/3 complex recruitment. Front. Mol. Biosci. 2022, 9, 965921. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Wang, Q.; Zhou, F.; Liu, Y.; Zhang, Y.; Ding, H.; Yuan, M.; Li, F.; Chen, Y. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS ONE 2017, 12, e0180558. [Google Scholar] [CrossRef] [PubMed]
- Dorudi, S.; Hart, I.R. Mechanisms underlying invasion and metastasis. Curr. Opin. Oncol. 1993, 5, 130–135. [Google Scholar] [PubMed]
- Gupta, G.P.; Massagué, J. Cancer metastasis: Building a framework. Cell 2006, 127, 679–695. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ingber, D.E. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1999, 1, E131–E138. [Google Scholar] [CrossRef] [PubMed]
- Okegawa, T.; Pong, R.C.; Li, Y.; Hsieh, J.T. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim. Pol. 2004, 51, 445–457. [Google Scholar] [CrossRef]
- Hirohashi, S.; Kanai, Y. Cell adhesion system and human cancer morphogenesis. Cancer Sci. 2003, 94, 575–581. [Google Scholar] [CrossRef]
- Omar, A.; Jovanovic, K.; Da Costa Dias, B.; Gonsalves, D.; Moodley, K.; Caveney, R.; Mbazima, V.; Weiss, S.F. Patented biological approaches for the therapeutic modulation of the 37 kDa/67 kDa laminin receptor. Expert Opin. Ther. Pat. 2011, 21, 35–53. [Google Scholar] [CrossRef]
- Akula, U.S.; Odhav, B. In vitro 5-Lipoxygenase inhibition of polyphenolic antioxidants from undomesticated plants of South Africa. J. Med. Plants Res. 2008, 2, 207–212. [Google Scholar]
- Hsu, C.Y.; Chan, Y.P.; Chang, J. Antioxidant activity of extract from Polygonum cuspidatum. Biol. Res. 2007, 40, 13–21. [Google Scholar] [CrossRef]
- Olorunnisola, O.S.; Bradley, G.; Afolayan, A.J. Protective effect of T. violacea rhizome extract against hypercholesterolemia-induced oxidative stress in Wistar rats. Molecules 2012, 17, 6033–6045. [Google Scholar] [CrossRef]
- Madike, L.N.; Takaidza, S.; Ssemakalu, C.; Pillay, M. Genotoxicity of aqueous extracts of Tulbaghia violacea as determined through an Allium cepa assay. S. Afr. J. Sci. 2019, 115, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, V.; McGaw, L.J.; Bisschop, S.P.; Duncan, N.; Eloff, J.N. The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens. Vet. Parasitol. 2008, 153, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Ncube, B.; Finnie, J.F.; Van Staden, J. In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs. J. Ethnopharmacol. 2012, 139, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Takara, K.; Otsuka, K.; Wada, K.; Iwasaki, H.; Yamashita, M. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity and tyrosinase inhibitory effects of constituents of sugarcane molasses. Biosci. Biotechnol. Biochem. 2007, 71, 183–191. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, M.; Liu, F.; Zeng, S.; Hu, J. Identification of 2,3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products. Food Res. Int. 2013, 51, 397–403. [Google Scholar] [CrossRef]
- Mills, F.; Weisleder, D.; Hodge, J. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, a novel nonenzymatic browning product. Tetrahedron Lett. 1970, 11, 1243–1246. [Google Scholar] [CrossRef]
- Ibrahim, D.; Abdelfattah-Hassan, A.; Badawi, M.; Ismail, T.A.; Bendary, M.M.; Abdelaziz, A.M.; Mosbah, R.A.; Mohamed, D.I.; Arisha, A.H.; El-Hamid, M.I.A. Thymol nanoemulsion promoted broiler chicken’s growth, gastrointestinal barrier and bacterial community and conferred protection against Salmonella Typhimurium. Sci. Rep. 2021, 11, 7742. [Google Scholar] [CrossRef]
- Magi, S.; Tashiro, E.; Imoto, M. A chemical genomic study identifying diversity in cell migration signaling in cancer cells. Sci. Rep. 2012, 2, 823. [Google Scholar] [CrossRef]
- Todaro, M.; Gaggianesi, M.; Catalano, V.; Benfante, A.; Iovino, F.; Biffoni, M.; Apuzzo, T.; Sperduti, I.; Volpe, S.; Cocorullo, G.; et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving. Cell Stem Cell 2014, 14, 342–356. [Google Scholar] [CrossRef]
- Hin, N.; Duvall, B.; Ferraris, D.; Alt, J.; Thomas, A.G.; Rais, R.; Rojas, C.; Wu, Y.; Wozniak, K.M.; Slusher, B.S.; et al. 6-Hydroxy-1,2,4-triazine-3,5(2H,4H)-dione Derivatives as Novel D-Amino Acid Oxidase Inhibitors. J. Med. Chem. 2015, 58, 7258–7272. [Google Scholar] [CrossRef]
- John, V.; Raju, G.P.; Lakshmi, G.; Rani, B.L.; Bollikolla, H.B. Developments on 1,2,4-triazine scaffold substitutions for possible anticancer agents. Caribb. J. Sci. 2020, 8, 060–081. [Google Scholar] [CrossRef]
- Harris, A.; Grahame-Smith, D.; Potter, C.; Bunch, C. Cytosine arabinoside deamination in human leukaemic myeloblasts and resistance to cytosine arabinoside therapy. Clin. Sci. 1981, 60, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Krynetski, E.Y.; Schuetz, J.D.; Galpin, A.J.; Pui, C.H.; Relling, M.V.; Evans, W.E. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl. Acad. Sci. USA 1995, 92, 949–953. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, C.; Shafi, A.A.; Sequeira, M.; Acquaviva, J.; Friedland, J.C.; Sang, J.; Smith, D.L.; Weigel, N.L.; Wada, Y.; et al. Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression. Int. J. Oncol. 2013, 42, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hernández, D.; Boto, A. Nucleoside analogues: Synthesis and biological properties of azanucleoside derivatives. Eur. J. Org. Chem. 2014, 2014, 2201–2220. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Delang, L. Antiviral Strategies against Arthritogenic Alphaviruses. Microorganisms 2020, 8, 1365. [Google Scholar] [CrossRef]
- Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D.M.; Knight, D.W.; Bethell, D.; Hutchings, G.J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun. 2014, 5, 3332. [Google Scholar] [CrossRef]
- Ahmed, W.; Sala, C.; Hegde, S.R.; Jha, R.K.; Cole, S.T.; Nagaraja, V. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genet. 2017, 13, e1006754. [Google Scholar] [CrossRef]
- Bezerra, D.P.; Soares, A.K.; de Sousa, D.P. Overview of the Role of Vanillin on Redox Status and Cancer Development. Oxidative Med. Cell. Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef]
- Ho, K.; Yazan, L.S.; Ismail, N.; Ismail, M. Toxicology study of vanillin on rats via oral and intra-peritoneal administration. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2011, 49, 25–30. [Google Scholar] [CrossRef]
- Liang, J.A.; Wu, S.L.; Lo, H.Y.; Hsiang, C.Y.; Ho, T.Y. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol. 2009, 75, 151–157. [Google Scholar] [CrossRef]
- Gallage, N.J.; Hansen, E.H.; Kannangara, R.; Olsen, C.E.; Motawia, M.S.; Jørgensen, K.; Holme, I.; Hebelstrup, K.; Grisoni, M.; Møller, B.L. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat. Commun. 2014, 5, 4037. [Google Scholar] [CrossRef] [PubMed]
- Marton, A.; Kúsz, E.; Kolozsi, C.; Tubak, V.; Zagotto, G.; Buzás, K.; Quintieri, L.; Vizler, C. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma. Anticancer Res. 2016, 36, 5743–5750. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Wikman, G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008, 118, 183–212. [Google Scholar] [CrossRef]
- Hammond, E.M.; Denko, N.C.; Dorie, M.J.; Abraham, R.T.; Giaccia, A.J. Hypoxia links ATR and p53 through replication arrest. Mol. Cell. Biol. 2002, 22, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Weinberg, R.A. Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Front. Med. 2018, 12, 361–373. [Google Scholar] [CrossRef]
- Lin, X.; Attar, R.; Mobeen, I.; Yulaevna, I.M.; Aras, A.; Butt, G.; Farooqi, A.A. Regulation of cell signaling pathways by Schisandrin in different cancers: Opting for “Swiss Army Knife” instead of “Blunderbuss”. Cell. Mol. Biol. 2021, 67, 25–32. [Google Scholar] [CrossRef]
- Zhuang, W.; Li, Z.; Dong, X.; Zhao, N.; Liu, Y.; Wang, C.; Chen, J. Schisandrin B inhibits TGF-β1-induced epithelial-mesenchymal transition in human A549 cells through epigenetic silencing of ZEB1. Exp. Lung Res. 2019, 45, 157–166. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, S.; Liu, X.; Gao, X. Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC). Drug Res. 2015, 65, 214–218. [Google Scholar] [CrossRef]
- Pu, Z.; Zhang, W.; Wang, M.; Xu, M.; Xie, H.; Zhao, J. Schisandrin B Attenuates Colitis-Associated Colorectal Cancer through SIRT1 Linked SMURF2 Signaling. Am. J. Chin. Med. 2021, 49, 1773–1789. [Google Scholar] [CrossRef]
- Vernon-Roberts, A.; Lopez, R.N.; Frampton, C.M.; Day, A.S. Meta-analysis of the efficacy of taurolidine in reducing catheter-related bloodstream infections for patients receiving parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2022, 46, 1535–1552. [Google Scholar] [CrossRef] [PubMed]
- McCourt, M.; Wang, J.H.; Sookhai, S.; Redmond, H.P. Taurolidine inhibits tumor cell growth in vitro and in vivo. Ann. Surg. Oncol. 2000, 7, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Wouters, Y.; Mennen, G.R.H.; Te Morsche, R.H.M.; Roelofs, H.M.J.; Wanten, G.J.A. The Antiseptic and Antineoplastic Agent Taurolidine Modulates Key Leukocyte Functions. In Vivo 2022, 36, 2074–2082. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Tanaka, Y.; Tamaki, H.; Harada, M. Docetaxel induces Bcl-2- and pro-apoptotic caspase-independent death of human prostate cancer DU145 cells. Int. J. Oncol. 2016, 48, 2330–2338. [Google Scholar] [CrossRef]
- Wenger, F.A.; Kilian, M.; Braumann, C.; Neumann, A.; Ridders, J.; Peter, F.J.; Guski, H.; Jacobi, C.A. Effects of taurolidine and octreotide on port site and liver metastasis after laparoscopy in an animal model of pancreatic cancer. Clin. Exp. Metastasis 2002, 19, 169–173. [Google Scholar] [CrossRef]
- Abe, M.; Asada, N.; Kimura, M.; Fukui, C.; Yamada, D.; Wang, Z.; Miyake, M.; Takarada, T.; Ono, M.; Aoe, M.; et al. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci. 2024, 115, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D. Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Matsuda, T.; Shimada, M.; Sato, A.; Akase, T.; Yoshinari, K.; Nagata, K.; Yamazoe, Y. Tumor necrosis factor-alpha-nuclear factor-kappa B-signaling enhances St2b2 expression during 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperplasia. Biol. Pharm. Bull. 2011, 34, 183–190. [Google Scholar] [CrossRef]
- Neves, A.; Rosa, S.; Gonçalves, J.; Rufino, A.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Screening of five essential oils for identification of potential inhibitors of IL-1-induced Nf-kappaB activation and NO production in human chondrocytes: Characterization of the inhibitory activity of alpha-pinene. Planta Medica 2010, 76, 303–308. [Google Scholar] [CrossRef]
Compound | IC50 | Ref(s). |
---|---|---|
Ascorbic acid | 3.8 µg/mL | [34] |
Astragalus Alopecurus var Maximus (Willd.) | 115.5 µg/mL | [35] |
Avocado (Folium perseae Mill.) | 601 µg/mL | [36] |
Caffeic acid | 1.6 µg/mL | [37] |
Cinnamon (Cinnamomum verum J. Presl) | 21.3 µg/mL | [38] |
Bindweed (Convulvulus betonicifolia Mill.) | 346.5 µg/mL | [39] |
Fennel (Foeniculum vulgare Mill.) | 263.2 µg/mL | [40] |
Tulbaghia violacea Harv. | 393 μg/mL | This study |
Verbascum speciousum Schrad. | 173.3 µg/mL | [41] |
Ginger (Zingiber officinale Roscoe) | 16.2 µg/mL | [42] |
Phytochemical Compound | Exact Mass | Formula | Ref. |
---|---|---|---|
4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl-(DDMP) | 144.12 | C6H8O4 | [43] |
1,2,4-Triazine-3,5(2H,4H)-dione | 113.08 | C3H3N3O2 | [44] |
d-Glycero-d-galacto-heptose | 210.18 | C7H14O7 | [45] |
Benzaldehyde, 4-(1-methylethyl) | 148.20 | C10H12O | [46] |
Vanillin | 152.15 | C8H8O3 | [47] |
Methoxy-phenyl oxime | 151.16 | C8H9NO2 | [48] |
Pyrrolidine | 71.12 | C4H9N | [49] |
Schizandrin | 432.50 | C24H32O7 | [50] |
Taurolidine | 284.40 | C7H16N4O4S2 | [51] |
Alpha-pinene | 136.23 | C10H16 | [52] |
Terbutaline,N-trifluoroacetyl-o,o,o-tris(trimethylsilyl) | 537.80 | C23H42F3NO4Si3 | [53] |
Difenoxin | 424.50 | C28H28N2O2 | [54] |
Mephobarbital | 246.26 | C13H14N2O3 | [55] |
Benserazide | 257.24 | C10H15N3O5 | [56] |
Antipyrine | 188.23 | C11H12N2O | [57] |
Tricyclo [3.3.1.1(3,7)] decan-1-amine | 151.25 | C10H17N | [58] |
Thymol | 150.22 | C10H14O | [59] |
Cyclandelate | 276.40 | C17H24O3 | [60] |
Benzene propanoic acid | 150.17 | C9H10O2 | [61] |
Ethchlorvynol | 144.60 | C7H9ClO | [62] |
Cycloserine | 102.09 | C3H6N2O2 | [63] |
Emylcamate | 145.20 | C7H15NO2 | [64] |
2-Propen-1-amine | 57.09 | C3H7N | [65] |
Methyl formate | 60.05 | C2H4O2 | [66] |
Tetradecamethyl-cycloheptasiloxane | 519.07 | C14H42O7Si7 | [67] |
Cyanogen chloride | 61.47 | CNCl | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaouna, M.; Hull, R.; Molefi, T.; Khanyile, R.; Mbodi, L.; Luvhengo, T.E.; Chauke-Malinga, N.; Phakathi, B.; Penny, C.; Dlamini, Z. Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis. Curr. Issues Mol. Biol. 2024, 46, 10806-10828. https://doi.org/10.3390/cimb46100642
Alaouna M, Hull R, Molefi T, Khanyile R, Mbodi L, Luvhengo TE, Chauke-Malinga N, Phakathi B, Penny C, Dlamini Z. Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis. Current Issues in Molecular Biology. 2024; 46(10):10806-10828. https://doi.org/10.3390/cimb46100642
Chicago/Turabian StyleAlaouna, Mohammed, Rodney Hull, Thulo Molefi, Richard Khanyile, Langanani Mbodi, Thifhelimbilu Emmanuel Luvhengo, Nkhensani Chauke-Malinga, Boitumelo Phakathi, Clement Penny, and Zodwa Dlamini. 2024. "Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis" Current Issues in Molecular Biology 46, no. 10: 10806-10828. https://doi.org/10.3390/cimb46100642
APA StyleAlaouna, M., Hull, R., Molefi, T., Khanyile, R., Mbodi, L., Luvhengo, T. E., Chauke-Malinga, N., Phakathi, B., Penny, C., & Dlamini, Z. (2024). Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis. Current Issues in Molecular Biology, 46(10), 10806-10828. https://doi.org/10.3390/cimb46100642