Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy
Abstract
:1. Introduction
2. Progress of IL-12 in Cancer Therapy Based on Different Delivery Strategies
2.1. Modified IL-12 for Cancer Therapy
Name | Manner | Cancer Model | RoA | Combination Therapy | Ref |
---|---|---|---|---|---|
pro-IL-12 | extracellular matrix proteins | MC38, B16F10, 4T1 | i.p. | / | [17] |
M-L-IL-12 | fused with a domain of the IL-12 receptor | EMT6, B16F10 | intravenous (i.v.) | PD-1 antibodies | [18] |
IL-12-MSA-Lumican | fused with Lumican | B16F10 | intratumoral (i.t.) | PD-1 antibodies | [19] |
CBD-IL-12 | fused with collagen-binding domain | EMT6, B16F10 | i.t. | PD-1 antibodies | [20] |
IL12-scFv(L19)-FLAG | fused with anti-EDB antibody fragment scFv(L19) | F9 | i.v. | / | [22] |
mIL12-FHAB-hIL15 | fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv) | B16F10 | i.v. | / | [26] |
scIL-12-B7TM | membrane-bound IL-12 containing murine single-chain IL-12 and B7-1 transmembrane and cytoplasmic domains | CT26 | i.t. | / | [27] |
NHS-IL12 | fused with a DNA/DNA–histone complex antibody (NHS76) | MC38, MB49, 4T1, EMT6 | s.c. | Bintrafusp alfa, PD-L1 antibodies | [23,24,25] |
2.2. Virus-Based IL-12 Delivery for Cancer Therapy
2.2.1. Herpes Simplex Virus
Name | Dose (pfu) | Cancer Model | RoA | Combination Therapy | Ref |
---|---|---|---|---|---|
dvIL12-tk/tsK | 2 × 105 | CT26 | i.t. | / | [32] |
VG161 | 5 × 106 | CT26, A20 | i.t. | / | [33] |
O-HSV12 | 107 | MC38 | i.t. | / | [36] |
VG2026 | 108 | A20 | i.t. | / | [47] |
∆6/GM/IL12 | 107 | B16F10 | i.t. | / | [48] |
G47Δ-mIL2 | 5 × 105 | 005 GSC, CT-2A, GL261 | i.t. | / | [45] |
9× 105 | M3 cells | i.t. | / | [50] | |
2 × 106 | 4T1 | i.t. | / | [37] | |
106 | U87 | i.t. | G47Δ-mAngio | [43] | |
5 × 105 | 005 GSCs | i.t. | / | [51] | |
5 × 105 | 005 GSCs | i.t. | TMZ, d O6-BG | [39] | |
2.5 × 105 | 005 GSCs, MGG123 GSCs | i.t. | Axitinib, CTLA4 antibodies | [38] | |
5 × 105 | 005 GSCs | i.t. | PD-1, CTLA4 antibodies | [40] | |
5 × 105 | Glioma, CT-2A | i.t. | PD-1, CTLA4 antibodies | [41] | |
C5252 | 5 × 106 | U87 | i.t. | / | [44] |
oHSV2-IL12 | 107 | 4T1, CT26 | i.t. | oHSV2-PD1v, IL7 × CCL19, GM-CSF and IL15 | [34] |
vHsv-IL-12 | 8 × 103–2 × 106 | Neuro2a | i.t. | vHsv-B7.1-Ig and IL-18 | [42] |
NV1042 | 5 × 107 | SCC | i.v. | / | [52] |
107 | CT26 | i.t. | / | [35] | |
5 × 105 | CWr22 | i.t. | Vinblastine | [53] | |
2 × 107 | SCC VII | i.t. | / | [54,55] | |
107 | TRAMP-C2, Pr14-2 | i.p. | / | [56] | |
107 | McA-R-7777 | i.t. | / | [57] | |
M002 | 107 | Neuro-2a | i.t. | M010 (HSV expressing CCL2) | [58] |
107 | SARC | i.t. | / | [59] | |
107 | X21415, D456, GBM-12, UAB106 | i.t. | / | [60] | |
1.5 × 107 | Intracranial SCK | i.t. | / | [61] | |
107 | Xenograft SK-N-AS and SK-N-BE, Neuro-2a | i.t. | irradiation (XRT) | [62] | |
107 | HuH6, G401, SK-NEP-1 | i.t. | irradiation (XRT) | [63] | |
R-115 | 1 × 108–2 × 109 | HER2 | i.p. | / | [64] |
2 × 106, 1 × 108 | HER2 | i.t. | [65] | ||
R-123 | 108 | HER2-LLC1 | i.t. | PD-1 antibodies | [46] |
T2850 T3855 | 107 | A20, MFC | i.t. | / | [66] |
5 × 106 107 3 × 107 | B16 | i.t. | / | [66] |
2.2.2. Adenovirus or Adeno-Associated Virus (AAV)
2.2.3. Vaccinia Virus or Modified Vaccinia Virus (MVA)
2.2.4. Other Viruses
2.3. Non-Viral Delivery of IL-12 for Cancer Therapy
2.3.1. Chemical-Based Delivery Systems
Name | Carrier Description | Cancer Model | RoA | Combination Therapy | Ref |
---|---|---|---|---|---|
Polymer-based nanoparticles | |||||
PEI:IL-12 | polyethylenimine (PEI) | osteosarcoma | aerosol | / | [172] |
PEI-IL12 | PEI-DNA nanoparticles carrying IL12 gene | LLC, CT26 | i.v. | / | [173] |
mIL-12 | polyethylenimine (PEI) | osteosarcoma | intranasal (i.n.) | / | [174] |
IL-12 | ifosfamide (IFX) with or without intranasal polyethylenimine (PEI) | LM7 osteosarcoma | i.n. | ifosfamide | [175] |
mIL-12 | poly[α-(4-aminobutyl)-L-glycolic acid] (PAGA) | CT26 | i.t. | / | [176] |
p2CMVmlL12 | poly-(D,L-lactic-co-glycolic acid) (PLGA) microspheres | CT26 | s.c. | / | [177] |
pmIL-12 | poly[alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) | CT26 | i.t. | / | [178] |
4-1BBL and IL-12 mRNA | biodegradable, lipophilic poly (beta-amino ester) (PBAE) nanoparticles | E0771, MC38 | i.t. | PD-1 antibodies | [161] |
HC/pIL-12/polyMET | HC/pIL-12/polyMET micelleplexes | LLC | i.v. | / | [162] |
HA/pIL-12/DOX-PMet | HA/pIL-12/DOX-PMet micelleplexes | 4T1 | i.v. | / | [163] |
p2CMVmIL-12 | water-soluble lipopolymer (WSLP) | CT26 | i.t. | / | [179] |
p2CMVmIL-12 | water-soluble lipopolymer (WSLP) | 4T1, EMT6 | i.t. | paclitaxel | [180] |
p2CMVmIL-12 | water-soluble lipopolymer (WSLP) | 4T1 | i.t. | paclitaxel | [181] |
p2CMVmIL-12 | water-soluble lipopolymers using cholesteryl chloroformate (WSLP) and PEI | CT26 | i.t. | / | [182] |
IL-12 plasmid | puly(N-lnethyldietheneamine sebacate) (PMDS) and cholesterol | 4T1 | i.t. | / | [183] |
pmIL-12 | mannosylated chitosan | CT26 | i.t. | / | [184] |
pmIL-12 | polyethylenimine covalently modified with methoxypolyethyleneglycol and cholesterol | GL261 | Intracranial (i.c.) | carmustine | [185] |
pCMV IL-12 | poly (D,L-lactic-co-glycolic) acid (PLGA) (50:50) with the cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and the ligand asialofetuin (AF) | BNL | i.t. | / | [186] |
CPP-IL-12 | CaCO3-polydopamine-polyethylenimine (CPP) | B16F10 | i.t. | / | [187] |
Nano-IL-12 | carboxydimethyl-maleic anhydride (CDM)-modified poly(ethylene glycol)-poly(L-Lysine) (PEG-pLL(CDM)) | 4T1 TNBC, B16F10 | i.v. | CTLA4 and PD-1 antibodies | [188] |
TINPs | dual-target PLGA nanoparticles | HepG-2 | / | / | [189] |
Lipid nanoparticles | |||||
IL-12-LNP | lipid nanoparticles (LNPs) | HCC | i.v. | / | [169] |
IL12 mRNA | a novel lipid nanoparticle (LNP) | MC38, B16F10, A20 | i.t. | PD-L1 antibodies | [170] |
F-PLP/pIL12 | an FRα-targeted lipoplex | CT26 | i.p. | / | [171] |
DAL4-LNP-IL-12 mRNA and IL-27 mRNA | ionizable lipid materials containing di-amino groups with various head groups (DALs)-DAL4-LNP | B16F10 | i.t. | / | [190] |
JCXH-211 | lipid-nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 | MC38, B16F10, EMT6 | i.v. i.t. | PD-1 antibodies | [191] |
LNP-Rep(IL-12-alb) | lipid nanoparticles (LNPs) | B16F10, CT26 | i.t. | PD-1 antibodies | [192] |
IL-12 mRNA | calcium carbonate nanoparticles | GL261 | i.v. | ultrasound | [193] |
IL12LNP | lipid nanoparticles (LNPs) | HT29 | i.t. | / | [194] |
IL-12 circRNA LNP | ionizable lipid nanoparticles | LLC1 | i.t. | PD-L1 antibodies | [195] |
pCMVIL-12 | transferrin (Tf)-lipoplexes | CT26 | i.t. | / | [196] |
DMP/IL-12 | monomethoxy poly (ethylene glycol)–poly (caprolactone) with the DOTAP lipid | C26, LL/2 | i.p. | / | [197] |
ATRA–cationic liposome/IL-12 pDNA | all-trans-retinoic acid (ATRA)-incorporated cationic liposome (ATRA–cationic liposome) | colon26 cells | i.v. | / | [198] |
2.3.2. Bio-Derived Delivery Vector
2.4. Cell-Based Delivery of IL-12 for Cancer Therapy
2.4.1. Dendritic Cells
Name | Cancer Model | ROA | Ref |
---|---|---|---|
DC.RheoIL12 | B16 | i.t. | [209] |
DC-mIL-12 | B16F10 | i.t. | [210] |
mIL-12 | B16 | i.t. | [211] |
DC+IL-12 | Melanoma B6 | i.t. | [212] |
DC.IL12 | B16 | i.t. | [213] |
gp100+IL12/DCs | B16BL6 | intradermal (i.d.) | [214] |
DC/IL-18+IL-12/TAg | MC38 | p.t. | [216] |
AdCMVmIL-12 | CT26 | i.t. | [215] |
BM-derived DC infected with AdCMVIL-12 | CT26, MC38 | i.t. | [217] |
AdIL12/IL18DC | CMS4, MethA | i.t. | [218] |
AdIL12DC | CMS4 | i.t. | [219] |
mIL-12 | TBJ-NB | i.t. | [220] |
DC/IL-12 | 178-2 BMA | i.t. | [221] |
DC-IL-12 | RENCA | i.t. | [222] |
AFIL-12 | pancreatic, colorectal, primary liver, gastrointestinal cancer malignancies | i.t. | [223] |
2.4.2. T Cells
2.4.3. Mesenchymal Stromal Cells
2.4.4. Other Cells
3. Clinical Perspectives
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Flanigan, R.C.; Salmon, S.E.; Blumenstein, B.A.; Bearman, S.I.; Roy, V.; McGrath, P.C.; Caton, J.R., Jr.; Munshi, N.; Crawford, E.D. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 2001, 345, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B.; Lotze, M.T.; Dutcher, J.P.; Fisher, R.I.; Weiss, G.; Margolin, K.; Abrams, J.; Sznol, M.; Parkinson, D.; Hawkins, M.; et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 1999, 17, 2105–2116. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, M.; Bajetta, E.; Canova, S.; Lotze, M.T.; Wesa, A.; Parmiani, G.; Anichini, A. Interleukin-12: Biological properties and clinical application. Clin. Cancer Res. 2007, 13, 4677–4685. [Google Scholar] [CrossRef]
- Weiss, J.M.; Subleski, J.J.; Wigginton, J.M.; Wiltrout, R.H. Immunotherapy of cancer by IL-12-based cytokine combinations. Expert. Opin. Biol. Ther. 2007, 7, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.J.; Taniguchi, M.; Street, S.E. The anti-tumor activity of IL-12: Mechanisms of innate immunity that are model and dose dependent. J. Immunol. 2000, 165, 2665–2670. [Google Scholar] [CrossRef]
- Colombo, M.P.; Trinchieri, G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor. Rev. 2002, 13, 155–168. [Google Scholar] [CrossRef]
- Boggio, K.; Di Carlo, E.; Rovero, S.; Cavallo, F.; Quaglino, E.; Lollini, P.L.; Nanni, P.; Nicoletti, G.; Wolf, S.; Musiani, P.; et al. Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res. 2000, 60, 359–364. [Google Scholar]
- Nguyen, K.G.; Vrabel, M.R.; Mantooth, S.M.; Hopkins, J.J.; Wagner, E.S.; Gabaldon, T.A.; Zaharoff, D.A. Localized Interleukin-12 for Cancer Immunotherapy. Front. Immunol. 2020, 11, 575597. [Google Scholar] [CrossRef]
- Chiocca, E.A.; Gelb, A.B.; Chen, C.C.; Rao, G.; Reardon, D.A.; Wen, P.Y.; Bi, W.L.; Peruzzi, P.; Amidei, C.; Triggs, D.; et al. Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: An open-label, multi-institutional phase I trial. Neuro Oncol. 2022, 24, 951–963. [Google Scholar] [CrossRef]
- Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers 2021, 13, 167. [Google Scholar] [CrossRef]
- Cohen, J. IL-12 deaths: Explanation and a puzzle. Science 1995, 270, 908. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.P.; Sherman, M.L.; Fisher, G.L.; Buchanan, L.J.; Larsen, G.; Atkins, M.B.; Sosman, J.A.; Dutcher, J.P.; Vogelzang, N.J.; Ryan, J.L. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 1997, 90, 2541–2548. [Google Scholar] [PubMed]
- Gollob, J.A.; Mier, J.W.; Veenstra, K.; McDermott, D.F.; Clancy, D.; Clancy, M.; Atkins, M.B. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: Ability to maintain IFN-gamma induction is associated with clinical response. Clin. Cancer Res. 2000, 6, 1678–1692. [Google Scholar] [PubMed]
- Schilbach, K.; Alkhaled, M.; Welker, C.; Eckert, F.; Blank, G.; Ziegler, H.; Sterk, M.; Müller, F.; Sonntag, K.; Wieder, T.; et al. Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. Oncoimmunology 2015, 4, e1014760. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.L.; Gillanders, W.E.; Kadima, A.N.; El-Naggar, S.; Rubinstein, M.P.; Demcheva, M.; Vournakis, J.N.; Cole, D.J. Review: Novel nonviral delivery approaches for interleukin-12 protein and gene systems: Curbing toxicity and enhancing adjuvant activity. J. Interferon Cytokine Res. 2006, 26, 593–608. [Google Scholar] [CrossRef]
- Sangro, B.; Melero, I.; Qian, C.; Prieto, J. Gene therapy of cancer based on interleukin 12. Curr. Gene Ther. 2005, 5, 573–581. [Google Scholar] [CrossRef]
- Xue, D.; Moon, B.; Liao, J.; Guo, J.; Zou, Z.; Han, Y.; Cao, S.; Wang, Y.; Fu, Y.X.; Peng, H. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci. Immunol. 2022, 7, eabi6899. [Google Scholar] [CrossRef]
- Mansurov, A.; Hosseinchi, P.; Chang, K.; Lauterbach, A.L.; Gray, L.T.; Alpar, A.T.; Budina, E.; Slezak, A.J.; Kang, S.; Cao, S.; et al. Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat. Biomed. Eng. 2022, 6, 819–829. [Google Scholar] [CrossRef]
- Momin, N.; Mehta, N.K.; Bennett, N.R.; Ma, L.; Palmeri, J.R.; Chinn, M.M.; Lutz, E.A.; Kang, B.; Irvine, D.J.; Spranger, S.; et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl. Med. 2019, 11, eaaw2614. [Google Scholar] [CrossRef]
- Mansurov, A.; Ishihara, J.; Hosseinchi, P.; Potin, L.; Marchell, T.M.; Ishihara, A.; Williford, J.M.; Alpar, A.T.; Raczy, M.M.; Gray, L.T.; et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 2020, 4, 531–543. [Google Scholar] [CrossRef]
- Ongaro, T.; Matasci, M.; Cazzamalli, S.; Gouyou, B.; De Luca, R.; Neri, D.; Villa, A. A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J. Biotechnol. 2019, 291, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Gafner, V.; Trachsel, E.; Neri, D. An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int. J. Cancer 2006, 119, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Fallon, J.K.; Vandeveer, A.J.; Schlom, J.; Greiner, J.W. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 2017, 8, 20558–20571. [Google Scholar] [CrossRef]
- Xu, C.; Marelli, B.; Qi, J.; Qin, G.; Yu, H.; Wang, H.; Jenkins, M.H.; Lo, K.-M.; Lan, Y. NHS-IL12 and bintrafusp alfa combination therapy enhances antitumor activity in preclinical cancer models. Transl. Oncol. 2022, 16, 101322. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Rolfe, P.A.; Hernández, V.M.; Guzman, W.; Kradjian, G.; Marelli, B.; Qin, G.; Qi, J.; Wang, H.; et al. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models. Clin. Cancer Res. 2017, 23, 5869–5880. [Google Scholar] [CrossRef]
- Cini, J.K.; Dexter, S.; Rezac, D.J.; McAndrew, S.J.; Hedou, G.; Brody, R.; Eraslan, R.N.; Kenney, R.T.; Mohan, P. SON-1210—A novel bifunctional IL-12/IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front. Immunol. 2023, 14, 1326927. [Google Scholar] [CrossRef]
- Pan, W.Y.; Lo, C.H.; Chen, C.C.; Wu, P.Y.; Roffler, S.R.; Shyue, S.K.; Tao, M.H. Cancer immunotherapy using a membrane-bound interleukin-12 with B7-1 transmembrane and cytoplasmic domains. Mol. Ther. 2012, 20, 927–937. [Google Scholar] [CrossRef]
- Nasu, Y.; Bangma, C.H.; Hull, G.W.; Lee, H.M.; Hu, J.; Wang, J.; McCurdy, M.A.; Shimura, S.; Yang, G.; Timme, T.L.; et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: Suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther. 1999, 6, 338–349. [Google Scholar] [CrossRef]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991, 252, 854–856. [Google Scholar] [CrossRef]
- Macedo, N.; Miller, D.M.; Haq, R.; Kaufman, H.L. Clinical landscape of oncolytic virus research in 2020. J. Immunother Cancer 2020, 8, e001486. [Google Scholar] [CrossRef]
- Sheridan, C. First oncolytic virus edges towards approval in surprise vote. Nat. Biotechnol. 2015, 33, 569–570. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Martuza, R.L.; Rabkin, S.D. Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther. 2001, 8, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Chouljenko, D.V.; Ding, J.; Lee, I.F.; Murad, Y.M.; Bu, X.; Liu, G.; Delwar, Z.; Sun, Y.; Yu, S.; Samudio, I.; et al. Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines 2020, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, S.; Cai, L.; Duan, H.; Li, Y.; Yang, J.; Wang, Y.; Liu, B.; Dong, S.; Fang, Z.; et al. A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol. J. 2022, 19, 74. [Google Scholar] [CrossRef]
- Bennett, J.J.; Malhotra, S.; Wong, R.J.; Delman, K.; Zager, J.; St-Louis, M.; Johnson, P.; Fong, Y. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann. Surg. 2001, 233, 819–826. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Yu, J.; Wan, Y.; Zhang, C.; Zhang, H.; Cao, Y. Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Res. 2023, 323, 198979. [Google Scholar] [CrossRef]
- Ghouse, S.M.; Nguyen, H.M.; Bommareddy, P.K.; Guz-Montgomery, K.; Saha, D. Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front. Oncol. 2020, 10, 384. [Google Scholar] [CrossRef]
- Saha, D.; Wakimoto, H.; Peters, C.W.; Antoszczyk, S.J.; Rabkin, S.D.; Martuza, R.L. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clin. Cancer Res. 2018, 24, 3409–3422. [Google Scholar] [CrossRef]
- Saha, D.; Rabkin, S.D.; Martuza, R.L. Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J. Immunother. Cancer 2020, 8, e000345. [Google Scholar] [CrossRef]
- Saha, D.; Martuza, R.L.; Rabkin, S.D. Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 2018, 10, 779–786. [Google Scholar] [CrossRef]
- Saha, D.; Martuza, R.L.; Rabkin, S.D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 2017, 32, 253–267.e255. [Google Scholar] [CrossRef] [PubMed]
- Ino, Y.; Saeki, Y.; Fukuhara, H.; Todo, T. Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin. Cancer Res. 2006, 12, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fulci, G.; Wakimoto, H.; Cheema, T.A.; Buhrman, J.S.; Jeyaretna, D.S.; Stemmer Rachamimov, A.O.; Rabkin, S.D.; Martuza, R.L. Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 2013, 15, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, X.; Chen, X.; Liu, Y.; Huang, Y.; Cheng, Y.; Ren, P.; Zhao, J.; Zhou, G.G. Enhanced therapeutic efficacy for glioblastoma immunotherapy with an oncolytic herpes simplex virus armed with anti-PD-1 antibody and IL-12. Mol. Ther. Oncol. 2024, 32, 200799. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Wakimoto, H.; Martuza, R.L.; Kaufman, H.L.; Rabkin, S.D.; Saha, D. Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J. Immunother. Cancer 2024, 12, e008880. [Google Scholar] [CrossRef]
- De Lucia, M.; Cotugno, G.; Bignone, V.; Garzia, I.; Nocchi, L.; Langone, F.; Petrovic, B.; Sasso, E.; Pepe, S.; Froechlich, G.; et al. Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-tumor Treatment. Mol. Ther. Oncolytics 2020, 19, 253–264. [Google Scholar] [CrossRef]
- Chouljenko, D.V.; Murad, Y.M.; Lee, I.F.; Delwar, Z.; Ding, J.; Liu, G.; Liu, X.; Bu, X.; Sun, Y.; Samudio, I.; et al. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol. Ther. Oncolytics 2023, 28, 334–348. [Google Scholar] [CrossRef]
- Kim, K.J.; Moon, D.; Kong, S.J.; Lee, Y.S.; Yoo, Y.; Kim, S.; Kim, C.; Chon, H.J.; Kim, J.H.; Choi, K.J. Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1. Gene Ther. 2021, 28, 186–198. [Google Scholar] [CrossRef]
- Todo, T.; Martuza, R.L.; Rabkin, S.D.; Johnson, P.A. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl. Acad. Sci. USA 2001, 98, 6396–6401. [Google Scholar] [CrossRef]
- Antoszczyk, S.; Spyra, M.; Mautner, V.F.; Kurtz, A.; Stemmer-Rachamimov, A.O.; Martuza, R.L.; Rabkin, S.D. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol. 2014, 16, 1057–1066. [Google Scholar] [CrossRef]
- Cheema, T.A.; Wakimoto, H.; Fecci, P.E.; Ning, J.; Kuroda, T.; Jeyaretna, D.S.; Martuza, R.L.; Rabkin, S.D. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc. Natl. Acad. Sci. USA 2013, 110, 12006–12011. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.J.; Chan, M.K.; Yu, Z.; Kim, T.H.; Bhargava, A.; Stiles, B.M.; Horsburgh, B.C.; Shah, J.P.; Ghossein, R.A.; Singh, B.; et al. Effective intravenous therapy of murine pulmonary metastases with an oncolytic herpes virus expressing interleukin 12. Clin. Cancer Res. 2004, 10, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Passer, B.J.; Cheema, T.; Wu, S.; Wu, C.L.; Rabkin, S.D.; Martuza, R.L. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther. 2013, 20, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.J.; Chan, M.K.; Yu, Z.; Ghossein, R.A.; Ngai, I.; Adusumilli, P.S.; Stiles, B.M.; Shah, J.P.; Singh, B.; Fong, Y. Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin. Cancer Res. 2004, 10, 4509–4516. [Google Scholar] [CrossRef]
- Wong, R.J.; Patel, S.G.; Kim, S.; DeMatteo, R.P.; Malhotra, S.; Bennett, J.J.; St-Louis, M.; Shah, J.P.; Johnson, P.A.; Fong, Y. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum. Gene Ther. 2001, 12, 253–265. [Google Scholar] [CrossRef]
- Varghese, S.; Rabkin, S.D.; Liu, R.; Nielsen, P.G.; Ipe, T.; Martuza, R.L. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther. 2006, 13, 253–265. [Google Scholar] [CrossRef]
- Jarnagin, W.R.; Zager, J.S.; Klimstra, D.; Delman, K.A.; Malhotra, S.; Ebright, M.; Little, S.; DeRubertis, B.; Stanziale, S.F.; Hezel, M.; et al. Neoadjuvant treatment of hepatic malignancy: An oncolytic herpes simplex virus expressing IL-12 effectively treats the parent tumor and protects against recurrence-after resection. Cancer Gene Ther. 2003, 10, 215–223. [Google Scholar] [CrossRef]
- Parker, J.N.; Meleth, S.; Hughes, K.B.; Gillespie, G.Y.; Whitley, R.J.; Markert, J.M. Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther. 2005, 12, 359–368. [Google Scholar] [CrossRef]
- Ring, E.K.; Li, R.; Moore, B.P.; Nan, L.; Kelly, V.M.; Han, X.; Beierle, E.A.; Markert, J.M.; Leavenworth, J.W.; Gillespie, G.Y.; et al. Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002. Mol. Ther. Oncolytics 2017, 7, 27–36. [Google Scholar] [CrossRef]
- Friedman, G.K.; Bernstock, J.D.; Chen, D.; Nan, L.; Moore, B.P.; Kelly, V.M.; Youngblood, S.L.; Langford, C.P.; Han, X.; Ring, E.K.; et al. Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression. Sci. Rep. 2018, 8, 13930. [Google Scholar] [CrossRef]
- Cody, J.J.; Scaturro, P.; Cantor, A.B.; Yancey Gillespie, G.; Parker, J.N.; Markert, J.M. Preclinical evaluation of oncolytic δγ(1)34.5 herpes simplex virus expressing interleukin-12 for therapy of breast cancer brain metastases. Int. J. Breast Cancer 2012, 2012, 628697. [Google Scholar] [CrossRef] [PubMed]
- Gillory, L.A.; Megison, M.L.; Stewart, J.E.; Mroczek-Musulman, E.; Nabers, H.C.; Waters, A.M.; Kelly, V.; Coleman, J.M.; Markert, J.M.; Gillespie, G.Y.; et al. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of neuroblastoma. PLoS ONE 2013, 8, e77753. [Google Scholar] [CrossRef] [PubMed]
- Megison, M.L.; Gillory, L.A.; Stewart, J.E.; Nabers, H.C.; Mroczek-Musulman, E.; Waters, A.M.; Coleman, J.M.; Kelly, V.; Markert, J.M.; Gillespie, G.Y.; et al. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of pediatric solid tumors. PLoS ONE 2014, 9, e86843. [Google Scholar] [CrossRef]
- Leoni, V.; Vannini, A.; Gatta, V.; Rambaldi, J.; Sanapo, M.; Barboni, C.; Zaghini, A.; Nanni, P.; Lollini, P.L.; Casiraghi, C.; et al. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog. 2018, 14, e1007209. [Google Scholar] [CrossRef]
- Alessandrini, F.; Menotti, L.; Avitabile, E.; Appolloni, I.; Ceresa, D.; Marubbi, D.; Campadelli-Fiume, G.; Malatesta, P. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019, 38, 4467–4479. [Google Scholar] [CrossRef]
- Yan, R.; Zhou, X.; Chen, X.; Liu, X.; Tang, Y.; Ma, J.; Zhou, G.G.; ImmVira Group Corporation. Enhancement of Oncolytic Activity of oHSV Expressing IL-12 and Anti PD-1 Antibody by Concurrent Administration of Exosomes Carrying CTLA-4 miRNA. Immunotherapy 2019, 5, 10–35248. [Google Scholar]
- Xiao, X.; Li, J.; McCown, T.J.; Samulski, R.J. Gene transfer by adeno-associated virus vectors into the central nervous system. Exp. Neurol. 1997, 144, 113–124. [Google Scholar] [CrossRef]
- Xiao, X.; Li, J.; Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 1998, 72, 2224–2232. [Google Scholar] [CrossRef]
- Xiao, X.; Li, J.; Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 1996, 70, 8098–8108. [Google Scholar] [CrossRef]
- Vanrell, L.; Di Scala, M.; Blanco, L.; Otano, I.; Gil-Farina, I.; Baldim, V.; Paneda, A.; Berraondo, P.; Beattie, S.G.; Chtarto, A.; et al. Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol. Ther. 2011, 19, 1245–1253. [Google Scholar] [CrossRef]
- Daya, S.; Berns, K.I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 2008, 21, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Kanagawa, N.; Gao, J.Q.; Motomura, Y.; Yanagawa, T.; Mukai, Y.; Yoshioka, Y.; Okada, N.; Nakagawa, S. Antitumor mechanism of intratumoral injection with IL-12-expressing adenoviral vector against IL-12-unresponsive tumor. Biochem. Biophys. Res. Commun. 2008, 372, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Thaci, B.; Ahmed, A.U.; Ulasov, I.V.; Wainwright, D.A.; Nigam, P.; Auffinger, B.; Tobias, A.L.; Han, Y.; Zhang, L.; Moon, K.S.; et al. Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma. Cancer Gene Ther. 2014, 21, 38–44. [Google Scholar] [CrossRef]
- Chiu, T.L.; Lin, S.Z.; Hsieh, W.H.; Peng, C.W. AAV2-mediated interleukin-12 in the treatment of malignant brain tumors through activation of NK cells. Int. J. Oncol. 2009, 35, 1361–1367. [Google Scholar] [CrossRef]
- Chiu, T.L.; Wang, M.J.; Su, C.C. The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J. Biomed. Sci. 2012, 19, 45. [Google Scholar] [CrossRef]
- Mazzolini, G.; Qian, C.; Xie, X.; Sun, Y.; Lasarte, J.J.; Drozdzik, M.; Prieto, J. Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12. Cancer Gene Ther. 1999, 6, 514–522. [Google Scholar] [CrossRef]
- Caruso, M.; Pham-Nguyen, K.; Kwong, Y.L.; Xu, B.; Kosai, K.I.; Finegold, M.; Woo, S.L.; Chen, S.H. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc. Natl. Acad. Sci. USA 1996, 93, 11302–11306. [Google Scholar] [CrossRef]
- Huang, J.H.; Zhang, S.N.; Choi, K.J.; Choi, I.K.; Kim, J.H.; Lee, M.G.; Lee, M.; Kim, H.; Yun, C.O. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol. Ther. 2010, 18, 264–274. [Google Scholar] [CrossRef]
- Zhang, S.N.; Choi, I.K.; Huang, J.H.; Yoo, J.Y.; Choi, K.J.; Yun, C.O. Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol. Ther. 2011, 19, 1558–1568. [Google Scholar] [CrossRef]
- Lo, C.H.; Chang, C.M.; Tang, S.W.; Pan, W.Y.; Fang, C.C.; Chen, Y.; Wu, P.Y.; Chen, K.Y.; Ma, H.I.; Xiao, X.; et al. Differential antitumor effect of interleukin-12 family cytokines on orthotopic hepatocellular carcinoma. J. Gene Med. 2010, 12, 423–434. [Google Scholar] [CrossRef]
- Schmitz, V.; Tirado-Ledo, L.; Raskopf, E.; Rabe, C.; Wernert, N.; Wang, L.; Prieto, J.; Qian, C.; Sauerbruch, T.; Caselmann, W.H. Effective antitumour mono- and combination therapy by gene delivery of angiostatin-like molecule and interleukin-12 in a murine hepatoma model. Int. J. Colorectal Dis. 2005, 20, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Timme, T.L.; Tabata, K.; Naruishi, K.; Kusaka, N.; Watanabe, M.; Abdelfattah, E.; Zhu, J.X.; Ren, C.; Ren, C.; et al. Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther. 2007, 14, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Aparicio, M.; Alzuguren, P.; Mauleon, I.; Medina-Echeverz, J.; Hervas-Stubbs, S.; Mancheno, U.; Berraondo, P.; Crettaz, J.; Gonzalez-Aseguinolaza, G.; Prieto, J.; et al. Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut 2011, 60, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Oh, J.E.; Hong, J.; Chung, Y.; Lee, Y.; Park, K.D.; Kim, S.; Yun, C.O. Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J. Control. Release 2017, 259, 115–127. [Google Scholar] [CrossRef]
- Hwang, K.S.; Cho, W.K.; Yoo, J.; Yun, H.J.; Kim, S.; Im, D.S. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice. BMC Cancer 2005, 5, 51. [Google Scholar] [CrossRef]
- Düchs, M.J.; Kratzer, R.F.; Vieyra-Garcia, P.; Strobel, B.; Schönberger, T.; Groß, P.; Aljayyoussi, G.; Gupta, A.; Lang, I.; Klein, H.; et al. Riboswitch-controlled IL-12 gene therapy reduces hepatocellular cancer in mice. Front. Immunol. 2024, 15, 1360063. [Google Scholar] [CrossRef]
- Barrett, J.A.; Cai, H.; Miao, J.; Khare, P.D.; Gonzalez, P.; Dalsing-Hernandez, J.; Sharma, G.; Chan, T.; Cooper, L.J.N.; Lebel, F. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System(®) (RTS(®)) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 2018, 25, 106–116. [Google Scholar] [CrossRef]
- Choi, K.J.; Zhang, S.N.; Choi, I.K.; Kim, J.S.; Yun, C.O. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther. 2012, 19, 711–723. [Google Scholar] [CrossRef]
- Kirchhammer, N.; Trefny, M.P.; Natoli, M.; Brücher, D.; Smith, S.N.; Werner, F.; Koch, V.; Schreiner, D.; Bartoszek, E.; Buchi, M.; et al. NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci. Transl. Med. 2022, 14, eabm9043. [Google Scholar] [CrossRef]
- Poutou, J.; Bunuales, M.; Gonzalez-Aparicio, M.; Garcia-Aragoncillo, E.; Quetglas, J.I.; Casado, R.; Bravo-Perez, C.; Alzuguren, P.; Hernandez-Alcoceba, R. Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther. 2015, 22, 696–706. [Google Scholar] [CrossRef]
- Bortolanza, S.; Bunuales, M.; Otano, I.; Gonzalez-Aseguinolaza, G.; Ortiz-de-Solorzano, C.; Perez, D.; Prieto, J.; Hernandez-Alcoceba, R. Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters. Mol. Ther. 2009, 17, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Mazzolini, G.; Ruiz, J.; Herraiz, M.; Quiroga, J.; Herrero, I.; Benito, A.; Larrache, J.; Pueyo, J.; Subtil, J.C.; et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol. 2004, 22, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.K.; Lee, J.S.; Zhang, S.N.; Park, J.; Sonn, C.H.; Lee, K.M.; Yun, C.O. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther. 2011, 18, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, J.H.; Choi, K.J.; Choi, I.K.; Kim, H.; Cho, S.; Cho, B.C.; Yun, C.O. Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin. Cancer Res. 2006, 12, 5859–5868. [Google Scholar] [CrossRef]
- Narvaiza, I.; Mazzolini, G.; Barajas, M.; Duarte, M.; Zaratiegui, M.; Qian, C.; Melero, I.; Prieto, J. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J. Immunol. 2000, 164, 3112–3122. [Google Scholar] [CrossRef]
- Gyorffy, S.; Palmer, K.; Podor, T.J.; Hitt, M.; Gauldie, J. Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: A role for combined anti-angiogenesis and immunotherapy. J. Immunol. 2001, 166, 6212–6217. [Google Scholar] [CrossRef]
- Hall, S.J.; Canfield, S.E.; Yan, Y.; Hassen, W.; Selleck, W.A.; Chen, S.H. A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer. Gene Ther. 2002, 9, 511–517. [Google Scholar] [CrossRef]
- Wang, L.; Hernández-Alcoceba, R.; Shankar, V.; Zabala, M.; Kochanek, S.; Sangro, B.; Kramer, M.G.; Prieto, J.; Qian, C. Prolonged and inducible transgene expression in the liver using gutless adenovirus: A potential therapy for liver cancer. Gastroenterology 2004, 126, 278–289. [Google Scholar] [CrossRef]
- Chang, C.J.; Chen, Y.H.; Huang, K.W.; Cheng, H.W.; Chan, S.F.; Tai, K.F.; Hwang, L.H. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology 2007, 45, 746–754. [Google Scholar] [CrossRef]
- Chen, S.H.; Pham-Nguyen, K.B.; Martinet, O.; Huang, Y.; Yang, W.; Thung, S.N.; Chen, L.; Mittler, R.; Woo, S.L. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol. Ther. 2000, 2, 39–46. [Google Scholar] [CrossRef]
- Fang, L.; Tian, W.; Zhang, C.; Wang, X.; Li, W.; Zhang, Q.; Zhang, Y.; Zheng, J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol. Res. 2023, 189, 106701. [Google Scholar] [CrossRef] [PubMed]
- Mercer, J.; Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 2008, 320, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Hiley, C.T.; Yuan, M.; Lemoine, N.R.; Wang, Y. Lister strain vaccinia virus, a potential therapeutic vector targeting hypoxic tumours. Gene Ther. 2010, 17, 281–287. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Z.; Du, P.; Chard, L.S.; Yan, W.; El Khouri, M.; Wang, Z.; Zhang, Z.; Chu, Y.; Gao, D.; et al. A Virus-Infected, Reprogrammed Somatic Cell-Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 465–476. [Google Scholar] [CrossRef]
- Hou, W.; Chen, H.; Rojas, J.; Sampath, P.; Thorne, S.H. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int. J. Cancer 2014, 135, 1238–1246. [Google Scholar] [CrossRef]
- Breitbach, C.J.; Burke, J.; Jonker, D.; Stephenson, J.; Haas, A.R.; Chow, L.Q.; Nieva, J.; Hwang, T.H.; Moon, A.; Patt, R.; et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 2011, 477, 99–102. [Google Scholar] [CrossRef]
- Nakao, S.; Arai, Y.; Tasaki, M.; Yamashita, M.; Murakami, R.; Kawase, T.; Amino, N.; Nakatake, M.; Kurosaki, H.; Mori, M.; et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci. Transl. Med. 2020, 12, eaax7992. [Google Scholar] [CrossRef]
- Chen, B.; Timiryasova, T.M.; Haghighat, P.; Andres, M.L.; Kajioka, E.H.; Dutta-Roy, R.; Gridley, D.S.; Fodor, I. Low-dose vaccinia virus-mediated cytokine gene therapy of glioma. J. Immunother. 2001, 24, 46–57. [Google Scholar] [CrossRef]
- Chen, B.; Timiryasova, T.M.; Andres, M.L.; Kajioka, E.H.; Dutta-Roy, R.; Gridley, D.S.; Fodor, I. Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther. 2000, 7, 1437–1447. [Google Scholar] [CrossRef]
- Ahmed, J.; Chard, L.S.; Yuan, M.; Wang, J.; Howells, A.; Li, Y.; Li, H.; Zhang, Z.; Lu, S.; Gao, D.; et al. A new oncolytic Vacciniavirus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J. Immunother. Cancer 2020, 8, e000415. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Flanagan, K.; Lee, C.S.; Perretta, D.J.; Horig, H. Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 2002, 20, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Jackaman, C.; Nelson, D.J. Cytokine-armed vaccinia virus infects the mesothelioma tumor microenvironment to overcome immune tolerance and mediate tumor resolution. Cancer Gene Ther. 2010, 17, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.T.; Crupi, M.J.F.; Taha, Z.; Poutou, J.; Whelan, J.T.; Vallati, S.; Petryk, J.; Marius, R.; Austin, B.; Azad, T.; et al. Engineering Rapalog-Inducible Genetic Switches Based on Split-T7 Polymerase to Regulate Oncolytic Virus-Driven Production of Tumour-Localized IL-12 for Anti-Cancer Immunotherapy. Pharmaceuticals 2023, 16, 709. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, H.; Ren, J.; Liu, W.; Chen, L.; Chen, H.; Ye, J.; Dai, E.; Ma, C.; Ju, S.; et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J. Immunother. Cancer 2020, 8, e000710. [Google Scholar] [CrossRef]
- Kurokawa, C.; Agrawal, S.; Mitra, A.; Galvani, E.; Burke, S.; Varshine, A.; Rothstein, R.; Schifferli, K.; Monks, N.R.; Foloppe, J.; et al. Mediation of antitumor activity by AZD4820 oncolytic vaccinia virus encoding IL-12. Mol. Ther. Oncol. 2024, 32, 200758. [Google Scholar] [CrossRef]
- Seclì, L.; Infante, L.; Nocchi, L.; De Lucia, M.; Cotugno, G.; Leoni, G.; Micarelli, E.; Garzia, I.; Avalle, L.; Sdruscia, G.; et al. Vector Aided Microenvironment programming (VAMP): Reprogramming the TME with MVA virus expressing IL-12 for effective antitumor activity. J. Immunother. Cancer 2023, 11, e006718. [Google Scholar] [CrossRef]
- Bella, Á.; Arrizabalaga, L.; Di Trani, C.A.; Gonzalez-Gomariz, J.; Gomar, C.; Russo-Cabrera, J.S.; Olivera, I.; Cirella, A.; Fernandez-Sendin, M.; Alvarez, M.; et al. Intraperitoneal administration of a modified vaccinia virus Ankara confers single-chain interleukin-12 expression to the omentum and achieves immune-mediated efficacy against peritoneal carcinomatosis. J. Immunother. Cancer 2023, 11, e006702. [Google Scholar] [CrossRef]
- Backhaus, P.S.; Veinalde, R.; Hartmann, L.; Dunder, J.E.; Jeworowski, L.M.; Albert, J.; Hoyler, B.; Poth, T.; Jäger, D.; Ungerechts, G.; et al. Immunological Effects and Viral Gene Expression Determine the Efficacy of Oncolytic Measles Vaccines Encoding IL-12 or IL-15 Agonists. Viruses 2019, 11, 914. [Google Scholar] [CrossRef]
- Veinalde, R.; Grossardt, C.; Hartmann, L.; Bourgeois-Daigneault, M.C.; Bell, J.C.; Jäger, D.; von Kalle, C.; Ungerechts, G.; Engeland, C.E. Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology 2017, 6, e1285992. [Google Scholar] [CrossRef]
- Najmuddin, S.; Amin, Z.M.; Tan, S.W.; Yeap, S.K.; Kalyanasundram, J.; Ani, M.A.C.; Veerakumarasivam, A.; Chan, S.C.; Chia, S.L.; Yusoff, K.; et al. Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int. 2020, 20, 278. [Google Scholar] [CrossRef]
- Ren, G.; Tian, G.; Liu, Y.; He, J.; Gao, X.; Yu, Y.; Liu, X.; Zhang, X.; Sun, T.; Liu, S.; et al. Recombinant Newcastle Disease Virus Encoding IL-12 and/or IL-2 as Potential Candidate for Hepatoma Carcinoma Therapy. Technol. Cancer Res. Treat. 2016, 15, NP83–NP94. [Google Scholar] [CrossRef] [PubMed]
- Syed Najmuddin, S.U.F.; Amin, Z.M.; Tan, S.W.; Yeap, S.K.; Kalyanasundram, J.; Veerakumarasivam, A.; Chan, S.C.; Chia, S.L.; Yusoff, K.; Alitheen, N.B. Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ 2020, 8, e9761. [Google Scholar] [CrossRef] [PubMed]
- Asselin-Paturel, C.; Lassau, N.; Guinebretière, J.M.; Zhang, J.; Gay, F.; Bex, F.; Hallez, S.; Leclere, J.; Peronneau, P.; Mami-Chouaib, F.; et al. Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography. Gene Ther. 1999, 6, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, P.; Chen, M.; Castaños-Velez, E.; Liljeström, P.; Jondal, M. Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int. J. Cancer 2002, 98, 554–560. [Google Scholar] [CrossRef]
- Melero, I.; Quetglas, J.I.; Reboredo, M.; Dubrot, J.; Rodriguez-Madoz, J.R.; Mancheño, U.; Casales, E.; Riezu-Boj, J.I.; Ruiz-Guillen, M.; Ochoa, M.C.; et al. Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL12. Cancer Res. 2015, 75, 497–507. [Google Scholar] [CrossRef]
- Roche, F.P.; Sheahan, B.J.; O’Mara, S.M.; Atkins, G.J. Semliki Forest virus-mediated gene therapy of the RG2 rat glioma. Neuropathol. Appl. Neurobiol. 2010, 36, 648–660. [Google Scholar] [CrossRef]
- Quetglas, J.I.; Labiano, S.; Aznar, M.; Bolaños, E.; Azpilikueta, A.; Rodriguez, I.; Casales, E.; Sánchez-Paulete, A.R.; Segura, V.; Smerdou, C.; et al. Virotherapy with a Semliki Forest Virus-Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade. Cancer Immunol. Res. 2015, 3, 449–454. [Google Scholar] [CrossRef]
- Quetglas, J.I.; Dubrot, J.; Bezunartea, J.; Sanmamed, M.F.; Hervas-Stubbs, S.; Smerdou, C.; Melero, I. Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12. Mol. Ther. 2012, 20, 1664–1675. [Google Scholar] [CrossRef]
- Yamanaka, R.; Zullo, S.A.; Tanaka, R.; Ramsey, J.; Blaese, M.; Xanthopoulos, K.G. Induction of a therapeutic antitumor immunological response by intratumoral injection of genetically engineered Semliki Forest virus to produce interleukin-12. Neurosurg. Focus 2000, 9, e7. [Google Scholar] [CrossRef]
- Chikkanna-Gowda, C.P.; Sheahan, B.J.; Fleeton, M.N.; Atkins, G.J. Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Ther. 2005, 12, 1253–1263. [Google Scholar] [CrossRef]
- Rodriguez-Madoz, J.R.; Prieto, J.; Smerdou, C. Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol. Ther. 2005, 12, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Quetglas, J.I.; Rodriguez-Madoz, J.R.; Bezunartea, J.; Ruiz-Guillen, M.; Casales, E.; Medina-Echeverz, J.; Prieto, J.; Berraondo, P.; Hervas-Stubbs, S.; Smerdou, C. Eradication of liver-implanted tumors by Semliki Forest virus expressing IL-12 requires efficient long-term immune responses. J. Immunol. 2013, 190, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Madoz, J.R.; Zabala, M.; Alfaro, M.; Prieto, J.; Kramer, M.G.; Smerdou, C. Short-term intratumoral interleukin-12 expressed from an alphaviral vector is sufficient to induce an efficient antitumoral response against spontaneous hepatocellular carcinomas. Hum. Gene Ther. 2014, 25, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Madoz, J.R.; Liu, K.H.; Quetglas, J.I.; Ruiz-Guillen, M.; Otano, I.; Crettaz, J.; Butler, S.D.; Bellezza, C.A.; Dykes, N.L.; Tennant, B.C.; et al. Semliki forest virus expressing interleukin-12 induces antiviral and antitumoral responses in woodchucks with chronic viral hepatitis and hepatocellular carcinoma. J. Virol. 2009, 83, 12266–12278. [Google Scholar] [CrossRef]
- Ren, H.; Boulikas, T.; Lundstrom, K.; Söling, A.; Warnke, P.C.; Rainov, N.G. Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene--a phase I/II clinical protocol. J. Neurooncol. 2003, 64, 147–154. [Google Scholar] [CrossRef]
- Kramer, M.G.; Masner, M.; Casales, E.; Moreno, M.; Smerdou, C.; Chabalgoity, J.A. Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer 2015, 15, 620. [Google Scholar] [CrossRef]
- Alkayyal, A.A.; Tai, L.H.; Kennedy, M.A.; de Souza, C.T.; Zhang, J.; Lefebvre, C.; Sahi, S.; Ananth, A.A.; Mahmoud, A.B.; Makrigiannis, A.P.; et al. NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunol. Res. 2017, 5, 211–221. [Google Scholar] [CrossRef]
- Shin, E.J.; Wanna, G.B.; Choi, B.; Aguila, D., 3rd; Ebert, O.; Genden, E.M.; Woo, S.L. Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope 2007, 117, 210–214. [Google Scholar] [CrossRef]
- Ryapolova, A.; Minskaia, E.; Gasanov, N.; Moroz, V.; Krapivin, B.; Egorov, A.D.; Laktyushkin, V.; Zhuravleva, S.; Nagornych, M.; Subcheva, E.; et al. Development of Recombinant Oncolytic rVSV-mIL12-mGMCSF for Cancer Immunotherapy. Int. J. Mol. Sci. 2023, 25, 211. [Google Scholar] [CrossRef]
- Granot, T.; Venticinque, L.; Tseng, J.C.; Meruelo, D. Activation of cytotoxic and regulatory functions of NK cells by Sindbis viral vectors. PLoS ONE 2011, 6, e20598. [Google Scholar] [CrossRef]
- Tseng, J.C.; Hurtado, A.; Yee, H.; Levin, B.; Boivin, C.; Benet, M.; Blank, S.V.; Pellicer, A.; Meruelo, D. Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res. 2004, 64, 6684–6692. [Google Scholar] [CrossRef] [PubMed]
- Opp, S.; Hurtado, A.; Pampeno, C.; Lin, Z.; Meruelo, D. Potent and Targeted Sindbis Virus Platform for Immunotherapy of Ovarian Cancer. Cells 2022, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Scherwitzl, I.; Opp, S.; Hurtado, A.M.; Pampeno, C.; Loomis, C.; Kannan, K.; Yu, M.; Meruelo, D. Sindbis Virus with Anti-OX40 Overcomes the Immunosuppressive Tumor Microenvironment of Low-Immunogenic Tumors. Mol. Ther. Oncolytics 2020, 17, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Triozzi, P.L.; Strong, T.V.; Bucy, R.P.; Allen, K.O.; Carlisle, R.R.; Moore, S.E.; Lobuglio, A.F.; Conry, R.M. Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum. Gene Ther. 2005, 16, 91–100. [Google Scholar] [CrossRef]
- Triozzi, P.L.; Allen, K.O.; Carlisle, R.R.; Craig, M.; LoBuglio, A.F.; Conry, R.M. Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin. Cancer Res. 2005, 11, 4168–4175. [Google Scholar] [CrossRef]
- Puisieux, I.; Odin, L.; Poujol, D.; Moingeon, P.; Tartaglia, J.; Cox, W.; Favrot, M. Canarypox virus-mediated interleukin 12 gene transfer into murine mammary adenocarcinoma induces tumor suppression and long-term antitumoral immunity. Hum. Gene Ther. 1998, 9, 2481–2492. [Google Scholar] [CrossRef]
- Jiang, H.; Nace, R.; Carrasco, T.F.; Zhang, L.; Whye Peng, K.; Russell, S.J. Oncolytic varicella-zoster virus engineered with ORF8 deletion and armed with drug-controllable interleukin-12. J. Immunother. Cancer 2024, 12, e008307. [Google Scholar] [CrossRef]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef]
- Aslan, C.; Kiaie, S.H.; Zolbanin, N.M.; Lotfinejad, P.; Ramezani, R.; Kashanchi, F.; Jafari, R. Exosomes for mRNA delivery: A novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol. 2021, 21, 20. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, J.; Xie, J.; Wang, Y.; Sun, J.; Liu, T.; Zhao, Y.; Zhao, X.; Wang, X.; Ma, Y.; et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 2020, 4, 69–83. [Google Scholar] [CrossRef]
- You, Y.; Tian, Y.; Yang, Z.; Shi, J.; Kwak, K.J.; Tong, Y.; Estania, A.P.; Cao, J.; Hsu, W.H.; Liu, Y.; et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 2023, 7, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, X.; Yue, Y.; Zhang, K.; Cheng, K.; Feng, Q.; Ma, N.; Liang, J.; Zhang, T.; Zhang, L.; et al. Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine. Adv. Mater. 2022, 34, e2109984. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, Y.; Nie, G.; Zhao, X. mRNA Delivery Platform Based on Bacterial Outer Membrane Vesicles for Tumor Vaccine. Bio Protoc. 2023, 13, e4774. [Google Scholar] [CrossRef] [PubMed]
- Segel, M.; Lash, B.; Song, J.; Ladha, A.; Liu, C.C.; Jin, X.; Mekhedov, S.L.; Macrae, R.K.; Koonin, E.V.; Zhang, F. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889. [Google Scholar] [CrossRef]
- Zochowska, M.; Piguet, A.C.; Jemielity, J.; Kowalska, J.; Szolajska, E.; Dufour, J.F.; Chroboczek, J. Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine 2015, 11, 67–76. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Cheng, C.J.; Patel, T.R.; Weller, C.E.; Piepmeier, J.M.; Jiang, Z.; Saltzman, W.M. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater. 2011, 11, 82–90. [Google Scholar] [CrossRef]
- Kauffman, A.C.; Piotrowski-Daspit, A.S.; Nakazawa, K.H.; Jiang, Y.; Datye, A.; Saltzman, W.M. Tunability of Biodegradable Poly(amine- co-ester) Polymers for Customized Nucleic Acid Delivery and Other Biomedical Applications. Biomacromolecules 2018, 19, 3861–3873. [Google Scholar] [CrossRef]
- Jiang, Y.; Gaudin, A.; Zhang, J.; Agarwal, T.; Song, E.; Kauffman, A.C.; Tietjen, G.T.; Wang, Y.; Jiang, Z.; Cheng, C.J.; et al. A “top-down” approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials 2018, 176, 122–130. [Google Scholar] [CrossRef]
- Patel, A.K.; Kaczmarek, J.C.; Bose, S.; Kauffman, K.J.; Mir, F.; Heartlein, M.W.; DeRosa, F.; Langer, R.; Anderson, D.G. Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv. Mater. 2019, 31, e1805116. [Google Scholar] [CrossRef]
- Yang, W.; Mixich, L.; Boonstra, E.; Cabral, H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv. Healthc. Mater. 2023, 12, e2202688. [Google Scholar] [CrossRef]
- Neshat, S.Y.; Chan, C.H.R.; Harris, J.; Zmily, O.M.; Est-Witte, S.; Karlsson, J.; Shannon, S.R.; Jain, M.; Doloff, J.C.; Green, J.J.; et al. Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials 2023, 300, 122185. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, J.; Yang, T.; Li, Y.; Zhu, R.; Hou, Y.; Liu, Y. Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater. 2021, 128, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, L.; Zhou, L.; Yu, S.; Lan, Y.; Liang, Q.; Liu, J.; Cao, A.; Liu, Y. Tumor Microenvironment-Triggered Charge Reversal Polymetformin-Based Nanosystem Co-Delivered Doxorubicin and IL-12 Cytokine Gene for Chemo-Gene Combination Therapy on Metastatic Breast Cancer. ACS Appl. Mater. Interfaces 2020, 12, 45873–45890. [Google Scholar] [CrossRef] [PubMed]
- Estapé Senti, M.; García Del Valle, L.; Schiffelers, R.M. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv. Drug Deliv. Rev. 2024, 206, 115190. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Ad-El, N.; Hazan-Halevy, I.; Stotsky-Oterin, L.; Peer, D. Targeting cancer with mRNA-lipid nanoparticles: Key considerations and future prospects. Nat. Rev. Clin. Oncol. 2023, 20, 739–754. [Google Scholar] [CrossRef]
- Zong, Y.; Lin, Y.; Wei, T.; Cheng, Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Adv. Mater. 2023, 35, e2303261. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef]
- Dilliard, S.A.; Cheng, Q.; Siegwart, D.J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA 2021, 118, e2109256118. [Google Scholar] [CrossRef]
- Lai, I.; Swaminathan, S.; Baylot, V.; Mosley, A.; Dhanasekaran, R.; Gabay, M.; Felsher, D.W. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer 2018, 6, 125. [Google Scholar] [CrossRef]
- Hewitt, S.L.; Bailey, D.; Zielinski, J.; Apte, A.; Musenge, F.; Karp, R.; Burke, S.; Garcon, F.; Mishra, A.; Gurumurthy, S.; et al. Intratumoral IL12 mRNA Therapy Promotes TH1 Transformation of the Tumor Microenvironment. Clin. Cancer Res. 2020, 26, 6284–6298. [Google Scholar] [CrossRef]
- Luo, M.; Liang, X.; Luo, S.T.; Wei, X.W.; Liu, T.; Ren, J.; Ma, C.C.; Yang, Y.H.; Wang, B.L.; Liu, L.; et al. Folate-Modified Lipoplexes Delivering the Interleukin-12 Gene for Targeting Colon Cancer Immunogene Therapy. J. Biomed. Nanotechnol. 2015, 11, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.F.; Worth, L.L.; Densmore, C.L.; Xu, B.; Duan, X.; Kleinerman, E.S. Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin. Cancer Res. 2003, 9, 3462–3468. [Google Scholar] [PubMed]
- Rodrigo-Garzón, M.; Berraondo, P.; Ochoa, L.; Zulueta, J.J.; González-Aseguinolaza, G. Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther. 2010, 17, 20–27. [Google Scholar] [CrossRef]
- Jia, S.F.; Worth, L.L.; Densmore, C.L.; Xu, B.; Zhou, Z.; Kleinerman, E.S. Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther. 2002, 9, 260–266. [Google Scholar] [CrossRef]
- Duan, X.; Jia, S.F.; Koshkina, N.; Kleinerman, E.S. Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 2006, 106, 1382–1388. [Google Scholar] [CrossRef]
- Maheshwari, A.; Mahato, R.I.; McGregor, J.; Han, S.; Samlowski, W.E.; Park, J.S.; Kim, S.W. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol. Ther. 2000, 2, 121–130. [Google Scholar] [CrossRef]
- Son, H.J.; Kim, J.S. Therapeutic efficacy of DNA-loaded PLGA microspheres in tumor-bearing mice. Arch. Pharm. Res. 2007, 30, 1047–1050. [Google Scholar] [CrossRef]
- Maheshwari, A.; Han, S.; Mahato, R.I.; Kim, S.W. Biodegradable polymer-based interleukin-12 gene delivery: Role of induced cytokines, tumor infiltrating cells and nitric oxide in anti-tumor activity. Gene Ther. 2002, 9, 1075–1084. [Google Scholar] [CrossRef]
- Mahato, R.I.; Lee, M.; Han, S.; Maheshwari, A.; Kim, S.W. Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Mol. Ther. 2001, 4, 130–138. [Google Scholar] [CrossRef]
- Janát-Amsbury, M.M.; Yockman, J.W.; Lee, M.; Kern, S.; Furgeson, D.Y.; Bikram, M.; Kim, S.W. Local, non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment. J. Control Release 2005, 101, 273–285. [Google Scholar] [CrossRef]
- Janát-Amsbury, M.M.; Yockman, J.W.; Lee, M.; Kern, S.; Furgeson, D.Y.; Bikram, M.; Kim, S.W. Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Mol. Ther. 2004, 9, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Yockman, J.W.; Maheshwari, A.; Han, S.O.; Kim, S.W. Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J. Control Release 2003, 87, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Ye, W.H.; Yoon, H.S.; Yang, Y.Y. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater. 2006, 5, 791–796. [Google Scholar] [CrossRef]
- Kim, T.H.; Jin, H.; Kim, H.W.; Cho, M.H.; Cho, C.S. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol. Cancer Ther. 2006, 5, 1723–1732. [Google Scholar] [CrossRef]
- Sonabend, A.M.; Velicu, S.; Ulasov, I.V.; Han, Y.; Tyler, B.; Brem, H.; Matar, M.M.; Fewell, J.G.; Anwer, K.; Lesniak, M.S. A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer. Drugs 2008, 19, 133–142. [Google Scholar] [CrossRef]
- Díez, S.; Navarro, G.; de Ilarduya, C.T. In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J. Gene Med. 2009, 11, 38–45. [Google Scholar] [CrossRef]
- Shen, H.H.; Peng, J.F.; Wang, R.R.; Wang, P.Y.; Zhang, J.X.; Sun, H.F.; Liang, Y.; Li, Y.M.; Xue, J.N.; Li, Y.J.; et al. IL-12-Overexpressed Nanoparticles Suppress the Proliferation of Melanoma Through Inducing ICD and Activating DC, CD8(+) T, and CD4(+) T Cells. Int. J. Nanomed. 2024, 19, 2755–2772. [Google Scholar] [CrossRef]
- Chen, P.; Yang, W.; Nagaoka, K.; Huang, G.L.; Miyazaki, T.; Hong, T.; Li, S.; Igarashi, K.; Takeda, K.; Kakimi, K.; et al. An IL-12-Based Nanocytokine Safely Potentiates Anticancer Immunity through Spatiotemporal Control of Inflammation to Eradicate Advanced Cold Tumors. Adv. Sci. 2023, 10, e2205139. [Google Scholar] [CrossRef]
- Li, J.; Lin, W.; Chen, H.; Xu, Z.; Ye, Y.; Chen, M. Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell Immunol. 2020, 349, 104042. [Google Scholar] [CrossRef]
- Liu, J.Q.; Zhang, C.; Zhang, X.; Yan, J.; Zeng, C.; Talebian, F.; Lynch, K.; Zhao, W.; Hou, X.; Du, S.; et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control Release 2022, 345, 306–313. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Wu, H.; Wang, M.; Mao, L.; Guo, X.; Zhu, J.; Ye, Z.; Luo, X.; Yang, X.; et al. Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci. Rep. 2024, 14, 7366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Su, Z.; Zhao, W.; Zhang, X.; Momin, N.; Zhang, C.; Wittrup, K.D.; Dong, Y.; Irvine, D.J.; Weiss, R. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 2020, 1, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Tian, Y.; Lu, Y.; Zhang, J.; Tao, A.; Xiang, G.; Liu, Y. Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J. Nanobiotechnol. 2022, 20, 525. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, Y.; Zhan, D.; Yu, W.; Li, Y.; Wang, A.; Yin, J.; Cao, H.; Fu, Y. Oxaliplatin lipidated prodrug synergistically enhances the anti-colorectal cancer effect of IL12 mRNA. Drug Deliv. Transl. Res. 2024, 14, 3186–3199. [Google Scholar] [CrossRef]
- Xu, S.; Xu, Y.; Solek, N.C.; Chen, J.; Gong, F.; Varley, A.J.; Golubovic, A.; Pan, A.; Dong, S.; Zheng, G.; et al. Tumor-Tailored Ionizable Lipid Nanoparticles Facilitate IL-12 Circular RNA Delivery for Enhanced Lung Cancer Immunotherapy. Adv. Mater. 2024, 36, e2400307. [Google Scholar] [CrossRef]
- Tros De Ilarduya, C.; Buñuales, M.; Qian, C.; Düzgüneş, N. Antitumoral activity of transferrin-lipoplexes carrying the IL-12 gene in the treatment of colon cancer. J. Drug Target. 2006, 14, 527–535. [Google Scholar] [CrossRef]
- Men, K.; Huang, R.; Zhang, X.; Zhang, R.; Zhang, Y.; He, M.; Tong, R.; Yang, L.; Wei, Y.; Duan, X. Local and Systemic Delivery of Interleukin-12 Gene by Cationic Micelles for Cancer Immunogene Therapy. J. Biomed. Nanotechnol. 2018, 14, 1719–1730. [Google Scholar] [CrossRef]
- Charoensit, P.; Kawakami, S.; Higuchi, Y.; Yamashita, F.; Hashida, M. Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther. 2010, 17, 512–522. [Google Scholar] [CrossRef]
- Liu, M.; Hu, S.; Yan, N.; Popowski, K.D.; Cheng, K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 2024, 19, 565–575. [Google Scholar] [CrossRef]
- Zhang, J.; Song, H.; Dong, Y.; Li, G.; Li, J.; Cai, Q.; Yuan, S.; Wang, Y.; Song, H. Surface Engineering of HEK293 Cell-Derived Extracellular Vesicles for Improved Pharmacokinetic Profile and Targeted Delivery of IL-12 for the Treatment of Hepatocellular Carcinoma. Int. J. Nanomed. 2023, 18, 209–223. [Google Scholar] [CrossRef]
- Rossowska, J.; Anger, N.; Wegierek, K.; Szczygieł, A.; Mierzejewska, J.; Milczarek, M.; Szermer-Olearnik, B.; Pajtasz-Piasecka, E. Antitumor Potential of Extracellular Vesicles Released by Genetically Modified Murine Colon Carcinoma Cells with Overexpression of Interleukin-12 and shRNA for TGF-β1. Front. Immunol. 2019, 10, 211. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.D.; Sia, C.L.; Kirwin, K.; Haupt, S.; Mahimkar, G.; Zi, T.; Xu, K.; Dooley, K.; Jang, S.C.; Choi, B.; et al. Exosome Surface Display of IL12 Results in Tumor-Retained Pharmacology with Superior Potency and Limited Systemic Exposure Compared with Recombinant IL12. Mol. Cancer Ther. 2021, 20, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Barnwal, A.; Ganguly, S.; Bhattacharyya, J. Multifaceted Nano-DEV-IL for Sustained Release of IL-12 to Avert the Immunosuppressive Tumor Microenvironment and IL-12-Associated Toxicities. ACS Appl. Mater. Interfaces 2023, 15, 20012–20026. [Google Scholar] [CrossRef] [PubMed]
- Stephan, M.T.; Moon, J.J.; Um, S.H.; Bershteyn, A.; Irvine, D.J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035–1041. [Google Scholar] [CrossRef]
- Huang, B.; Abraham, W.D.; Zheng, Y.; Bustamante López, S.C.; Luo, S.S.; Irvine, D.J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015, 7, 291ra294. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.; Tang, W.; Wen, R.; Zhou, S.; Lee, C.; Wang, H.; Jiang, W.; Delahunty, I.M.; Zhen, Z.; et al. Nanoparticle-Laden Macrophages for Tumor-Tropic Drug Delivery. Adv. Mater. 2022, 34, e2109925. [Google Scholar] [CrossRef]
- Siriwon, N.; Kim, Y.J.; Siegler, E.; Chen, X.; Rohrs, J.A.; Liu, Y.; Wang, P. CAR-T Cells Surface-Engineered with Drug-Encapsulated Nanoparticles Can Ameliorate Intratumoral T-cell Hypofunction. Cancer Immunol. Res. 2018, 6, 812–824. [Google Scholar] [CrossRef]
- Hato, L.; Vizcay, A.; Eguren, I.; Pérez-Gracia, J.L.; Rodríguez, J.; Gállego Pérez-Larraya, J.; Sarobe, P.; Inogés, S.; Díaz de Cerio, A.L.; Santisteban, M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers 2024, 16, 981. [Google Scholar] [CrossRef]
- Komita, H.; Zhao, X.; Katakam, A.K.; Kumar, P.; Kawabe, M.; Okada, H.; Braughler, J.M.; Storkus, W.J. Conditional interleukin-12 gene therapy promotes safe and effective antitumor immunity. Cancer Gene Ther. 2009, 16, 883–891. [Google Scholar] [CrossRef]
- Akiyama, Y.; Watanabe, M.; Maruyama, K.; Ruscetti, F.W.; Wiltrout, R.H.; Yamaguchi, K. Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther. 2000, 7, 2113–2121. [Google Scholar] [CrossRef]
- Yoshida, M.; Jo, J.; Tabata, Y. Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA. J. Biomater. Sci. Polym. Ed. 2010, 21, 659–675. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Li, Y.; Zeng, L.; Zhang, X.; Zhou, Z.; Zheng, M.; Wan, H. Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol. Rep. 2019, 42, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bose, A.; Komita, H.; Taylor, J.L.; Kawabe, M.; Chi, N.; Spokas, L.; Lowe, D.B.; Goldbach, C.; Alber, S.; et al. Intratumoral IL-12 gene therapy results in the crosspriming of Tc1 cells reactive against tumor-associated stromal antigens. Mol. Ther. 2011, 19, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Iiyama, S.; Okada, Y.; Mizuguchi, H.; Hayakawa, T.; Nakagawa, S.; Mayumi, T.; Fujita, T.; Yamamoto, A. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther. 2005, 12, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calvillo, M.; Duarte, M.; Tirapu, I.; Berraondo, P.; Mazzolini, G.; Qian, C.; Prieto, J.; Melero, I. Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Exp. Hematol. 2002, 30, 195–204. [Google Scholar] [CrossRef]
- Mierzejewska, J.; Węgierek-Ciura, K.; Rossowska, J.; Szczygieł, A.; Anger-Góra, N.; Szermer-Olearnik, B.; Geneja, M.; Pajtasz-Piasecka, E. The Beneficial Effect of IL-12 and IL-18 Transduced Dendritic Cells Stimulated with Tumor Antigens on Generation of an Antitumor Response in a Mouse Colon Carcinoma Model. J. Immunol. Res. 2022, 2022, 7508928. [Google Scholar] [CrossRef]
- Melero, I.; Duarte, M.; Ruiz, J.; Sangro, B.; Galofré, J.; Mazzolini, G.; Bustos, M.; Qian, C.; Prieto, J. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther. 1999, 6, 1779–1784. [Google Scholar] [CrossRef]
- Tatsumi, T.; Huang, J.; Gooding, W.E.; Gambotto, A.; Robbins, P.D.; Vujanovic, N.L.; Alber, S.M.; Watkins, S.C.; Okada, H.; Storkus, W.J. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res. 2003, 63, 6378–6386. [Google Scholar]
- Tatsumi, T.; Takehara, T.; Yamaguchi, S.; Sasakawa, A.; Miyagi, T.; Jinushi, M.; Sakamori, R.; Kohga, K.; Uemura, A.; Ohkawa, K.; et al. Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther. 2007, 14, 863–871. [Google Scholar] [CrossRef]
- Shimizu, T.; Berhanu, A.; Redlinger, R.E., Jr.; Watkins, S.; Lotze, M.T.; Barksdale, E.M., Jr. Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. J. Pediatr. Surg. 2001, 36, 1285–1292. [Google Scholar] [CrossRef]
- Saika, T.; Satoh, T.; Kusaka, N.; Ebara, S.; Mouraviev, V.B.; Timme, T.L.; Thompson, T.C. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther. 2004, 11, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ramakrishnan, R.; Trkulja, M.; Ren, X.; Gabrilovich, D.I. Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol. Immunother. 2012, 61, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Mazzolini, G.; Alfaro, C.; Sangro, B.; Feijoó, E.; Ruiz, J.; Benito, A.; Tirapu, I.; Arina, A.; Sola, J.; Herraiz, M.; et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol. 2005, 23, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Di Trani, C.A.; Cirella, A.; Arrizabalaga, L.; Bella, Á.; Fernandez-Sendin, M.; Russo-Cabrera, J.S.; Gomar, C.; Olivera, I.; Bolaños, E.; González-Gomariz, J.; et al. Intracavitary adoptive transfer of IL-12 mRNA-engineered tumor-specific CD8(+) T cells eradicates peritoneal metastases in mouse models. Oncoimmunology 2023, 12, 2147317. [Google Scholar] [CrossRef]
- Etxeberria, I.; Bolaños, E.; Quetglas, J.I.; Gros, A.; Villanueva, A.; Palomero, J.; Sánchez-Paulete, A.R.; Piulats, J.M.; Matias-Guiu, X.; Olivera, I.; et al. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8(+) T Cells. Cancer Cell 2019, 36, 613–629.e617. [Google Scholar] [CrossRef]
- Olivera, I.; Bolaños, E.; Gonzalez-Gomariz, J.; Hervas-Stubbs, S.; Mariño, K.V.; Luri-Rey, C.; Etxeberria, I.; Cirella, A.; Egea, J.; Glez-Vaz, J.; et al. mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep. Med. 2023, 4, 100978. [Google Scholar] [CrossRef]
- Chinnasamy, D.; Yu, Z.; Kerkar, S.P.; Zhang, L.; Morgan, R.A.; Restifo, N.P.; Rosenberg, S.A. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 2012, 18, 1672–1683. [Google Scholar] [CrossRef]
- Kerkar, S.P.; Leonardi, A.J.; van Panhuys, N.; Zhang, L.; Yu, Z.; Crompton, J.G.; Pan, J.H.; Palmer, D.C.; Morgan, R.A.; Rosenberg, S.A.; et al. Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol. Ther. 2013, 21, 1369–1377. [Google Scholar] [CrossRef]
- Chmielewski, M.; Kopecky, C.; Hombach, A.A.; Abken, H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 2011, 71, 5697–5706. [Google Scholar] [CrossRef]
- Meister, H.; Look, T.; Roth, P.; Pascolo, S.; Sahin, U.; Lee, S.; Hale, B.D.; Snijder, B.; Regli, L.; Ravi, V.M.; et al. Multifunctional mRNA-Based CAR T Cells Display Promising Antitumor Activity Against Glioblastoma. Clin. Cancer Res. 2022, 28, 4747–4756. [Google Scholar] [CrossRef]
- Pegram, H.J.; Lee, J.C.; Hayman, E.G.; Imperato, G.H.; Tedder, T.F.; Sadelain, M.; Brentjens, R.J. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012, 119, 4133–4141. [Google Scholar] [CrossRef] [PubMed]
- Kueberuwa, G.; Kalaitsidou, M.; Cheadle, E.; Hawkins, R.E.; Gilham, D.E. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. Mol. Ther. Oncolytics 2018, 8, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Koneru, M.; Purdon, T.J.; Spriggs, D.; Koneru, S.; Brentjens, R.J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 2015, 4, e994446. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Di, S.; Shi, B.; Zhang, H.; Wang, Y.; Wu, X.; Luo, H.; Wang, H.; Li, Z.; Jiang, H. Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. J. Immunol. 2019, 203, 198–207. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Z.; Sun, M.; Li, B.; Pan, F.; Ma, A.; Liao, J.; Yin, T.; Tang, X.; Huang, G.; et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 2022, 281, 121341. [Google Scholar] [CrossRef]
- Yang, Z.; Pietrobon, V.; Bobbin, M.; Stefanson, O.; Yang, J.; Goswami, A.; Alphson, B.; Choi, H.; Magallanes, K.; Cai, Q.; et al. Nanoscale, antigen encounter-dependent, IL-12 delivery by CAR T cells plus PD-L1 blockade for cancer treatment. J. Transl. Med. 2023, 21, 158. [Google Scholar] [CrossRef]
- Kułach, N.; Pilny, E.; Cichoń, T.; Czapla, J.; Jarosz-Biej, M.; Rusin, M.; Drzyzga, A.; Matuszczak, S.; Szala, S.; Smolarczyk, R. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci. Rep. 2021, 11, 18335. [Google Scholar] [CrossRef]
- Park, J.; Park, S.A.; Kim, Y.-S.; Kim, D.; Shin, S.; Lee, S.H.; Jeun, S.-S.; Chung, Y.-J.; Ahn, S. Intratumoral IL-12 delivery via mesenchymal stem cells combined with PD-1 blockade leads to long-term antitumor immunity in a mouse glioblastoma model. Biomed. Pharmacother. 2024, 173, 115790. [Google Scholar] [CrossRef]
- Elzaouk, L.; Moelling, K.; Pavlovic, J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp. Dermatol. 2006, 15, 865–874. [Google Scholar] [CrossRef]
- McKenna, M.K.; Englisch, A.; Brenner, B.; Smith, T.; Hoyos, V.; Suzuki, M.; Brenner, M.K. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol. Ther. 2021, 29, 1808–1820. [Google Scholar] [CrossRef]
- Eliopoulos, N.; Francois, M.; Boivin, M.N.; Martineau, D.; Galipeau, J. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res. 2008, 68, 4810–4818. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Miller, C.; Savant-Bhonsale, S.; Kalkanis, S.N. Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 2009, 64, 1139–1146, discussion 1146–1147. [Google Scholar] [CrossRef]
- Gao, P.; Ding, Q.; Wu, Z.; Jiang, H.; Fang, Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett. 2010, 290, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.Y.; Lee, E.J.; Kim, S.J.; Yang, S.H.; Sung, Y.C.; Seong, J. Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma. Int. J. Cancer 2015, 137, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xie, S.; Li, H.; Zhang, Y.; Yue, J.; Yan, C.; Liu, K.; Liu, Y.; Xu, R.; Zheng, G. Antitumor effect of IL-12 gene-modified bone marrow mesenchymal stem cells combined with Fuzheng Yiliu decoction in an in vivo glioma nude mouse model. J. Transl. Med. 2021, 19, 143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Feng, Y.; Xie, X.; Song, T.; Yang, G.; Su, Q.; Li, T.; Li, S.; Wu, C.; You, F.; et al. Engineered Mesenchymal Stem Cells as a Biotherapy Platform for Targeted Photodynamic Immunotherapy of Breast Cancer. Adv. Healthc. Mater. 2022, 11, e2101375. [Google Scholar] [CrossRef]
- Hombach, A.A.; Geumann, U.; Günther, C.; Hermann, F.G.; Abken, H. IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 2020, 9, 873. [Google Scholar] [CrossRef]
- Seo, S.H.; Kim, K.S.; Park, S.H.; Suh, Y.S.; Kim, S.J.; Jeun, S.S.; Sung, Y.C. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther. 2011, 18, 488–495. [Google Scholar] [CrossRef]
- Ryu, C.H.; Park, S.H.; Park, S.A.; Kim, S.M.; Lim, J.Y.; Jeong, C.H.; Yoon, W.S.; Oh, W.I.; Sung, Y.C.; Jeun, S.S. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum. Gene Ther. 2011, 22, 733–743. [Google Scholar] [CrossRef]
- Asada, H.; Kishida, T.; Hirai, H.; Satoh, E.; Ohashi, S.; Takeuchi, M.; Kubo, T.; Kita, M.; Iwakura, Y.; Imanishi, J.; et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol. Ther. 2002, 5, 609–616. [Google Scholar] [CrossRef]
- Satoh, T.; Saika, T.; Ebara, S.; Kusaka, N.; Timme, T.L.; Yang, G.; Wang, J.; Mouraviev, V.; Cao, G.; el Fattah, M.A.; et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res. 2003, 63, 7853–7860. [Google Scholar] [PubMed]
- Tabata, K.; Watanabe, M.; Naruishi, K.; Edamura, K.; Satoh, T.; Yang, G.; Abdel Fattah, E.; Wang, J.; Goltsov, A.; Floryk, D.; et al. Therapeutic effects of gelatin matrix-embedded IL-12 gene-modified macrophages in a mouse model of residual prostate cancer. Prostate Cancer Prostatic Dis. 2009, 12, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Landoni, E.; Woodcock, M.G.; Barragan, G.; Casirati, G.; Cinella, V.; Stucchi, S.; Flick, L.M.; Withers, T.A.; Hudson, H.; Casorati, G.; et al. IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity. Nat. Commun. 2024, 15, 89. [Google Scholar] [CrossRef]
- Croce, M.; Meazza, R.; Orengo, A.M.; Radić, L.; De Giovanni, B.; Gambini, C.; Carlini, B.; Pistoia, V.; Mortara, L.; Accolla, R.S.; et al. Sequential immunogene therapy with interleukin-12- and interleukin-15-engineered neuroblastoma cells cures metastatic disease in syngeneic mice. Clin. Cancer Res. 2005, 11, 735–742. [Google Scholar] [CrossRef]
- Galvan, D.L.; O’Neil, R.T.; Foster, A.E.; Huye, L.; Bear, A.; Rooney, C.M.; Wilson, M.H. Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model. PLoS ONE 2015, 10, e0140744. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. National Institutes of Health Clinical Center. NHS-IL12 for Solid Tumors. 2021. Available online: https://clinicaltrials.gov/study/NCT01417546?cond=NCT01417546&rank=1 (accessed on 1 September 2024).
- Strauss, J.; Heery, C.R.; Kim, J.W.; Jochems, C.; Donahue, R.N.; Montgomery, A.S.; McMahon, S.; Lamping, E.; Marté, J.L.; Madan, R.A.; et al. First-in-Human Phase I Trial of a Tumor-Targeted Cytokine (NHS-IL12) in Subjects with Metastatic Solid Tumors. Clin. Cancer Res. 2019, 25, 99–109. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Charalampos Floudas, M., DMSc, MS, National Cancer Institute. Combination Immunotherapy in Subjects with Advanced HPV Associated Malignancies. 2023. Available online: https://clinicaltrials.gov/study/NCT04287868?cond=NCT04287868&rank=1 (accessed on 1 September 2024).
- ClinicalTrials.gov. Jason Redman, N.C.I. Phase II Trial of Combination Immunotherapy in Subjects with Advanced Small Bowel and Colorectal Cancers. 2024. Available online: https://clinicaltrials.gov/study/NCT04491955?cond=https://clinicaltrials.gov/study/NCT04491955?cond= (accessed on 6 September 2024).
- ClinicalTrials.gov. EMD Serono (EMD Serono Research & Development Institute. A Phase Ib Study to Evaluate the Safety, Tolerability, and Pharmacokinetics (PK) of Avelumab in Combination with M9241(NHS-IL12) (JAVELIN IL-12) (COMBO). 2024. Available online: https://clinicaltrials.gov/study/NCT02994953?cond=NCT02994953&rank=1 (accessed on 6 September 2024).
- ClinicalTrials.gov. National Institutes of Health Clinical Center. NHS-IL12 Monotherapy and in Combination with M7824 in Advanced Kaposi Sarcoma. 2024. Available online: https://clinicaltrials.gov/study/NCT04303117?cond=NCT04303117&rank=1 (accessed on 6 September 2024).
- ClinicalTrials.gov. National Institutes of Health Clinical Center. Bintrafusp Alfa (M7824) and NHS-IL12 (M9241) Alone and in Combination with Stereotactic Body Radiation Therapy (SBRT) in Adults with Metastatic Non-Prostate Genitourinary Malignancies. 2024. Available online: https://clinicaltrials.gov/study/NCT04235777?cond=NCT04235777&rank=1 (accessed on 6 September 2024).
- ClinicalTrials.gov. Farzan Siddiqui, H.F.H.S. Phase 1 Trial of Interleukin 12 Gene Therapy for Locally Recurrent Prostate Cancer. 2024. Available online: https://clinicaltrials.gov/study/NCT02555397?cond=NCT02555397&rank=1 (accessed on 6 September 2024).
- ClinicalTrials.gov. Baylor College of Medicine. Vector Delivery of the IL-12 Gene in Men with Prostate Cancer. 2008. Available online: https://clinicaltrials.gov/study/NCT00406939?cond=NCT00406939&rank=1. (accessed on 1 September 2024).
- ClinicalTrials.gov. David Kwon, M., Henry Ford Health System. Phase 1 Trial of Interleukin 12 Gene Therapy for Metastatic Pancreatic Cancer. 2022. Available online: https://clinicaltrials.gov/study/NCT03281382?cond=NCT03281382&rank=1 (accessed on 1 September 2024).
- ClinicalTrials.gov. Max Sung, Icahn School of Medicine at Mount Sinai. Gene Therapy in Treating Women with Metastatic Breast Cancer. 2017. Available online: https://clinicaltrials.gov/study/NCT00849459?cond=NCT00849459&rank=1 (accessed on 1 September 2024).
- ClinicalTrials.gov. Max Sung, Icahn School of Medicine at Mount Sinai. Biological Therapy in Treating Women with Breast Cancer That Has Spread to the Liver. 2017. Available online: https://clinicaltrials.gov/study/NCT00301106?cond=NCT00301106&rank=1 (accessed on 1 September 2024).
- ClinicalTrials.gov. Alaunos Therapeutics. Safety Study of Adenovirus Vector Engineered to Express hIL-12 in Combination with Activator Ligand to Treat Melanoma. 2015. Available online: https://clinicaltrials.gov/study/NCT01397708?cond=NCT01397708&rank=1 (accessed on 1 September 2024).
- ClinicalTrials.gov. National Cancer Institute. Vaccine Therapy in Treating Patients with Melanoma. 2013. Available online: https://clinicaltrials.gov/study/NCT00003556?cond=NCT00003556&rank=1 (accessed on 1 September 2024).
- ClinicalTrials.gov. Alaunos Therapeutics. A Study of Ad-RTS-hIL-12 + Veledimex in Pediatric Subjects with Brain Tumors Including DIPG. 2021. Available online: https://clinicaltrials.gov/study/NCT03330197?cond=NCT03330197&rank=1 (accessed on 6 September 2024).
- ClinicalTrials.gov. Alaunos Therapeutics. A Study of Ad-RTS-hIL-12 with Veledimex in Subjects with Glioblastoma or Malignant Glioma. 2021. Available online: https://clinicaltrials.gov/study/NCT02026271?cond=NCT02026271&rank=1 (accessed on 3 September 2024).
- ClinicalTrials.gov. Alaunos Therapeutics. A Study of Ad-RTS-hIL-12 with Veledimex in Combination with Nivolumab in Subjects with Glioblastoma; a Substudy to ATI001-102. 2021. Available online: https://clinicaltrials.gov/study/NCT03636477?cond=NCT03636477&rank=1 (accessed on 3 September 2024).
- ClinicalTrials.gov. ames Markert, MD, University of Alabama at Birmingham. Study of Pembrolizumab and M032 (NSC 733972). 2024. Available online: https://clinicaltrials.gov/study/NCT05084430?cond=NCT05084430&rank=1 (accessed on 3 September 2024).
- ClinicalTrials.gov. AstraZeneca. A Study of MEDI9253 in Combination with Durvalumab in Select Solid Tumors. 2024. Available online: https://clinicaltrials.gov/study/NCT04613492?cond=NCT04613492&rank=1 (accessed on 6 September 2024).
- Petry, H.; Brooks, A.; Orme, A.; Wang, P.; Liu, P.; Xie, J.; Kretschmer, P.; Qian, H.S.; Hermiston, T.W.; Harkins, R.N. Effect of viral dose on neutralizing antibody response and transgene expression after AAV1 vector re-administration in mice. Gene Ther. 2008, 15, 54–60. [Google Scholar] [CrossRef]
- Goswami, R.; Subramanian, G.; Silayeva, L.; Newkirk, I.; Doctor, D.; Chawla, K.; Chattopadhyay, S.; Chandra, D.; Chilukuri, N.; Betapudi, V. Gene Therapy Leaves a Vicious Cycle. Front. Oncol. 2019, 9, 297. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.K.; Krol, A.; Li, Y.P.; Li, C.Y.; Yuan, F. Systemic dissemination of viral vectors during intratumoral injection. Mol. Cancer Ther. 2003, 2, 1233–1242. [Google Scholar] [CrossRef]
- Egilmez, N.K.; Jong, Y.S.; Iwanuma, Y.; Jacob, J.S.; Santos, C.A.; Chen, F.A.; Mathiowitz, E.; Bankert, R.B. Cytokine immunotherapy of cancer with controlled release biodegradable microspheres in a human tumor xenograft/SCID mouse model. Cancer Immunol. Immunother. 1998, 46, 21–24. [Google Scholar] [CrossRef]
- Sharma, A.; Harper, C.M.; Hammer, L.; Nair, R.E.; Mathiowitz, E.; Egilmez, N.K. Characterization of cytokine-encapsulated controlled-release microsphere adjuvants. Cancer Biother. Radiopharm. 2004, 19, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, B.B.; Lasham, A.; Shelling, A.N.; Al-Kassas, R. Nanoparticle therapeutics: Technologies and methods for overcoming cancer. Eur. J. Pharm. Biopharm. 2015, 97, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Zu, H.; Gao, D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. Aaps J 2021, 23, 78. [Google Scholar] [CrossRef] [PubMed]
Name | Dose (pfu) | Cancer Model | RoA | Combination Therapy | Ref |
---|---|---|---|---|---|
AdmIL-12 | 108 | RM-9 | i.p. | / | [28] |
murine IL-12 | 2.5 × 108 | Renca cells | i.t. | / | [85] |
AAV9.RS-mIL-12 | 2.5 × 1010 vg/kg | Hepa1-6 | i.v. | / | [86] |
Ad-RTS-mIL-12 | 5 × 109 vp | GL-261 | i.t. | / | [87] |
Ad-ΔB7/IL12/GMCSF | 5 × 107 | B16F10 | i.t. | / | [88] |
AdV5-IL-12 | 1.5 × 108 | EMT6-HER2 | p.t. | / | [89] |
Ad.mIL12 | / | GL261 | i.t. | / | [73] |
AdRGD-IL12 | 2 × 107 | Meth-A | i.t. | / | [72] |
AdCMVIL-12 | 108 and 109 | CT-26 cells | i.t. | / | [76] |
ADV/mIL-12 | 3 × 108 | MCA-26 | i.t. | / | [77] |
oAd+DC | 2 × 1010 | LLC | i.t. | / | [84] |
rAAV/IL-12 | 1011 vp | DBTRG | i.t. | / | [74] |
rAAV2/IL12 | 1.96 × 1012 | RG2 | i.t. | / | [75] |
AAV8-Tetbidir-Alb-IL-12 | 5 × 1011 vg/kg | MC38 | i.v. | / | [70] |
AAV8/IL-12 | 109–1011 | BNL HCC | i.v. | / | [80] |
OAV-scIL-12-TM | 2.5 × 108 109 iu | HaP-T1 | i.t. | / | [90] |
Ad-DHscIL12 | 107 iu | H2T | i.t. | / | [91] |
Ad.IL-12 | 2.5 × 1010–3 × 1012 vp | advanced pancreatic, colorectal, or primary liver malignancies | i.t. | / | [92] |
RdB/IL-12/IL-18 | 108 | B16F10 | i.t. | / | [93] |
YKL-IL12/B7 | 5 × 108 | B16F10 | i.t. | / | [94] |
AdCMVIL-12 | 7.5 × 107 | CT26 | i.t. | / | [95] |
Ad-IL-12 | 109 | PyMidT | i.t. | / | [96] |
Ad.mIL-12 | 3.3 × 109 | 7500 RM-1 | i.t. | / | [97] |
GL-Ad/RUhIL-12 | 3 × 109 iu | MC-38 | i.v. | RU486 | [98] |
Ad/IL-12 | 109 | BNL cells | i.t. | GM-CSF | [99] |
AdmIL-12 | 108–109 | 178-2 BMA | i.t. | radiation therapy | [82] |
AdIL-12 | 2.5 × 109 | Hepa129 | i.t. | AdK1-3 | [81] |
HC-Ad/RUmIL-12 | 2.5 × 108 iu | MC38 | Intrahepatic | Oxaliplatin | [83] |
Adv.mIL-12 | 3.2 × 108 | MCA26 | i.t. | 4-1BB antibodies | [100] |
Ad5-ZD55-CCL5-IL12 | 109 | OSRC-2 | i.t. | CA9-CAR-T | [101] |
Ad-ΔB7/IL-12/4-1BBL | 5 × 109 | B16F10 | i.t. | dendritic cells | [78] |
Ad-ΔB7/IL12/GMCSF | 5 × 1010 | B16F10 | i.t. | dendritic cells | [79] |
Name | Dose (pfu) | Cancer Model | RoA | Combination Therapy | Ref |
---|---|---|---|---|---|
rVV–mIL-12 | 105–107 | C6 glioma | i.t. | / | [108] |
rVV-p53/rVV-2-12 | 2 × 107 | C6 glioma | i.t. | / | [109] |
VVΔTKΔN1L-IL12 | 108 | LLC, LY2, DT6606,4T1, CT26, SCCVII, HCPC1 | i.t. | / | [110] |
VAC-2-12 | 107 | CT26.CL25 | i.v. | / | [111] |
rVVHA-IL-12 | 5 × 106 | AE17 | i.t. | / | [112] |
hIL-7/mIL-12-VV | 2 × 107 | B16F10, CT26, LLC, TRAMP-C2 | i.t. | PD-1 or CTLA4 antibodies | [107] |
VV-IL-12mCLTX-HiBiT | 107 108 | U2OS, ID8, 4T1.2, MC38 | i.t. | PD-1 antibodies | [113] |
vvDD-IL-12 | 109 | MC38, B16, AB12, CT26 | i.p. | PD-1 antibodies | [114] |
VACV muIL-12 | 107 | CT26, MC38 | i.t. | PD-L1 antibodies | [115] |
MVA-IL-12 | 6 × 105 | MC38, B16F10, CT26 | i.t. | PD-1 antibodies | [116] |
MVA.scIL-12 | 5 × 107 | MC38, CT26 | i.p. | PD-L1 antibodies | [117] |
Name | Dose (pfu) | Cancer Model | RoA | Combination Therapy | Ref |
---|---|---|---|---|---|
Measles vaccine strain viruses (MeV) | |||||
FmIL-12 | 5 × 105 ciu | MC38cea, B16hCD46 | i.t. | / | [118] |
FmIL-12 | / | MC38cea | i.t. | / | [119] |
Newcastle disease virus (NDV) | |||||
rAF-IL12 | 27 HA | CT26 | i.t. | / | [120] |
rClone30s-IL12 | 107 | H22 | i.t. | / | [121] |
rAF-IL12 | / | HT29 | i.t. | / | [122] |
Semliki Forest virus (SFV) | |||||
SFV-IL12 | 107 iu | B16 | i.t. | / | [123] |
rSFV/IL12 | 106 iu | P815 | i.t. | / | [124] |
SFV-IL12 | 108 vp | MC38 or TC-1 | i.v. | / | [125] |
IL-12 VLPs | 5 × 108 | RG2 | i.t. | / | [126] |
SFV-IL12 | 108 vp | B16, MC38, 4T1 cells | i.t. | PD-1 antibodies | [127] |
SFV-IL-12 | 108 | B16, TC-1 | i.t. | CD137 antibodies | [128] |
SFV-IL12 | 108 | 203-glioma cells | i.t. | / | [129] |
rSFV10-E-IL12 | 4 × 109 iu | CT26, 4T1 | i.t. | / | [130] |
SFV-IL-12 | 108 vp | MC38 | i.t. | / | [131,132] |
SFV-IL-12 | 108 vp | HCC | i.t. | / | [133] |
SFV-enhIL-12 | 1.2 × 1010 | HCC | i.t. | / | [134] |
LSFV-IL12 | 107–109 | Panc-1 | i.t. | / | [135] |
SFV-IL-12 | 2 × 108 vp | 4T1 | i.t. | / | [136] |
Maraba Virus (MV) | |||||
MG1-IL12-ICV | 105 | CT26 | i.p. | / | [137] |
Vesicular stomatitis virus (VSV) | |||||
rVSV-IL12 | 107 | SCC | i.t. | / | [138] |
rVSV-mIL12-mGMCSF | 107 TCID50 | B16F10 | i.t. | / | [139] |
Sindbis virus (SV) | |||||
Sin/IL12 | 107 | ES-2 | i.p. | / | [140] |
Sindbis/IL-12 | 107 | ES-2, MOSEC | i.p. | / | [141] |
SV.IgGOX40.IL-12 | 5 × 106 TU | MOSEC | i.p. | / | [142] |
SV.IL12 | 5 × 106 TU | CT.26 | i.p. | OX40 antibodies | [143] |
Canarypox virus | |||||
ALVAC-IL-12 | 1–4 × 106 TCID50 | Metastatic Melanoma | i.t. | / | [144,145] |
ALVAC-IL12. | 2.5 × 105 TCID50 | TS/A | i.t. | / | [146] |
Varicella-zoster virus (VZV) | |||||
Ellen-ΔORF8-tet-off-scIL12 | 105 | B16F10 | i.t. | / | [147] |
Name | Source | Dose | Cancer Model | RoA | Ref |
---|---|---|---|---|---|
IL-12-Exo | human embryonic kidney cell-derived exosomes | 2 × 109 particles | LL/2, B16F10, 4T1 | Inhal | [199] |
ITGB1−mscIL12+HN3+Deg EVs | HEK293-derived EVs | 5 × 1010 particles | Hepa1-6-hGPC3 | i.v. | [200] |
Tex MC38/IL12shTGFβ1 | MC38-derived particles | 2 × 106 Particles | MC38 | p.t. | [201] |
exoIL-12 | HEK293SF-3F6 | 100 ng | B16F10, MC38, CT26 | i.t. | [202] |
IL-12-encapsulated DEVs (DEV-IL) | mature dendritic cells (DEVs) | 25 μg | GL-261 | s.c. | [203] |
Name | Cancer Model | ROA | Ref |
---|---|---|---|
OT-I-IL-12 | B16-OVA, PANC02-OVA | i.p. | [224] |
OT1-IL-12 mRNA | B16-OVA | i.t. | [225] |
IL-12 + DRIL18 | B16-OVA | i.t. | [226] |
IL-12 | B16 tumors | i.v. | [228] |
DC101 CAR-Flexi-IL12 | B16F10, MCA205, MC17-51, MC38, CT26 | i.v. | [227] |
T cells CAR+iIL-12 | CEA− MC38, CEA+ C15A3 | s.c. | [229] |
mIL12 and mIFNα2 | GL-261, CT-2A, SMA-560 | i.v. | [230] |
19mz/IL-12 | EL4 | i.v. | [231] |
CAR-IL12 T-cells | A20 | i.v. | [232] |
4H11-28z/IL-12 | SKOV3 | i.p. | [233] |
GPC3-28Z-NFAT-IL-12 | PLC/PRF/5, Huh-7 | i.v. | [234] |
INS-CAR T | Raji | i.v. | [235] |
RB-312 | HT1080, FaDu | i.t. | [236] |
Name | Cancer Model | ROA | Ref |
---|---|---|---|
MSC/IL-12 | B16F10 | i.t. | [237] |
MSC/IL-12 | B16F10 | i.p. | [239] |
MSC(IL-12) | glioblastoma GL26 | i.t. | [238] |
CAd12_PD-L1 MSCs | A549, H1650 | i.v. | [240] |
IL-12 MSCs | 4T1 | s.c. | [241] |
MSC-AdIL12 | Ast11.9-2 | / | [242] |
MSC/IL-12 | 786-0 | i.v. | [243] |
MSCs/IL-12 | HCa-I, Hepa 1-6 | i.t. | [244] |
FYD + IL-12 + BMSCs | U251 | i.v. | [245] |
MB/IL12-MSCs | EMT6 | i.v. | [246] |
CAR+MSC IL7/IL12 | LS174T | s.c. | [247] |
MSCs/IL-12M | B16F10 | i.t. | [248] |
UCB-MSC-IL12M | GL26 | i.t. | [249] |
Name | Cell Type | Cancer Model | ROA | Ref |
---|---|---|---|---|
AdmIL-12 | Macrophages | 178-2BMA | i.t. | [251] |
G/M//AdmIL-12 | Macrophages | 178-2BMA | i.t. | [252] |
GD2.CAR(I)IL12 | Human natural killer T cells | BV-173, CHLA-255 | i.v. | [253] |
B16/mIL-12+mIL-18 | Autologous tumor cells | B16 | s.c. | [250] |
Neuro2a/IL-12/IL-15 | Neuro2a cells | neuroblastoma | i.v. | [254] |
pT-mIL12 and pCMV-m7pB | OT-I cells | B16/OVA | i.v. | [255] |
Name | Tumor Type | ROA | Status | NCT Number |
---|---|---|---|---|
rhIL-12 and IL-2 | Advanced Solid Tumors | i.v.+s.c. | Phase I | NCT00005604 |
recombinant IL-12 | Primary Peritoneal Cavity Cancer Recurrent Ovarian Epithelial Cancer | i.p. | Phase II | NCT00016289 |
NHS-IL12 | Malignant Epithelial Neoplasms, Malignant Epithelial Tumors, Malignant Mesenchymal Tumor | s.c. | Phase I | NCT01417546 |
NHS-IL12 | Advanced HPV-Associated Malignancies | s.c. | Phase I/II | NCT04287868 |
NHS-IL12 | Small Bowel and Colorectal Cancers | s.c. | Phase II | NCT04491955 |
NHS-IL12 | Advanced Solid Tumors | i.v. | Phase Ib | NCT02994953 |
NHS-IL12 | Kaposi’s Sarcoma | i.v. | Phase I/II | NCT04303117 |
NHS-IL12 | Urothelial Cancer Bladder Cancer Genitourinary Cancer Urogenital Cancer | i.v. | Phase I | NCT04235777 |
NM-IL-12 | Colostomy Stoma | s.c. | Phase IIa | NCT02544061 |
SON-1010 (IL12-FHAB) | Platinum-resistant Ovarian Cancer | / | Phase 1b/2a | NCT05756907 |
Ad5-yCD/mutTKSR39rep-hIL12 | Prostate Cancer | i.t. | Phase I | NCT02555397 |
Adv/IL-12 | Prostate Cancer | i.t. | Phase I | NCT00406939 |
Ad5-yCD/mutTKSR39rep-hIL12 | Metastatic Pancreatic Cancer | i.t. | Phase I | NCT03281382 |
adenovirus-mediated human interleukin-12 | Breast Cancer | i.t. | Phase I | NCT00849459 |
Ad.hIL-12 | Radiorecurrent Prostate Cancer | i.p. | Phase I | NCT00110526 |
Ad-RTS-hIL-12 | Melanoma | i.t. | Phase I/II | NCT01397708 |
Ad-RTS-hIL-12 | Pediatric Brain Tumor Diffuse Intrinsic Pontine Glioma | i.t. | Phase I/II | NCT03330197 |
Ad-RTS-hIL-12 | Glioblastoma Multiforme Anaplastic Oligoastrocytoma | i.t. | Phase I | NCT02026271 |
Ad-RTS-hIL-12 | Glioblastoma | i.t. | Phase I | NCT03636477 |
Adv.RSV-hIL12 | Breast Cancer Metastatic Cancer | i.t. | Phase I | NCT00301106 |
canarypox-hIL-12 | Melanoma | i.t. | Phase I | NCT00003556 |
MEDI9253 (Recombinant Newcastle Disease Virus Encoding Interleukin-12) | Solid Tumors | i.t. | Phase I | NCT04613492 |
MEDI9253 + Durvalumab | Solid Tumors | i.t. | Phase I | NCT04613492 |
M032 (a Genetically Engineered HSV-1 Expressing IL-12) | Glioblastoma | i.t. | Phase I/II | NCT05084430 |
hTERT and IL-12 DNA | Breast Cancer Lung Cancer Pancreatic Cancer Head and Neck Cancer Ovarian Cancer ColoRectal Cancer Gastric Cancer Esophageal Cancer HepatoCellular Carcinoma | i.m. | Phase I | NCT02960594 |
IT-pIL12-EP | Triple-negative breast cancer | i.t. | Phase I | NCT02531425 |
IL-12p DNA | Malignant Melanoma | i.t. | Phase I | NCT00323206 |
IL-12 DNA | Metastatic Cancer | i.t. | Phase Ib | NCT00028652 |
Interleukin-12 cDNA | Colorectal Cancer Metastatic Cancer | i.t. | Phase I | NCT00072098 |
Interleukin-12 Plasmid | Merkel Cell Carcinoma | i.t. | Phase II | NCT01440816 |
INO-3112 (plasmid-encoding interleukin-12/HPV DNA plasmids) and durvalumab | Recurrent/Metastatic Human-Papilloma-Virus-Associated Cancers | i.m. | Phase II | NCT03439085 |
IMNN-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) | Epithelial Ovarian Cancer Fallopian Tube Cancer Primary Peritoneal Cancer | i.p. | Phase I | NCT02480374 |
Egen-001 (IL-12 Plasmid Formulated With PEG–PEI–Cholesterol Lipopolymer) | Ovarian Clear Cell Cystadenocarcinoma Ovarian Endometrioid Adenocarcinoma Ovarian Seromucinous Carcinoma | i.p. | Phase I | NCT01489371 |
EGEN-001 (IL-12 Plasmid Formulated With PEG–PEI–Cholesterol Lipopolymer) | Fallopian Tube Carcinoma Primary Peritoneal Carcinoma Recurrent Ovarian Carcinoma | i.p. | Phase II | NCT01118052 |
EGEN-001 and Pegylated Liposomal Doxorubicin Hydrochloride | Ovarian Clear Cell Cystadenocarcinoma Ovarian Endometrioid Adenocarcinoma Ovarian Seromucinous Carcinoma Ovarian Serous Cystadenocarcinoma Ovarian Undifferentiated Carcinoma Recurrent Fallopian Tube Carcinoma Recurrent Ovarian Carcinoma Recurrent Primary Peritoneal Carcinoma | i.p. | Phase I | NCT01489371 |
phIL12 GET | Basal Cell Carcinomas | i.t. | Phase I | NCT05077033 |
EGFR-IL12-CART | Metastatic Colorectal Cancer | / | Phase I/II | NCT03542799 |
Interleukin 12-Primed Activated T Cells (12ATC) | Melanoma | i.v. | Phase I | NCT00016055 |
Interleukin-12-Primed Activated T Cells (12ATC) | Colorectal Cancer Kidney Cancer | i.v. | Phase I | NCT00016042 |
Interleukin-12-Primed Activated T Cells in combination with 5FU, GM-CSF, and Interferon Alfa-2b | Colorectal Cancer Kidney Cancer | i.v. | Phase I/II | NCT00030342 |
EGFRt/19-28z/IL-12 CAR T Cells | Hematologic Malignancies | i.v. | Phase I | NCT06343376 |
CAR-T Cells (IL7 and CCL19 or/and IL12) Targeting Nectin4/FAP | Nectin4-positive Advanced Malignant Solid Tumor | i.t. | Phase I | NCT03932565 |
T-Cell Membrane-Anchored Tumor-Targeted Il12 (Attil12) | Soft Tissue Sarcoma Bone Sarcoma | i.v. | Phase 1 | NCT05621668 |
IL-12 gene-transduced TIL | Melanoma | i.v. | Phase I/II | NCT01236573 |
Dendritic and Glioma Cells Fusion Vaccine With IL-12 | Glioblastoma | i.d. | Phase I/II | NCT04388033 |
anti-ESO-1/IL-12 white blood cells | Metastatic Melanoma Metastatic Renal Cancer | i.v. | Phase I/II | NCT01457131 |
bacTRL-IL-12 | Treatment-refractory Solid Tumors | i.v. | Phase I | NCT04025307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Tan, D.; Sun, H.; Li, Z.; Zhang, L.; Zheng, Y.; Liu, S.; Zhang, Y.; He, Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr. Issues Mol. Biol. 2024, 46, 11548-11579. https://doi.org/10.3390/cimb46100686
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Current Issues in Molecular Biology. 2024; 46(10):11548-11579. https://doi.org/10.3390/cimb46100686
Chicago/Turabian StyleDong, Chunyan, Dejiang Tan, Huimin Sun, Zhuang Li, Linyu Zhang, Yiyang Zheng, Sihan Liu, Yu Zhang, and Qing He. 2024. "Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy" Current Issues in Molecular Biology 46, no. 10: 11548-11579. https://doi.org/10.3390/cimb46100686
APA StyleDong, C., Tan, D., Sun, H., Li, Z., Zhang, L., Zheng, Y., Liu, S., Zhang, Y., & He, Q. (2024). Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Current Issues in Molecular Biology, 46(10), 11548-11579. https://doi.org/10.3390/cimb46100686