Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology
Abstract
:1. Introduction
2. Materials and Methods
3. Cardiac Amyloidosis
3.1. Light-Chain Amyloidosis
3.2. Transthyretin Amyloidosis
4. Diagnosis in Pathology
5. Molecular Pathology
5.1. Structure
5.2. Amyloidogenesis
5.3. Molecular Mechanisms
5.3.1. Light Chain Amyloidosis
5.3.2. Transthyretin Amyloidosis
5.4. Relevance of Molecular Diagnosis
6. Therapeutic Strategies
6.1. Light Chain Amyloidosis
6.2. Transthyretin Amyloidosis
- Patisiran, which is a siRNA that reduces TTR levels by blocking the production of mRNA,
- Vutrisiran is an siRNA approved for polyneuropathy.
- Inotersen, which is an ASO that reduces TTR synthesis with improvements in left ventricular mass and exercise tolerance,
- Tafamidis, which binds the thyroxine binding site in the TTR tetramer, preventing dissociation into monomers and therefore amyloid formation, is approved for cardiac amyloidosis ATTR,
- Acoramidis mimics the protective T119M mutation by reducing TTR tetramer dissociation,
- Diflunisal of an NSAID that stabilizes the TTR tetramer by binding to the T4 binding site, which leads to improvements in cardiac biomarkers but is associated with side effects,
6.3. Heart Transplant
7. Current Challenges and Future Prospects
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bustamante, J.G.; Zaidi, S.R.H. Amyloidosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sipe, J.D.; Cohen, A.S. Review: History of the Amyloid Fibril. J. Struct. Biol. 2000, 130, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Bloom, M.W.; Gorevic, P.D. Cardiac Amyloidosis. Ann. Intern. Med. 2023, 176, ITC33–ITC48. [Google Scholar] [CrossRef] [PubMed]
- Shams, P.; Ahmed, I. Cardiac Amyloidosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Writing Committee; Kittleson, M.M.; Ruberg, F.L.; Ambardekar, A.V.; Brannagan, T.H.; Cheng, R.K.; Clarke, J.O.; Dember, L.M.; Frantz, J.G.; Hershberger, R.E.; et al. 2023 ACC Expert Consensus Decision Pathway on Comprehensive Multidisciplinary Care for the Patient with Cardiac Amyloidosis: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2023, 81, 1076–1126. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lopez, E.; McPhail, E.D.; Salas-Anton, C.; Dominguez, F.; Gertz, M.A.; Dispenzieri, A.; Dasari, S.; Milani, P.; Verga, L.; Grogan, M.; et al. Histological Typing in Patients With Cardiac Amyloidosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2024, 83, 1085–1099. [Google Scholar] [CrossRef] [PubMed]
- Castaño, A.; Narotsky, D.L.; Hamid, N.; Khalique, O.K.; Morgenstern, R.; DeLuca, A.; Rubin, J.; Chiuzan, C.; Nazif, T.; Vahl, T.; et al. Unveiling transthyretin cardiac amyloidosis and its pre-dictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Heart J. 2017, 38, 2879–2887. [Google Scholar] [CrossRef]
- Aimo, A.; Merlo, M.; Porcari, A.; Georgiopoulos, G.; Pagura, L.; Vergaro, G.; Sinagra, G.; Emdin, M.; Rapezzi, C. Redefining the epidemiology of cardiac amyloidosis. A systematic review and meta-analysis of screening studies. Eur. J. Heart Fail. 2022, 24, 2342–2351. [Google Scholar] [CrossRef]
- Martinez-Naharro, A.; Hawkins, P.N.; Fontana, M. Cardiac amyloidosis. Clin. Med. 2018, 18 (Suppl. S2), s30–s35. [Google Scholar] [CrossRef]
- Gilstrap, L.G.; Dominici, F.; Wang, Y.; El-Sady, M.S.; Singh, A.; Di Carli, M.F.; Falk, R.H.; Dorbala, S. Epidemiology of Cardiac Amyloidosis–Associated Heart Failure Hospitalizations Among Fee-for-Service Medicare Beneficiaries in the United States. Circ. Heart Fail. 2019, 12, e005407. [Google Scholar] [CrossRef]
- Buxbaum, J.N.; Dispenzieri, A.; Eisenberg, D.S.; Fändrich, M.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Westermark, P. Amyloid nomenclature 2022: Update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomen-clature Committee. Amyloid Int. J. Exp. Clin. Investig. Off. J. Int. Soc. Amyloidosis 2022, 29, 213–219. [Google Scholar] [CrossRef]
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.P.; Damy, T.; Eriksson, U.; et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2021, 42, 1554–1568. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Maurer, M.S.; Ambardekar, A.V.; Bullock-Palmer, R.P.; Chang, P.P.; Eisen, H.J.; Nair, A.P.; Nativi-Nicolau, J.; Ruberg, F.L. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement from the American Heart Association. Circulation 2020, 142, E7–E22. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.A.; Achten, A.; van der Meer, M.G.; Zwetsloot, P.P.; Sanders-van Wijk, S.; van der Harst, P.; van Tintelen, J.P.; Te Riele, A.S.J.M.; van Empel, V.; Knackstedt, C.; et al. Absence of an increased wall thickness does not rule out cardiac amyloidosis. Amyloid Int. J. Exp. Clin. Investig. Off. J. Int. Soc. Amyloidosis 2024, 31, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Merlini, G. What is new in diagnosis and management of light chain amyloidosis? Blood 2016, 128, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.R. Light Chain Amyloidosis: Epidemiology, Staging, and Prognostication. Methodist. DeBakey Cardiovasc. J. 2022, 18, 27–35. [Google Scholar] [CrossRef]
- Gertz, M.A. Immunoglobulin light chain amyloidosis: 2024 update on diagnosis, prognosis, and treatment. Am. J. Hematol. 2023, 99, 309–324. [Google Scholar] [CrossRef]
- Kyle, R.A.; Larson, D.R.; Kurtin, P.J.; Kumar, S.; Cerhan, J.R.; Therneau, T.M.; Rajkumar, S.V.; Vachon, C.M.; Dispenzieri, A. Incidence of AL Amyloidosis in Olmsted County, Minnesota, 1990 through 2015. Mayo Clin. Proc. 2019, 94, 465–471. [Google Scholar] [CrossRef]
- D’souza, A.; Pezzin, L.; Laud, P.; Singh, A. Racial disparities in patients diagnosed with light chain (AL) amyloidosis. Blood Cancer J. 2021, 11, 72. [Google Scholar] [CrossRef]
- Falk, R.H.; Comenzo, R.L.; Skinner, M. The systemic amyloidoses. N. Engl. J. Med. 1997, 337, 898–909. [Google Scholar] [CrossRef]
- Merlini, G.; Stone, M.J. Dangerous small B-cell clones. Blood 2006, 108, 2520–2530. [Google Scholar] [CrossRef]
- Morgan, G.J.; Kelly, J.W. The Kinetic Stability of a Full-Length Antibody Light Chain Dimer Determines whether Endoprote-olysis Can Release Amyloidogenic Variable Domains. J. Mol. Biol. 2016, 428, 4280–4297. [Google Scholar] [CrossRef]
- Marin-Argany, M.; Lin, Y.; Misra, P.; Williams, A.; Wall, J.S.; Howell, K.G.; Elsbernd, L.R.; McClure, M.; Ramirez-Alvarado, M. Cell Damage in Light Chain Amyloidosis: FIBRIL INTERNALIZATION, TOXICITY AND CELL-MEDIATED SEEDING. J. Biol. Chem. 2016, 291, 19813–19825. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V. Systemic Light Chain Amyloidosis. N. Engl. J. Med. 2024, 390, 2295–2307. [Google Scholar] [CrossRef] [PubMed]
- Selvanayagam, J.B.; Hawkins, P.N.; Paul, B.; Myerson, S.G.; Neubauer, S. Evaluation and management of the cardiac amyloidosis. J. Am. Coll. Cardiol. 2007, 50, 2101–2110. [Google Scholar] [CrossRef] [PubMed]
- Sayed, R.H.; Rogers, D.; Khan, F.; Wechalekar, A.D.; Lachmann, H.J.; Fontana, M.; Mahmood, S.; Sachchithanantham, S.; Patel, K.; Hawkins, P.N.; et al. A study of implanted cardiac rhythm recorders in advanced cardiac AL amy-loidosis. Eur. Heart J. 2015, 36, 1098–1105. [Google Scholar] [CrossRef]
- Feitosa, V.A.; Neves, P.D.M.M.; Jorge, L.B.; Noronha, I.L.; Onuchic, L.F. Renal amyloidosis: A new time for a complete di-agnosis. Braz. J. Med. Biol. Res. 2022, 55, e12284. [Google Scholar]
- Gupta, N.; Kaur, H.; Wajid, S. Renal amyloidosis: An update on diagnosis and pathogenesis. Protoplasma 2020, 257, 1259–1276. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Wechalekar, A.; Bird, J.; Cavenagh, J.; Hawkins, S.; Kazmi, M.; Lachmann, H.J.; Hawkins, P.N.; Pratt, G. Guidelines on the diagnosis and investigation of AL amyloidosis. Br. J. Haematol. 2014, 168, 207–218. [Google Scholar] [CrossRef]
- Merlini, G.; Lousada, I.; Ando, Y.; Dispenzieri, A.; Gertz, M.A.; Grogan, M.; Maurer, M.S.; Sanchorawala, V.; Wechalekar, A.; Palladini, G.; et al. Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis. Leukemia 2016, 30, 1979–1986. [Google Scholar] [CrossRef]
- Brailovsky, Y.; Rajapreyar, I.; Alvarez, R. TTR Amyloidosis: Current State of Affairs and Promise for the Future. JACC. Case Rep. 2023, 10, 101759. [Google Scholar] [CrossRef]
- Liz, M.A.; Coelho, T.; Bellotti, V.; Fernandez-Arias, M.I.; Mallaina, P.; Obici, L. A Narrative Review of the Role of Transthyretin in Health and Disease. Neurol. Ther. 2020, 9, 395–402. [Google Scholar] [CrossRef]
- Manganelli, F.; Fabrizi, G.M.; Luigetti, M.; Mandich, P.; Mazzeo, A.; Pareyson, D. Hereditary transthyretin amyloidosis overview. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2022, 43 (Suppl. S2), 595–604. [Google Scholar] [CrossRef] [PubMed]
- Boda, I.; Farhoud, H.; Dalia, T.; Goyal, A.; Shah, Z.; Vidic, A. Early and aggressive presentation of wild-type transthyretin amyloid cardiomyopathy: A case report. World J. Cardiol. 2022, 14, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Obi, C.A.; Mostertz, W.C.; Griffin, J.M.; Judge, D.P. ATTR Epidemiology, Genetics, and Prognostic Factors. Methodist. DeBakey Cardiovasc. J. 2022, 18, 17–26. [Google Scholar] [CrossRef]
- Pinney, J.H.; Smith, C.J.; Taube, J.B.; Lachmann, H.J.; Venner, C.P.; Gibbs, S.D.J.; Dungu, J.; Banypersad, S.M.; Wechalekar, A.D.; Whelan, C.J.; et al. Systemic Amyloidosis in England: An epidemiological study. Br. J. Haematol. 2013, 161, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, Y. Transthyretin (ATTR) amyloidosis: Clinical spectrum, molecular pathogenesis and disease-modifying treatments. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1036–1043. [Google Scholar] [CrossRef]
- Ton, V.-K.; Mukherjee, M.; Judge, D.P. Transthyretin Cardiac Amyloidosis: Pathogenesis, Treatments, and Emerging Role in Heart Failure with Preserved Ejection Fraction. Clin. Med. Insights Cardiol. 2014, 8s1, CMC.S15719–44. [Google Scholar] [CrossRef]
- Shah, K.B.; Inoue, Y.; Mehra, M.R. Amyloidosis and the heart: A comprehensive review. Arch. Intern. Med. 2006, 166, 1805–1813. [Google Scholar] [CrossRef]
- Sekijima, Y.; Nakamura, K. Hereditary Transthyretin Amyloidosis. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2001. [Google Scholar]
- Rubin, J.; Maurer, M.S. Cardiac Amyloidosis: Overlooked, Underappreciated, and Treatable. Annu. Rev. Med. 2020, 71, 203–219. [Google Scholar] [CrossRef]
- Brito, D.; Albrecht, F.C.; de Arenaza, D.P.; Bart, N.; Better, N.; Carvajal-Juarez, I.; Conceição, I.; Damy, T.; Dorbala, S.; Fidalgo, J.-C.; et al. World Heart Federation Consensus on Transthyretin Amyloidosis Cardiomyopathy (ATTR-CM). Glob. Heart 2023, 18, 59. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef]
- Mallus, M.T.; Rizzello, V. Treatment of amyloidosis: Present and future. Eur. Heart J. Suppl. J. Eur. Soc. Cardiol. 2023, 25 (Suppl. B), B99–B103. [Google Scholar] [CrossRef] [PubMed]
- Wisniowski, B.; Wechalekar, A. Confirming the Diagnosis of Amyloidosis. Acta Haematol. 2020, 143, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Quarta, C.C.; Gonzalez-Lopez, E.; Gilbertson, J.A.; Botcher, N.; Rowczenio, D.; Petrie, A.; Rezk, T.; Youngstein, T.; Mahmood, S.; Sachchithanantham, S.; et al. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur. Heart J. 2017, 38, 1905–1908. [Google Scholar] [CrossRef] [PubMed]
- Wechalekar, A.D.; Gillmore, J.D.; Hawkins, P.N. Systemic amyloidosis. Lancet 2016, 387, 2641–2654. [Google Scholar] [CrossRef]
- Medarametla, G.D.; Kahlon, R.S.; Mahitha, L.; Shariff, S.; Vakkalagadda, N.P.; Chopra, H.; Kamal, M.A.; Patel, N.; Sethi, Y.; Kaka, N. Cardiac amyloidosis: Evolving pathogenesis, multimodal diagnostics, and principles of treatment. EXCLI J. 2023, 22, 781–808. [Google Scholar] [CrossRef]
- Riek, R. The Three-Dimensional Structures of Amyloids. Cold Spring Harb. Perspect. Biol. 2016, 9, a023572. [Google Scholar] [CrossRef]
- Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nature 2016, 539, 227–235. [Google Scholar] [CrossRef]
- Greenwald, J.; Riek, R. Biology of Amyloid: Structure, Function, and Regulation. Structure 2010, 18, 1244–1260. [Google Scholar] [CrossRef]
- Alraawi, Z.; Banerjee, N.; Mohanty, S.; Kumar, T.K.S. Amyloidogenesis: What Do We Know So Far? Int. J. Mol. Sci. 2022, 23, 13970. [Google Scholar] [CrossRef]
- Karamanos, T.K.; Kalverda, A.P.; Thompson, G.S.; Radford, S.E. Mechanisms of amyloid formation revealed by solution NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2015, 88–89, 86–104. [Google Scholar] [CrossRef]
- Louros, N.; Schymkowitz, J.; Rousseau, F. Mechanisms and pathology of protein misfolding and aggregation. Nat. Rev. Mol. Cell Biol. 2023, 24, 912–933. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Nakamura, K.; Ito, H. Molecular Mechanisms of Cardiac Amyloidosis. Int. J. Mol. Sci. 2021, 23, 25. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Katsuno, M. The Ultrastructure of Tissue Damage by Amyloid Fibrils. Molecules 2021, 26, 4611. [Google Scholar] [CrossRef] [PubMed]
- Rognoni, P.; Mazzini, G.; Caminito, S.; Palladini, G.; Lavatelli, F. Dissecting the Molecular Features of Systemic Light Chain (AL) Amyloidosis: Contributions from Proteomics. Medicina 2021, 57, 916. [Google Scholar] [CrossRef]
- Kazman, P.; Absmeier, R.M.; Engelhardt, H.; Buchner, J. Dissection of the amyloid formation pathway in AL amyloidosis. Nat. Commun. 2021, 12, 6516. [Google Scholar] [CrossRef]
- Kazman, P.; Vielberg, M.T.; Pulido Cendales, M.D.; Hunziger, L.; Weber, B.; Hegenbart, U.; Zacharias, M.; Köhler, R.; Schönland, S.; Groll, M.; et al. Fatal amyloid formation in a patient’s antibody light chain is caused by a single point mutation. Elife 2020, 9, e52200. [Google Scholar] [CrossRef]
- Merlini, G.; Bellotti, V. Molecular Mechanisms of Amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef]
- Imperlini, E.; Gnecchi, M.; Rognoni, P.; Sabidò, E.; Ciuffreda, M.C.; Palladini, G.; Espadas, G.; Mancuso, F.M.; Bozzola, M.; Malpasso, G.; et al. Proteotoxicity in cardiac amyloidosis: Amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci. Rep. 2017, 7, 15661. [Google Scholar] [CrossRef]
- McWilliams-Koeppen, H.P.; Foster, J.S.; Hackenbrack, N.; Ramirez-Alvarado, M.; Donohoe, D.; Williams, A.; Macy, S.; Wooliver, C.; Wortham, D.; Morrell-Falvey, J.; et al. Light Chain Amyloid Fibrils Cause Metabolic Dys-function in Human Cardiomyocytes. PLoS ONE 2015, 10, e0137716. [Google Scholar] [CrossRef]
- Jordan, T.L.; Maar, K.; Redhage, K.R.; Misra, P.; Blancas-Mejia, L.M.; Dick, C.J.; Wall, J.S.; Williams, A.; Dietz, A.B.; van Wijnen, A.J.; et al. Light chain amyloidosis induced inflammatory changes in cardiomyocytes and adipose-derived mesenchymal stromal cells. Leukemia 2020, 34, 1383–1393. [Google Scholar] [CrossRef]
- Ramamurthy, S.; Biolo, A.; Connors, L.H.; O’hara, C.J.; Meier-Ewert, H.K.; Hoo, P.T.S.; Sawyer, D.B.; Seldin, D.S.; Sam, F. Abstract 2402: Matrix Metalloproteinases and their Tissue Inhibitors in Cardiac Amyloidosis: Relationship to Structural and Functional Changes and to Light Chain Amyloid Deposition in the Heart. Circulation 2008, 1, 249–257. [Google Scholar] [CrossRef]
- Rowczenio, D.M.; Noor, I.; Gillmore, J.D.; Lachmann, H.; Whelan, C.; Hawkins, P.N.; Obici, L.; Westermark, P.; Grateau, G.; Wechalekar, A.D. Online Registry for Mutations in Hereditary Amyloidosis Including Nomenclature Recommendations. Hum. Mutat. 2014, 35, E2403–E2412. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, Y.; Wiseman, L.; Matteson, J.; Hammarstrom, P.; Miller, S.R.; Sawkar, A.R.; Balch, W.E.; Kelly, J.W. The Biological and Chemical Basis for Tissue-Selective Amyloid Disease. Cell 2005, 121, 73–85. [Google Scholar] [CrossRef]
- Marcoux, J.; Mangione, P.P.; Porcari, R.; Degiacomi, M.T.; Verona, G.; Taylor, G.W.; Giorgetti, S.; Raimondi, S.; Sanglier-Cianférani, S.; Benesch, J.L.; et al. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol. Med. 2015, 7, 1337–1349. [Google Scholar] [CrossRef]
- Bezerra, F.; Niemietz, C.; Schmidt, H.H.J.; Zibert, A.; Guo, S.; Monia, B.P.; Gonçalves, P.; Saraiva, M.J.; Almeida, M.R. In Vitro and In Vivo Effects of SerpinA1 on the Modulation of Transthyretin Proteolysis. Int. J. Mol. Sci. 2021, 22, 9488. [Google Scholar] [CrossRef]
- Sant’Anna, R.; Almeida, M.R.; Varejāo, N.; Gallego, P.; Esperante, S.; Ferreira, P.; Pereira-Henriques, A.; Palhano, F.L.; de Carvalho, M.; Foguel, D.; et al. Cavity filling mutations at the thyroxine-binding site dramatically increase transthyretin stability and prevent its aggregation. Sci. Rep. 2017, 7, 44709. [Google Scholar] [CrossRef]
- Hornstrup, L.S.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Genetic Stabilization of Transthyretin, Cerebrovascular Disease, and Life Expectancy. Arter. Thromb. Vasc. Biol. 2013, 33, 1441–1447. [Google Scholar] [CrossRef]
- Manral, P.; Reixach, N. Amyloidogenic and nonamyloidogenic transthyretin variants interact differently with human cardio-myocytes: Insights into early events of nonfibrillar tissue damage. Biosci. Rep. 2015, 35, e00172. [Google Scholar] [CrossRef]
- González-López, E.; Gagliardi, C.; Dominguez, F.; Quarta, C.C.; de Haro-Del Moral, F.J.; Milandri, A.; Salas, C.; Cinelli, M.; Cobo-Marcos, M.; Lorenzini, M.; et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: Disproving myths. Eur. Heart J. 2017, 38, 1895–1904. [Google Scholar] [CrossRef]
- Argon, A.; Nart, D.; Barbet, F.Y. Cardiac amyloidosis: Clinical features, pathogenesis, diagnosis, and treatment. Turk. J. Pathol. 2021, 40, 1. [Google Scholar] [CrossRef]
- Vogel, J.; Carpinteiro, A.; Luedike, P.; Buehning, F.; Wernhart, S.; Rassaf, T.; Michel, L. Current Therapies and Future Horizons in Cardiac Amyloidosis Treatment. Curr. Heart Fail. Rep. 2024, 21, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Milani, P.; Merlini, G. Management of AL amyloidosis in 2020. Blood 2020, 136, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Colby, C.; Laumann, K.; Zeldenrust, S.R.; Leung, N.; Dingli, D.; et al. Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements. J. Clin. Oncol. 2012, 30, 989–995. [Google Scholar] [CrossRef]
- Grogan, M.; Gertz, M.; McCurdy, A.; Roeker, L.; Kyle, R.; Kushwaha, S.; Daly, R.; Dearani, J.; Rodeheffer, R.; Frantz, R.; et al. Long term outcomes of cardiac transplant for immunoglobulin light chain amyloidosis: The Mayo Clinic experience. World J. Transplant. 2016, 6, 380–388. [Google Scholar] [CrossRef]
- Roy, V. Autologous Stem Cell Transplant for AL Amyloidosis. Bone Marrow Res. 2012, 2012, 238961. [Google Scholar] [CrossRef]
- Griffin, J.M.; Rosenblum, H.; Maurer, M.S. Pathophysiology and Therapeutic Approaches to Cardiac Amyloidosis. Circ. Res. 2021, 128, 1554–1575. [Google Scholar] [CrossRef]
- Oubari, S.; Hegenbart, U.; Schoder, R.; Steinhardt, M.; Papathanasiou, M.; Rassaf, T.; Thimm, A.; Hagenacker, T.; Naser, E.; Duhrsen, U.; et al. Daratumumab in first-line treatment of patients with light chain amyloidosis and Mayo stage IIIb improves treatment response and overall survival. Haematologica 2023, 109, 220–230. [Google Scholar] [CrossRef]
- Ioannou, A.; Fontana, M.; Gillmore, J.D. RNA Targeting and Gene Editing Strategies for Transthyretin Amyloidosis. BioDrugs 2023, 37, 127–142. [Google Scholar] [CrossRef]
- Friedrich, M.; Aigner, A. Therapeutic siRNA: State-of-the-Art and Future Perspectives. BioDrugs 2022, 36, 549–571. [Google Scholar] [CrossRef]
- Maurer, M.S.; Fontana, M.; Berk, J.; Gustafsson, F.; Simoes, M.; Grogan, M.; Fernandes, F.; Gottlieb, R.L.; Kubanek, M.; Poulsen, S.; et al. Primary Results from Apollo-B, A Phase 3 Study of Patisiran in Patients with Transthyretin-Mediated Amyloidosis With Cardiomyopathy. J. Card. Fail. 2023, 29, 550. [Google Scholar] [CrossRef]
- Rozenbaum, M.H.; Garcia, A.; Grima, D.; Tran, D.; Bhambri, R.; Stewart, M.; Li, B.; Heeg, B.; Postma, M.; Masri, A. Health impact of tafamidis in transthyretin amyloid cardiomyopathy patients: An analysis from the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) and the open-label long-term extension studies. Eur. Heart J.-Qual. Care Clin. Outcomes 2021, 8, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, O.K.; Mints, Y.Y.; Berk, J.L.; Connors, L.; Doros, G.; Gopal, D.M.; Kataria, S.; Lohrmann, G.; Pipilas, A.R.; Ruberg, F.L. Diflunisal treatment is associated with improved survival for patients with early-stage wild-type transthyretin (ATTR) amyloid cardiomyopathy: The Boston University Amy-loidosis Center experience. Amyloid 2022, 29, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Phuyal, P.; Bokhari, S. Establishment of a Comprehensive Cardiac Amyloidosis Center in a Community Hospital Setting. Rev. Cardiovasc. Med. 2024, 25, 61. [Google Scholar] [CrossRef] [PubMed]
- Nuvolone, M.; Nevone, A.; Merlini, G. Targeting Amyloid Fibrils by Passive Immunotherapy in Systemic Amyloidosis. BioDrugs 2022, 36, 591–608. [Google Scholar] [CrossRef]
- Brownell, D.; Pillai, A.J.; Nair, N. Cardiac Amyloidosis: A Contemporary Review of Medical and Surgical Therapy. Curr. Cardiol. Rev. 2024, 20, 72–81. [Google Scholar] [CrossRef]
- Gertz, M.A. Cardiac Amyloidosis. Heart Fail. Clin. 2022, 18, 479–488. [Google Scholar] [CrossRef]
- Adrogue, H.E. Amyloidosis of the Heart and Kidney. Methodist. DeBakey Cardiovasc. J. 2022, 18, 27–33. [Google Scholar] [CrossRef]
- Vaidya, G.N.; Patel, J.K.; Kittleson, M.; Chang, D.H.; Kransdorf, E.; Geft, D.; Czer, L.; Vescio, R.; Esmailian, F.; Kobashigawa, J.A. Intermediate-term outcomes of heart transplantation for cardiac amyloidosis in the current era. Clin. Transplant. 2021, 35, e14308. [Google Scholar] [CrossRef]
- Lakhdar, S.; Buttar, C.; Nassar, M.; Ciobanu, C.; Patel, R.; Munira, M.S. Outcomes of heart transplantation in cardiac amyloidosis: An updated systematic review. Heart Fail. Rev. 2022, 27, 2201–2209. [Google Scholar] [CrossRef]
Light Chain Amyloidosis | Transthyretin Amyloidosis |
---|---|
Clinical red flags | Clinical red flags |
Diastolic dysfunction (unspecific symptoms): asthenia, syncope, dizziness, orthostasis, and usually with preserved ejection fraction. Renal failure with proteinuria, hepatomegaly, autonomic neuropathy, sensorimotor peripheral neuropathy, gastrointestinal symptoms: more frequent extracardiac manifestations. Macroglossia and periorbital purpura: pathognomonic signs in advanced stages of the disease. | Diastolic dysfunction (unspecific symptoms): asthenia, syncope, dizziness, orthostasis, and usually with preserved ejection fraction. Carpal tunnel syndrome, especially if bilateral, rupture of the long head of the biceps, lumbar canal stenosis, sensorimotor peripheral neuropathy, vitreous opacity, cataract: extracardiac manifestations specific to ATTRwt. |
Laboratory test red flags | Laboratory test red flags |
Cardiac troponin: increase in serum values even before ventricular hypertrophy and higher than ATTR. Natriuretic peptides such as BNP and NT-proBNP: unexplained and disproportionate increase in serum levels with respect to the hemodynamic state. | Cardiac troponin: absent in the early stages and increase in serum levels subsequently in a manner directly proportional to infiltration. Natriuretic peptides such as BNP and NT-proBNP: unexplained and disproportionate increase in serum levels with respect to the hemodynamic state. |
Electrocardiographic red flags | Electrocardiographic red flags |
Low voltage EKG (more common in AL): reduction in QRS wave amplitude indicating amyloid infiltration of the heart. EKG with pseudoinfarct pattern: prominent Q waves due to amyloid deposition in the left ventricular wall. Conduction disturbances, especially atrioventricular blocks, and arrhythmias, especially atrial fibrillation. | Low voltage EKG: reduction in QRS wave amplitude indicating amyloid infiltration of the heart. EKG with pseudoinfarct pattern: prominent Q waves due to amyloid deposition in the left ventricular wall. Conduction disturbances, especially atrioventricular blocks, and arrhythmias, especially atrial fibrillation. |
Red flags in cardiac imaging | Red flags in cardiac imaging |
Echocardiography: ventricular thickening with reduction in cavity dimensions, predominantly concentric pattern, up to restrictive cardiomyopathy. | Echocardiography: ventricular thickening with reduction in cavity dimensions, septal asymmetric pattern, up to restrictive cardiomyopathy. Positive diphosphonate scintigraphy: detects amyloid deposition without the need for biopsies. |
Step | Procedure | Notes |
---|---|---|
1. Clinical evaluation | Clinical symptoms: cardiac failure, arrhythmias, etc. | Consider the presence of clinical signs suggesting cardiac amyloidosis. |
2. Imaging and functional tests | Echocardiography: evaluate typical echocardiographic signs. Bone scintigraphy with diphosphonate: evaluate the absorption of the radiotracer. | Gradual absorption 2 or 3: suggests cardiac amyloidosis ATTR. |
3. Histopathological | Periumbilical subcutaneous tissue biopsy, and if necessary, endomyocardial biopsy. Congo Red to highlight amyloid deposits: - Red-orange color: observable under an optical microscope; - Apple-green birefringence: observable under a polarized light microscope. For amyloid subtyping: - Immunohistochemistry: antibodies against TTR, AA, lambda, and kappa to visualize amyloid deposits in tissue sections, - Immunofluorescence: antibodies labeled with fluorescent dyes to detect amyloid deposits in frozen sections, - Immunologically Labeled Electron Microscopy: combines IHC and electron microscopy, using gold-labeled antibodies to identify proteins in fibrils, - Laser microdissection and tandem mass spectrometry: analyzes amyloid deposits from Congo Red-stained paraffin sections using mass spectrometry. | Subcutaneous tissue biopsy: minimally invasive, with lower sensitivity. Endomyocardial biopsy: invasive, with higher sensitivity. Limitations of histochemical staining: beware of false positives from nonamyloid tissue components. Limitations: - IHC limited by availability of antibodies and variable sensitivity and specificity, - IF limited by variable results, - IEM limited by the availability of gold-labeled antibodies and the need for highly specialized skills, - LCM-MS limited by availability of advanced equipment and specialized skills. |
4. Nonbiopsy diagnostic criteria for ATTR | If there are typical echocardiographic signs and gradual 2 or 3 absorption on bone scan. | The diagnosis of ATTR cardiac amyloidosis can be made without biopsy. |
5. Exclusion of other conditions | Free light chain assay: check for abnormal levels. Electrophoresis of serum and urinary proteins with immunofixation: exclude monoclonal proteins. | Exclude clonal dyscrasias or other conditions that may mimic amyloidosis. |
6. Diagnosis | Integrate biopsy results with clinical, imaging, and biochemical data for accurate diagnosis. | If biopsy has been performed: confirm with Congo Red staining. If using imaging and nonbiopsy criteria: Confirm ATTR cardiac amyloidosis based on clinical and imaging findings. |
Light Chain Amyloidosis | Transthyretin Amyloidosis | |
---|---|---|
Causes | Monoclonal immunoglobulin light chains produced by plasma cells, mostly λ chains. | Pathogenic variants in ATTRv or age-related instability in ATTRwt. |
Mechanisms | Internalization into cardiomyocytes and fibroblasts, oxidative stress, mitochondrial ultrastructural changes, activation of apoptosis (p38 MAPK pathway), increased MMP9/TIMP-1, impairment of ventricular relaxation and contractile function. | TTR tetramer instability, dissociation into monomers, oxidative stress, cardiomyocyte apoptosis, increased basement membrane components, and amyloid deposition. |
Alterations | Heart: impairment of ventricular relaxation, myocardial fibrosis, and apoptosis. | Heart: restrictive cardiomyopathy and neuropathic or mixed signs. |
Light Chain Amyloidosis | Transthyretin Amyloidosis | |
---|---|---|
Indications | The main goal is the correction of toxic light chains. | Stabilization and silencing of TTR to prevent the formation of amyloid fibrils. |
Therapy | Autologous stem cell transplant (in selected patients) High-dose chemotherapy with melphalan Anti-plasma cell therapies: • Alkylating agents; • Immunomodulators; • Corticosteroids. Proteasome inhibitors Heart transplant in AL cardiac amyloidosis with response to light chain suppressive therapies | Silencing: • Patisiran (siRNA); • Vutrisiran (siRNA); • Inotersen (ASO); • Eplontersen (ASO). TTR stabilization: • Tafamidis; • Acoramidis; • Diflunisal; • EGCG. TTR destruction: • Doxycycline + TUDCA (tetracycline antibiotic + tauroursodeoxycholic acid) Heart transplant if end-stage heart failure |
Notes | Risk classification into low, intermediate, and high, based on biomarkers NT-proBNP and troponin, age, clinical symptoms NYHA and ECOG. Mayo Stages I-IIIa: Combined treatment with daratumumab, cyclophosphamide, bortezomib, and dexamethasone. Mayo Stage IIIb: ongoing study of daratumumab as monotherapy. | Immunotherapy (mAbs) under study to remove amyloid deposits and enhance the immune response. Combined heart–liver transplantation in patients with genetic variants. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salzillo, C.; Franco, R.; Ronchi, A.; Quaranta, A.; Marzullo, A. Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology. Curr. Issues Mol. Biol. 2024, 46, 11519-11536. https://doi.org/10.3390/cimb46100684
Salzillo C, Franco R, Ronchi A, Quaranta A, Marzullo A. Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology. Current Issues in Molecular Biology. 2024; 46(10):11519-11536. https://doi.org/10.3390/cimb46100684
Chicago/Turabian StyleSalzillo, Cecilia, Renato Franco, Andrea Ronchi, Andrea Quaranta, and Andrea Marzullo. 2024. "Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology" Current Issues in Molecular Biology 46, no. 10: 11519-11536. https://doi.org/10.3390/cimb46100684
APA StyleSalzillo, C., Franco, R., Ronchi, A., Quaranta, A., & Marzullo, A. (2024). Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology. Current Issues in Molecular Biology, 46(10), 11519-11536. https://doi.org/10.3390/cimb46100684