Association of SLC19A1 Gene Polymorphisms and Its Regulatory miRNAs with Methotrexate Toxicity in Children with Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Data and Toxicity Measurement
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Association between SLC19A1 Gene Polymorphisms Individually and MTX-Induced Adverse Events
3.3. Association between SLC19A1 Gene Polymorphisms in Combination and MTX-Induced Adverse Events
3.4. Association between Age of ALL Diagnosis and Hepatotoxicity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Yin, Y.; Sheng, Q.; Lu, X.; Wang, F.; Lin, Z.; Tian, H.; Xu, A.; Zhang, J. Association of ABCC2 -24C>T Polymorphism with High-Dose Methotrexate Plasma Concentrations and Toxicities in Childhood Acute Lymphoblastic Leukemia. PLoS ONE 2014, 9, e82681. [Google Scholar] [CrossRef] [PubMed]
- Iparraguirre, L.; Gutierrez-Camino, A.; Umerez, M.; Martin-Guerrero, I.; Astigarraga, I.; Navajas, A.; Sastre, A.; De Andoin, N.G.; Garcia-Orad, A. MIR-Pharmacogenetics of Methotrexate in Childhood B-Cell Acute Lymphoblastic Leukemia. Pharmacogenetics Genom. 2016, 26, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Taylor, Z.L.; Vang, J.; Lopez-Lopez, E.; Oosterom, N.; Mikkelsen, T.; Ramsey, L.B. Systematic Review of Pharmacogenetic Factors That Influence High-Dose Methotrexate Pharmacokinetics in Pediatric Malignancies. Cancers 2021, 13, 2837. [Google Scholar] [CrossRef] [PubMed]
- Gervasini, G.; Mota-Zamorano, S. Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia. Curr. Drug Metab. 2019, 20, 313–330. [Google Scholar] [CrossRef]
- Xu, M.; Wu, S.; Wang, Y.; Zhao, Y.; Wang, X.; Wei, C.; Liu, X.; Hao, F.; Hu, C. Association between High-Dose Methotrexate-Induced Toxicity and Polymorphisms within Methotrexate Pathway Genes in Acute Lymphoblastic Leukemia. Front. Pharmacol. 2022, 13, 1003812. [Google Scholar] [CrossRef]
- Karpa, V.; Kalinderi, K.; Fidani, L.; Tragiannidis, A. Association of microRNA Polymorphisms with Toxicities Induced by Methotrexate in Children with Acute Lymphoblastic Leukemia. Hematol. Rep. 2023, 15, 634–650. [Google Scholar] [CrossRef]
- Erčulj, N.; Kotnik, B.F.; Debeljak, M.; Jazbec, J.; Dolžan, V. Influence of Folate Pathway Polymorphisms on High-Dose Methotrexate-Related Toxicity and Survival in Childhood Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2012, 53, 1096–1104. [Google Scholar] [CrossRef]
- Howard, S.C.; McCormick, J.; Pui, C.-H.; Buddington, R.K.; Harvey, R.D. Preventing and Managing Toxicities of High-Dose Methotrexate. Oncologist 2016, 21, 1471. [Google Scholar] [CrossRef]
- Kodidela, S.; Suresh Chandra, P.; Dubashi, B. Pharmacogenetics of Methotrexate in Acute Lymphoblastic Leukaemia: Why Still at the Bench Level? Eur. J. Clin. Pharmacol. 2014, 70, 253–260. [Google Scholar] [CrossRef]
- Ramalingam, R.; Kaur, H.; Scott, J.X.; Sneha, L.M.; Arunkumar, G.; Srinivasan, A.; Paul, S.F.D. Evaluation of Cytogenetic and Molecular Markers with MTX-Mediated Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients. Cancer Chemother. Pharmacol. 2022, 89, 393–400. [Google Scholar] [CrossRef]
- Cwiklinska, M.; Czogala, M.; Kwiecinska, K.; Madetko-Talowska, A.; Szafarz, M.; Pawinska, K.; Wieczorek, A.; Klekawka, T.; Rej, M.; Stepien, K.; et al. Polymorphisms of SLC19A1 80 G>A, MTHFR 677 C>T, and Tandem TS Repeats Influence Pharmacokinetics, Acute Liver Toxicity, and Vomiting in Children with Acute Lymphoblastic Leukemia Treated with High Doses of Methotrexate. Front. Pediatr. 2020, 8, 526085. [Google Scholar] [CrossRef] [PubMed]
- Radtke, S.; Zolk, O.; Renner, B.; Paulides, M.; Zimmermann, M.; Möricke, A.; Stanulla, M.; Schrappe, M.; Langer, T. Germline Genetic Variations in Methotrexate Candidate Genes Are Associated with Pharmacokinetics, Toxicity, and Outcome in Childhood Acute Lymphoblastic Leukemia. Blood 2013, 121, 5145–5153. [Google Scholar] [CrossRef] [PubMed]
- Evers, R.; Piquette-Miller, M.; Polli, J.W.; Russel, F.G.M.; Sprowl, J.A.; Tohyama, K.; Ware, J.A.; de Wildt, S.N.; Xie, W.; Brouwer, K.L.R. Disease-Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper from the International Transporter Consortium. Clin. Pharmacol. Ther. 2018, 104, 900–915. [Google Scholar] [CrossRef]
- Kotnik, B.F.; Jazbec, J.; Grabar, P.B.; Rodriguez-Antona, C.; Dolzan, V. Association between SLC19A1 Gene Polymorphism and High Dose Methotrexate Toxicity in Childhood Acute Lymphoblastic Leukaemia and Non Hodgkin Malignant Lymphoma: Introducing a Haplotype Based Approach. Radiol. Oncol. 2017, 51, 455–462. [Google Scholar] [CrossRef]
- Zhan, M.; Liu, T.; Zhang, Z.; Wang, G.; Cao, Z.; Li, X.; Zeng, H.; Mai, H.; Chen, Z. Impact of microRNA Polymorphisms on High-Dose Methotrexate-Related Hematological Toxicities in Pediatric Acute Lymphoblastic Leukemia. Front. Pediatr. 2023, 11, 1153767. [Google Scholar] [CrossRef]
- Senior, J. Unintended Hepatic Adverse Events Associated with Cancer Chemotherapy. Toxicol. Pathol. 2009, 38, 142–147. [Google Scholar] [CrossRef]
- Rudin, S.; Marable, M.; Huang, R.S. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment. Genom. Proteom. Bioinform. 2017, 15, 82–93. [Google Scholar] [CrossRef]
- Chen, A.R.; Wang, Y.M.; Lin, M.; Kuo, D.J. High-Dose Methotrexate in Pediatric Acute Lymphoblastic Leukemia: Predictors of Delayed Clearance and the Effect of Increased Hydration Rate on Methotrexate Clearance. Cureus 2020, 12, 8674. [Google Scholar] [CrossRef]
- Wang, J.; Yin, J.; Li, W.; Xiao, C.; Han, J.; Zhou, F. Association between SLCO1A2 Genetic Variation and Methotrexate Toxicity in Human Rheumatoid Arthritis Treatment. J. Biochem. Mol. Toxicol. 2020, 34, e22513. [Google Scholar] [CrossRef]
- Krajinovic, M.; Moghrabi, A. Pharmacogenetics of Methotrexate. Pharmacogenomics 2004, 5, 819–834. [Google Scholar] [CrossRef]
- Wright, N.J.; Fedor, J.G.; Zhang, H.; Jeong, P.; Suo, Y.; Yoo, J.; Hong, J.; Im, W.; Lee, S.-Y. Methotrexate Recognition by the Human Reduced Folate Carrier SLC19A1. Nature 2022, 609, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Takemura, Y.; Ohnuma, T. Variable Expression of RFC1 in Human Leukemia Cell Lines Resistant to Antifolates. Cancer Lett. 1998, 124, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-G.; Gao, C.; Zhang, R.-D.; Zhao, X.-X.; Cui, L.; Li, W.-J.; Chen, Z.-P.; Yue, Z.-X.; Zhang, Y.-Y.; Wu, M.-Y.; et al. Polymorphisms in Methotrexate Transporters and Their Relationship to Plasma Methotrexate Levels, Toxicity of High-Dose Methotrexate, and Outcome of Pediatric Acute Lymphoblastic Leukemia. Oncotarget 2017, 8, 37761–37772. [Google Scholar] [CrossRef] [PubMed]
- Esmaili, M.A.; Kazemi, A.; Faranoush, M.; Mellstedt, H.; Zaker, F.; Safa, M.; Mehrvar, N.; Rezvany, M.R. Polymorphisms within Methotrexate Pathway Genes: Relationship between Plasma Methotrexate Levels, Toxicity Experienced and Outcome in Pediatric Acute Lymphoblastic Leukemia. Iran. J. Basic. Med. Sci. 2020, 23, 800. [Google Scholar] [CrossRef] [PubMed]
- Gregers, J.; Christensen, I.J.; Dalhoff, K.; Lausen, B.; Schroeder, H.; Rosthoej, S.; Carlsen, N.; Schmiegelow, K.; Peterson, C. The Association of Reduced Folate Carrier 80G>A Polymorphism to Outcome in Childhood Acute Lymphoblastic Leukemia Interacts with Chromosome 21 Copy Number. Blood 2010, 115, 4671–4677. [Google Scholar] [CrossRef]
- Kishi, S.; Cheng, C.; French, D.; Pei, D.; Das, S.; Cook, E.H.; Hijiya, N.; Rizzari, C.; Rosner, G.L.; Frudakis, T.; et al. Ancestry and Pharmacogenetics of Antileukemic Drug Toxicity. Blood 2007, 109, 4151–4157. [Google Scholar] [CrossRef]
- Salazar, J.; Altés, A.; del Río, E.; Estella, J.; Rives, S.; Tasso, M.; Navajas, A.; Molina, J.; Villa, M.; Vivanco, J.L.; et al. Methotrexate Consolidation Treatment According to Pharmacogenetics of MTHFR Ameliorates Event-Free Survival in Childhood Acute Lymphoblastic Leukaemia. Pharmacogenomics J. 2012, 12, 379–385. [Google Scholar] [CrossRef]
- Chiusolo, P.; Giammarco, S.; Bellesi, S.; Metafuni, E.; Piccirillo, N.; De Ritis, D.; Marietti, S.; Federica, S.; Laurenti, L.; Fianchi, L.; et al. The Role of MTHFR and RFC1 Polymorphisms on Toxicity and Outcome of Adult Patients with Hematological Malignancies Treated with High-Dose Methotrexate Followed by Leucovorin Rescue. Cancer Chemother. Pharmacol. 2012, 69, 691–696. [Google Scholar] [CrossRef]
- He, H.R.; Liu, P.; He, G.H.; Dong, W.H.; Wang, M.Y.; Dong, Y.L.; Lu, J. Association between Reduced Folate Carrier G80A Polymorphism and Methotrexate Toxicity in Childhood Acute Lymphoblastic Leukemia: A Meta-Analysis. Leuk. Lymphoma 2014, 55, 2793–2800. [Google Scholar] [CrossRef]
- Liu, S.; Gao, C.; Zhang, R.; Zhao, X.; Cui, L.; Li, W.; Zheng, H.; Li, Z. Germline Genetic Variations in Methotrexate Candidate Genes Are Associated with Pharmacokinetics and Outcome in Pediatric Acute Lymphoblastic Leukemia in China. Blood 2016, 128, 1595. [Google Scholar] [CrossRef]
- Lopez-Lopez, E.; Ballesteros, J.; Piñan, M.A.; Sanchez de Toledo, J.; Garcia de Andoin, N.; Garcia-Miguel, P.; Navajas, A.; Garcia-Orad, A. Polymorphisms in the Methotrexate Transport Pathway: A New Tool for MTX Plasma Level Prediction in Pediatric Acute Lymphoblastic Leukemia. Pharmacogenet Genom. 2013, 23, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Bohanec Grabar, P.; Leandro-García, L.J.; Inglada-Pérez, L.; Logar, D.; Rodríguez-Antona, C.; Dolžan, V. Genetic Variation in the SLC19A1 Gene and Methotrexate Toxicity in Rheumatoid Arthritis Patients. Pharmacogenomics 2012, 13, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Yang, Z.; Chen, B. The Functional Role of microRNA in Acute Lymphoblastic Leukemia: Relevance for Diagnosis, Differential Diagnosis, Prognosis, and Therapy. OncoTargets Ther. 2015, 8, 2903–2914. [Google Scholar] [CrossRef]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef]
Hepatotoxicity Grading | Definition |
---|---|
Grade 0 | Without hepatotoxicity |
Grade 1 | SGOT or SGPT > 3ULN (often transient; many people adapt |
Grade 2 | SGOT or SGPT > 3ULN, TBL > 2ULN |
Grade 3 | Hospitalization |
Grade 4 | Liver failure |
Grade 5 | Death or liver transplantation |
Polymorphism | Gene Product Length | Alleles | Enzyme | Enzyme Digestion Products |
---|---|---|---|---|
rs2838958 | 166 bp | A | Bsu36I | 166 bp |
G | 133 + 33 bp | |||
rs1051266 | 220 bp | A | DraIII | 74 + 146 bp |
G | 220 bp | |||
rs1131596 | 234 bp | C | HpyCH4III | 234 bp |
T | 75 + 159 bp | |||
rs56292801 | 247 bp | A | EcoO109I | 68 + 113 + 66 bp |
G | 68 + 15 + 98 + 66 bp |
Adverse Events | N = 86 |
---|---|
Hepatotoxicity | 32 (37%) |
Mucositis | 45 (52%) |
Other (nausea, emesis, diarrhea, neutropenia, skin rash and infections) | 32 (37%) |
MTX Adverse Events | rs2838958 | rs1051266 | rs1131596 | rs56292801 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | AT | TT | GG | GA | AA | CC | CT | TT | AA | AG | GG | |
Hepatotoxicity | 12 (14%) | 13 (15%) | 7 (8%) | 16 (19%) | 7 (8%) | 9 (10%) | 10 (12%) | 7 (8%) | 15 (17%) | 4 (5%) | 10 (12%) | 18 (21%) |
Mucositis | 11 (13%) | 22 (26%) | 12 (14%) | 21 (24%) | 16 (19%) | 8 (9%) | 10 (12%) | 21 (24%) | 14 (16%) | 5 (5%) | 18 (21%) | 22 (26%) |
Other AEs | 8 (9%) | 10 (12%) | 14 (16%) | 13 (15%) | 7 (8%) | 2 (2%) | 2 (2%) | 9 (10%) | 11 (13%) | 3 (3%) | 6 (7%) | 13 (15%) |
rs56292801 | ||||
rs1131596 | AA | AG | GG | |
CC | p = 0.2627 | p = 0.5221 | p = 0.0703 | |
CT | p = 0.2627 | p = 0.5221 | p = 0.0703 | |
TT | p = 0.0104 | p = 0.3681 | p = 0.7718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpa, V.; Kalinderi, K.; Gavriilaki, E.; Antari, V.; Hatzipantelis, E.; Katopodi, T.; Fidani, L.; Tragiannidis, A. Association of SLC19A1 Gene Polymorphisms and Its Regulatory miRNAs with Methotrexate Toxicity in Children with Acute Lymphoblastic Leukemia. Curr. Issues Mol. Biol. 2024, 46, 11537-11547. https://doi.org/10.3390/cimb46100685
Karpa V, Kalinderi K, Gavriilaki E, Antari V, Hatzipantelis E, Katopodi T, Fidani L, Tragiannidis A. Association of SLC19A1 Gene Polymorphisms and Its Regulatory miRNAs with Methotrexate Toxicity in Children with Acute Lymphoblastic Leukemia. Current Issues in Molecular Biology. 2024; 46(10):11537-11547. https://doi.org/10.3390/cimb46100685
Chicago/Turabian StyleKarpa, Vasiliki, Kallirhoe Kalinderi, Eleni Gavriilaki, Vasiliki Antari, Emmanuil Hatzipantelis, Theodora Katopodi, Liana Fidani, and Athanasios Tragiannidis. 2024. "Association of SLC19A1 Gene Polymorphisms and Its Regulatory miRNAs with Methotrexate Toxicity in Children with Acute Lymphoblastic Leukemia" Current Issues in Molecular Biology 46, no. 10: 11537-11547. https://doi.org/10.3390/cimb46100685
APA StyleKarpa, V., Kalinderi, K., Gavriilaki, E., Antari, V., Hatzipantelis, E., Katopodi, T., Fidani, L., & Tragiannidis, A. (2024). Association of SLC19A1 Gene Polymorphisms and Its Regulatory miRNAs with Methotrexate Toxicity in Children with Acute Lymphoblastic Leukemia. Current Issues in Molecular Biology, 46(10), 11537-11547. https://doi.org/10.3390/cimb46100685