Ornamental Barberry Twigs as an Underexploited Source of Berberine-Rich Extracts—Preliminary Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extracts Preparation
2.3. Total Phenolic Content
2.4. Antioxidant Potential
2.5. HPTLC Determination of Berberine
2.6. Cell Culture
2.7. Cytotoxicity Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Antioxidant Potential of Extracts
3.2. Berberine Content
3.3. Cytotoxic Effect of Ornamental Barberry Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashmi, A.; Rajasekaran, A.; Pant, J. The genus Berberis Linn.: A review. Pharmacogn. Rev. 2008, 2, 369–385. [Google Scholar]
- Salehi, B.; Selamoglu, Z.; Sener, B.; Kilic, M.; Kumar Jugran, A.; de Tommasi, N.; Sinisgalli, C.; Milella, L.; Rajkovic, J.; Flaviana, B.; et al. Berberis Plants—Drifting from Farm to Food Applications, Phytotherapy, and Phytopharmacology. Foods 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.N.; Wan, A.M.; Chen, X.M. Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Plant Dis. 2015, 99, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Villegas, D.; Bartaula, R.; Cantero-Martínez, C.; Luster, D.; Szabo, L.; Olivera, P.; Berlin, A.; Rodriguez-Algaba, J.; Hovmøller, M.S.; McIntosh, R.; et al. Barberry plays an active role as an alternate host of Puccinia graminis in Spain. Plant Pathol. 2022, 71, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Najeebullah, S.; Ali, M.; Shinwari, Z. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review. Trop. J. Pharm. Res. 2016, 15, 2047–2057. [Google Scholar] [CrossRef]
- Sarraf, M.; Beig Babaei, A.; Naji-Tabasi, S. Investigating functional properties of barberry species: An overview. J. Sci. Food Agric. 2019, 99, 5255–5269. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, M.; Misra, A.; Pandey, G.; Rawat, A.K.S. A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI J. 2015, 14, 247–267. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crisan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef]
- Jain, S.; Tripathi, S.; Tripathi, P.K. Antioxidant and antiarthritic potential of berberine: In vitro and in vivo studies. Chin. Herb. Med. 2023, 15, 549–555. [Google Scholar] [CrossRef]
- Patel, P. A bird’s eye view on a therapeutically ‘wonder molecule’: Berberine. Phytomed. Plus 2021, 1, 100070. [Google Scholar] [CrossRef]
- Preeti, S.; Prabhat, U.; Shardendu, M.; Ananya, S.; Suresh, P. Berberine a Potent Substance for Researcher: A Review. World J. Pharm. Pharm. Sci. 2015, 4, 547–573. [Google Scholar]
- Mazhar, M.; Agrawal, S.S. Standardization of Berberis aristata DC and Nigella sativa L. Using HPTLC and GCMS and Their Antineoplasia Activity in 7,12-Dimethylbenz[a]anthracene-Induced Mouse Models. Front. Pharmacol. 2021, 12, 642067. [Google Scholar] [CrossRef] [PubMed]
- Andola, H.C.; Rawal, R.S.; Rawat, M.S.M.; Bhatt, I.D.; Purohit, V.K. Analysis of Berberine Content using HPTLC Fingerprinting of Root and Bark of Three Himalayan Berberis Species. Asian J. Biotechnol. 2010, 2, 239–245. [Google Scholar] [CrossRef]
- Och, A.; Olech, M.; Bąk, K.; Kanak, S.; Cwener, A.; Cieśla, M.; Nowak, R. Evaluation of the Antioxidant and Anti-Lipoxygenase Activity of Berberis vulgaris L. Leaves, Fruits, and Stem and Their LC MS/MS Polyphenolic Profile. Antioxidants 2023, 12, 1467. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef]
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med. 2020, 14, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Kang, C.; Che, S.; Su, J.; Sun, Q.; Ge, T.; Guo, Y.; Lv, J.; Sun, Z.; Yang, W.; et al. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front. Pharmacol. 2022, 13, 845591. [Google Scholar] [CrossRef]
- Tian, E.; Sharma, G.; Dai, C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants 2023, 12, 1883. [Google Scholar] [CrossRef]
- Gatland, A.E.; Pilgrim, B.S.; Procopiou, P.A.; Donohoe, T.J. Short and efficient syntheses of protoberberine alkaloids using palladium-catalyzed enolate arylation. Angew. Chem.-Int. Ed. 2014, 53, 14555–14558. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Chen, X.; Li, W.; Li, G.B.; Wu, Y. Total Synthesis and Evaluation of B-Homo Palmatine and Berberine Derivatives as p300 Histone Acetyltransferase Inhibitors. Eur. J. Org. Chem. 2018, 2018, 1041–1052. [Google Scholar] [CrossRef]
- Filli, M.S.; Ibrahim, A.A.; Kesse, S.; Aquib, M.; Boakye-Yiadom, K.O.; Farooq, M.A.; Raza, F.; Zhang, Y.; Wang, B. Synthetic berberine derivatives as potential new drugs. Braz. J. Pharm. Sci. 2022, 58, e18835. [Google Scholar] [CrossRef]
- Tajiri, M.; Yamada, R.; Hotsumi, M.; Makabe, K.; Konno, H. The total synthesis of berberine and selected analogues, and their evaluation as amyloid beta aggregation inhibitors. Eur. J. Med. Chem. 2021, 215, 113289. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, S. De novo biosynthesis of berberine and halogenated benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Commun. Chem. 2023, 6, 27. [Google Scholar] [CrossRef]
- Och, A.; Och, M.; Nowak, R.; Podgórska, D.; Podgórski, R. Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease. Molecules 2022, 27, 1351. [Google Scholar] [CrossRef] [PubMed]
- Berberine Supplement Market (by Product Type: Capsules, Tablets, Liquid and Powder; by Application: Dietary Supplements, Pharmaceuticals, Cosmetics, Others; by Distribution Channel)—Global Market Size, Share, Growth, Trends, Statistics Analysis Report, by Region, and Segment Forecasts 2024–2032. Available online: https://datahorizzonresearch.com/berberine-supplement-market-2960 (accessed on 12 November 2024).
- Wojciechowska, I. European barberry—Ornamental nad medicinal plant. Kosmos 2017, 66, 487–490. (In Polish) [Google Scholar]
- Alam, S.D.; Beg, M.A.; Bagadi, M.; Locatelli, M.; ALOthman, Z.A.; Mustaqeem, M.; Ali, I. Facile extraction of berberine from different plants, separation, and identification by thin-layer chromatography, high-performance liquid chromatography, and biological evaluation against Leishmaniosis. J. Sep. Sci. 2023, 46, 2300582. [Google Scholar] [CrossRef]
- Dżugan, M.; Miłek, M.; Grabek-Lejko, D.; Hęclik, J.; Jacek, B.; Litwińczuk, W. Antioxidant activity, polyphenolic profiles and antibacterial properties of leaf extract of various paulownia spp. clones. Agronomy 2021, 11, 2001. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Zovko Končić, M.; Kremer, D.; Karlović, K.; Kosalec, I. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef]
- El-Zahar, K.M.; Al-Jamaan, M.E.; Al-Mutairi, F.R.; Al-Hudiab, A.M.; Al-Einzi, M.S.; Mohamed, A.A.Z. Antioxidant, Antibacterial, and Antifungal Activities of the Ethanolic Extract Obtained from Berberis vulgaris Roots and Leaves. Molecules 2022, 27, 6114. [Google Scholar] [CrossRef]
- Luo, A.; Fan, Y. Antioxidant activities of berberine hydrochloride. J. Med. Plants Res. 2011, 5, 3702–3707. [Google Scholar]
- Satija, S.; Malik, S.; Garg, M. Development of a new, rapid, and sensitive validated high-performance thin-layer chromatographic method for the estimation of berberine in Tinospora cordifolia. J. Planar Chromatogr.-Mod. TLC 2016, 29, 209–215. [Google Scholar] [CrossRef]
- Ahamad, J.; Kaskoos, R.A.; Amin, S.; Mir, S.R. Development and Validation of an HPTLC Method for Estimation of Berberine in Berberis aristata. Res. J. Phytochem. 2021, 15, 58–65. [Google Scholar] [CrossRef]
- Chaudhary, M.K.; Misra, A.; Shankar, U.; Agnihotri, P.; Srivastava, S. Intra-specific Variation of Alkaloid Content in Berberis lycium from the Western Himalaya. J. Herbs Spices Med. Plants 2021, 27, 386–395. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A.; Kaproń, B.; Plech, T.; Makuch-Kocka, A.; Janiszewska, D.; Sugajski, M.; Buszewski, B.; Szultka-Młyńska, M. In Vitro and In Silico of Cholinesterases Inhibition and In Vitro and In Vivo Anti-Melanoma Activity Investigations of Extracts Obtained from Selected Berberis Species. Molecules 2024, 29, 2048. [Google Scholar] [CrossRef]
- Villinski, J.R.; Dumas, E.R.; Chai, H.B.; Pezzuto, J.M.; Angerhofer, C.K.; Gafner, S. Antibacterial activity and alkaloid content of Berberis thunbergii, Berberis vulgaris and Hydrastis canadensis. Pharm. Biol. 2003, 41, 551–557. [Google Scholar] [CrossRef]
- Bedi, A.; Adholeya, A.; Deshmukh, S.K. Novel Anticancer compounds from Endophytic fungi. Curr. Biotechnol. 2018, 7, 168–184. [Google Scholar] [CrossRef]
- Prabhu, K.S.; Siveen, K.S.; Kuttikrishnan, S.; Jochebeth, A.; Ali, T.A.; Elareer, N.R.; Iskandarani, A.; Khan, A.Q.; Merhi, M.; Dermime, S.; et al. Greensporone A, a fungal secondary metabolite suppressed constitutively activated AKT via ROS generation and induced apoptosis in leukemic cell lines. Biomolecules 2019, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- John, J.E. Cytotoxic Natural Products and their Pharmacological Mode of Action: A Hypothesis on their Complexity and Spectrum of Activity. Curr. Enzym. Inhib. 2012, 8, 100–103. [Google Scholar] [CrossRef]
- Asma, S.T.; Acaroz, U.; Imre, K.; Morar, A.; Shah, S.R.A.; Hussain, S.Z.; Arslan-Acaroz, D.; Demirbas, H.; Hajrulai-Musliu, Z.; Istanbullugil, F.R.; et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers 2022, 14, 6203. [Google Scholar] [CrossRef]
- Dey, P.; Kundu, A.; Chakraborty, H.J.; Kar, B.; Choi, W.S.; Lee, B.M.; Bhakta, T.; Atanasov, A.G.; Kim, H.S. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. Int. J. Cancer 2019, 145, 1731–1744. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Lai, K.C.; Peng, S.F.; Maraming, P.; Huang, Y.P.; Huang, A.C.; Chueh, F.S.; Huang, W.W.; Chung, J.G. Berberine inhibits human melanoma A375.S2 cell migration and invasion via affecting the FAK, uPA, and NF-κB signaling pathways and inhibits PLX4032 resistant A375.S2 cell migration in vitro. Molecules 2018, 23, 2019. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N.; Liu, Y.; Liu, L.; Zeng, Q.; Yin, M.; Wang, Y.; Song, D.; Deng, H. MPB, a novel berberine derivative, enhances lysosomal and bactericidal properties via TGF-b-activated kinase 1-dependent activation of the transcription factor EB. FASEB J. 2019, 33, 1468–1481. [Google Scholar] [CrossRef]
- Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol. 2012, 84, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Eo, S.H.; Kim, J.H.; Kim, S.J. Induction of G2/M arrest by berberine via activation of PI3K/Akt and p38 in human chondrosarcoma cell line. Oncol. Res. 2014, 22, 147–157. [Google Scholar] [CrossRef]
- Liu, D.; Meng, X.; Wu, D.; Qiu, Z.; Luo, H. A natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine. Front. Pharmacol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Ortiz, L.M.G.; Lombardi, P.; Tillhon, M.; Scovassi, A.I. Berberine, an epiphany against cancer. Molecules 2014, 19, 12349–12367. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, Z.; Song, L.; Huang, C.; Guo, Z.; Hu, X.; Bi, S.; Yu, R. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells. Pharmacogn. Mag. 2018, 14, 116–123. [Google Scholar]
- Parant, M. Effects of TNF in bacterial infections. Ann. Inst. Pasteur Imm. 1988, 139, 301–304. [Google Scholar] [CrossRef]
- Torres-Palazzolo, C.A.; Ramírez, D.A.; Beretta, V.H.; Camargo, A.B. Matrix effect on phytochemical bioaccessibility. The case of organosulfur compounds in garlic preparations. LWT 2021, 136, 110301. [Google Scholar] [CrossRef]
- Battu, S.K.; Repka, M.A.; Maddineni, S.; Chittiboyina, A.G.; Avery, M.A.; Majumdar, S. Physicochemical characterization of berberine chloride: A perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech 2010, 11, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Sut, S.; Faggian, M.; Baldan, V.; Poloniato, G.; Castagliuolo, I.; Grabnar, I.; Perissutti, B.; Brun, P.; Maggi, F.; Voinovich, D.; et al. Natural Deep Eutectic Solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study. Molecules 2017, 22, 1921. [Google Scholar] [CrossRef] [PubMed]
- Petrangolini, G.; Corti, F.; Ronchi, M.; Arnoldi, L.; Allegrini, P.; Riva, A. Development of an Innovative Berberine Food-Grade Formulation with an Ameliorated Absorption: In Vitro Evidence Confirmed by Healthy Human Volunteers Pharmacokinetic Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 563889. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.J.; Nur, S. Cytotoxic Effect, Antibacterial Activity, and in Silico Evaluation of Berberine Compound from Methanolic Extract of Arcangelisia flava Merr Stems. J. Kefarmasian Indones. 2024, 14, 39–50. [Google Scholar]
- Abd El-Wahab, A.E.; Ghareeb, D.A.; Sarhan, E.E.M.; Abu-Serie, M.M.; El Demellawy, M.A. In vitro biological assessment of berberis vulgaris and its active constituent, berberine: Antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement. Altern. Med. 2013, 13, 218. [Google Scholar] [CrossRef]
- Özgen, M.; Saraçoğlu, O.; Geçer, E.N. Antioxidant capacity and chemical properties of selected barberry (Berberis vulgaris L.) fruits. Hortic. Environ. Biotechnol. 2012, 53, 447–451. [Google Scholar] [CrossRef]
- Imenshahidi, M.; Hosseinzadeh, H. Berberis Vulgaris and Berberine: An Update Review. Phythoter. Res. 2016, 30, 1745–1764. [Google Scholar] [CrossRef]
- Rigillo, G.; Cappellucci, G.; Baini, G.; Vaccaro, F.; Miraldi, E.; Pani, L.; Tascedda, F.; Bruni, R.; Biagi, M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety. Nutrients 2024, 16, 2953. [Google Scholar] [CrossRef]
No. | Cultivar | Species | Leaf Color |
---|---|---|---|
1 | ‘Red Tears’ | Berberis koreana | Green leaves, turning red in autumn |
2 | ‘NN’ | Berberis koreana | Green leaves, turn purple in autumn. Seedlings of unknown origin selected and cloned in ‘Więcek’ nursery |
3 | ‘Superba’ | Berberis × ottawensis (B. thunbergii × B. vulgaris) | Dark red leaves with a bluish tint |
4 | ‘Powwow’ | Berberis thunbergii | The leaves are yellowish at the beginning of the vegetation period, later becoming green, some with lighter spots. in autumn they turn orange-red |
5 | ‘Golden Carpet’ | Berberis thunbergii | Intense yellow leaves; in full sun the leaves may burn |
6 | ‘Red Pillar’ | Berberis thunbergii | Greenish-red leaves |
7 | ‘Golden Ring’ | Berberis thunbergii | Dark purple-red leaves with a greenish-yellow border |
Cultivar | TPC [mg GAE g−1 d.m] | FRAP [μmol TE g−1 d.m.] | DPPH [μmol TE g−1 d.m.] | |||
---|---|---|---|---|---|---|
Leaves | Twigs | Leaves | Twigs | Leaves | Twigs | |
‘Red Tears’ | 63.91 ± 0.79 b | 19.19 ± 0.30 a | 293.47 ± 12.30 a | 83.69 ± 13.20 ab | 77.15 ± 11.88 a | 39.38 ± 0.46 a |
‘NN’ | 107.61 ± 1.30 c | 32.17 ± 2.33 c | 494.52 ± 13.05 bc | 152.87 ± 18.74 d | 328.00 ± 42.14 c | 98.02 ± 7.28 c |
‘Superba’ | 96.12 ± 5.87 c | 25.63 ± 1.24 b | 434.08 ± 9.97 b | 112.93 ± 12.20 c | 216.36 ± 44.63 b | 66.44 ± 6.48 b |
‘Powwow’ | 49.25 ± 2.70 a | 15.16 ± 1.09 a | 223.83 ± 12.85 a | 71.86 ± 1.90 a | 50.96 ± 4.88 a | 34.50 ± 0.38 a |
‘Golden Carpet’ | 104.24 ± 5.84 c | 24.25 ± 0.67 b | 500.22 ± 18.69 c | 116.35 ± 6.35 c | 314.58 ± 22.22 c | 56.77 ± 4.34 b |
‘Red Pillar’ | 103.35 ± 3.29 c | 19.76 ± 1.21 ab | 528.91 ± 5.38 c | 95.73 ± 6.35 bc | 216.11 ± 5.42 b | 43.76 ± 4.29 ab |
‘Golden Ring’ | 136.64 ± 6.12 d | 25.82 ± 1.49 | 686.82 ± 30.57 d | 113.09 ± 6.39 c | 301.17 ± 17.27 c | 67.87 ± 7.75 b |
Berberis vulgaris root bark | 8.21 ± 0.23 | 35.62 ± 1.82 | 14.11 ± 0.17 | |||
Berberis vulgaris (organic) root bark | 5.81 ± 0.65 | 25.84 ± 0.77 | 9.50 ± 0.29 |
TPC | FRAP | DPPH | Berberine Content | |
---|---|---|---|---|
TPC | 1.000 | 0.982 * | 0.978 * | −0.430 |
FRAP | 0.982 * | 1.000 | 0.970 * | −0.321 |
DPPH | 0.978 * | 0.970 * | 1.000 | −0.446 |
Berberine content | −0.430 | −0.321 | −0.446 | 1.000 |
Tested Sample | Berberine Content [µg mL−1] | Viability [%] | ||
---|---|---|---|---|
HaCat | A375 | Caco-2 | ||
Ornamental barberry extracts (500 µg mL−1 dose) | ||||
‘Golden carpet’ | 16.3 | 63.59 *** | 85.87 *** | 87.55 ** |
‘Golden Ring’ | 11.83 | 72.89 *** | 84.79 ** | 82.20 ** |
‘Superba’ | 3.9 | 85.24 *** | 44.21 *** | 93.66 * |
‘Red Tears’ | 1.06 | 94.10 | 77.93*** | 76.42 *** |
Pure berberine | ||||
1 | 96.80 *** | 95.89 ** | 96.88 | |
10 | 82.80 *** | 79.70 *** | 95.89 | |
100 | 58.64 *** | 40.32 *** | 74.68 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miłek, M.; Dżugan, M.; Pieńkowska, N.; Galiniak, S.; Mołoń, M.; Litwińczuk, W. Ornamental Barberry Twigs as an Underexploited Source of Berberine-Rich Extracts—Preliminary Research. Curr. Issues Mol. Biol. 2024, 46, 13193-13208. https://doi.org/10.3390/cimb46110787
Miłek M, Dżugan M, Pieńkowska N, Galiniak S, Mołoń M, Litwińczuk W. Ornamental Barberry Twigs as an Underexploited Source of Berberine-Rich Extracts—Preliminary Research. Current Issues in Molecular Biology. 2024; 46(11):13193-13208. https://doi.org/10.3390/cimb46110787
Chicago/Turabian StyleMiłek, Michał, Małgorzata Dżugan, Natalia Pieńkowska, Sabina Galiniak, Mateusz Mołoń, and Wojciech Litwińczuk. 2024. "Ornamental Barberry Twigs as an Underexploited Source of Berberine-Rich Extracts—Preliminary Research" Current Issues in Molecular Biology 46, no. 11: 13193-13208. https://doi.org/10.3390/cimb46110787
APA StyleMiłek, M., Dżugan, M., Pieńkowska, N., Galiniak, S., Mołoń, M., & Litwińczuk, W. (2024). Ornamental Barberry Twigs as an Underexploited Source of Berberine-Rich Extracts—Preliminary Research. Current Issues in Molecular Biology, 46(11), 13193-13208. https://doi.org/10.3390/cimb46110787