The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of MAFLD and Grouping
2.3. Acupuncture and WA Stimulation
2.4. Sample Collection
2.5. Body and Liver Weight
2.6. Biochemical Analysis of Serum Enzyme Levels
2.7. RNA Isolation and qRT-PCR
2.8. Western Blotting
2.9. Histological Analysis
2.10. Statistical Analysis
3. Results
3.1. Comparison of Body and Liver Weight and Biochemical Parameters
3.2. Expression of mRNA Related to the AMPK Signalling Pathway
3.3. Expression of Proteins Related to the AMPK Signalling Pathway
3.4. Histopathologic and Immunohistological Evaluations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Wei, Y.; Rector, R.S.; Thyfault, J.P.; Ibdah, J.A. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J. Gastroenterol. 2008, 14, 193–199. [Google Scholar] [CrossRef]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [CrossRef]
- Alisi, A.; Carpino, G.; Oliveira, F.L.; Panera, N.; Nobili, V.; Gaudio, E. The Role of Tissue Macrophage-Mediated Inflammation on NAFLD Pathogenesis and Its Clinical Implications. Mediat. Inflamm. 2017, 2017, 8162421. [Google Scholar] [CrossRef]
- Del Campo, J.A.; Gallego-Duran, R.; Gallego, P.; Grande, L. Genetic and Epigenetic Regulation in Nonalcoholic Fatty Liver Disease (NAFLD). Int. J. Mol. Sci. 2018, 19, 911. [Google Scholar] [CrossRef]
- Sunny, N.E.; Bril, F.; Cusi, K. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol. Metab. 2017, 28, 250–260. [Google Scholar] [CrossRef]
- Nassir, F. NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules 2022, 12, 824. [Google Scholar] [CrossRef]
- Yang, M.; Ma, F.; Guan, M. Role of Steroid Hormones in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Metabolites 2021, 11, 320. [Google Scholar] [CrossRef]
- Sharma, A.; Anand, S.K.; Singh, N.; Dwivedi, U.N.; Kakkar, P. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis. Exp. Cell Res. 2023, 428, 113614. [Google Scholar] [CrossRef]
- Viollet, B.; Andreelli, F. AMP-activated protein kinase and metabolic control. Handb. Exp. Pharmacol. 2011, 203, 303–330. [Google Scholar] [CrossRef]
- Kung, M.L.; Cheng, S.M.; Wang, Y.H.; Cheng, K.P.; Li, Y.L.; Hsiao, Y.T.; Tan, B.C.; Chen, Y.W. Deficiency of ADAR2 ameliorates metabolic-associated fatty liver disease via AMPK signaling pathways in obese mice. Commun. Biol. 2024, 7, 594. [Google Scholar] [CrossRef]
- Chen, P.; Zhong, X.; Dai, Y.; Tan, M.; Zhang, G.; Ke, X.; Huang, K.; Zhou, Z. The efficacy and safety of acupuncture in nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Medicine 2021, 100, e27050. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, J.; Huang, W.; Mo, G.Y.; Wang, L.H.; Zhuo, Y.; Zhou, Z.Y. Effect of electroacupuncture combined with treadmill exercise on body weight and expression of PGC-1alpha, Irisin and AMPK in skeletal muscle of diet-induced obesity rats. Zhen Ci Yan Jiu 2019, 44, 476–480. [Google Scholar] [CrossRef]
- Li, Z.X.; Lan, D.C.; Zhang, H.H.; Zhang, H.T.; Chen, X.Z.; Sun, J. Electroacupuncture Mitigates Skeletal Muscular Lipid Metabolism Disorder Related to High-Fat-Diet Induced Insulin Resistance through the AMPK/ACC Signaling Pathway. Evid-Based Compl. Alt. 2018, 2018, 7925842. [Google Scholar] [CrossRef]
- World Health Organization. WHO Standard Acupuncture Point Locations in the Western Pacific Region; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Carotti, S.; Aquilano, K.; Zalfa, F.; Ruggiero, S.; Valentini, F.; Zingariello, M.; Francesconi, M.; Perrone, G.; Alletto, F.; Antonelli-Incalzi, R.; et al. Lipophagy Impairment Is Associated With Disease Progression in NAFLD. Front. Physiol. 2020, 11, 850. [Google Scholar] [CrossRef]
- Bessone, F.; Razori, M.V.; Roma, M.G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol. Life Sci. 2019, 76, 99–128. [Google Scholar] [CrossRef]
- Sanches, S.C.; Ramalho, L.N.; Augusto, M.J.; da Silva, D.M.; Ramalho, F.S. Nonalcoholic Steatohepatitis: A Search for Factual Animal Models. Biomed. Res. Int. 2015, 2015, 574832. [Google Scholar] [CrossRef]
- Meng, X.; Guo, X.; Zhang, J.; Moriya, J.; Kobayashi, J.; Yamaguchi, R.; Yamada, S. Acupuncture on ST36, CV4 and KI1 Suppresses the Progression of Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Metabolites 2019, 9, 299. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Liang, C.; Pan, L.; Hu, H.; Fang, H. Acupuncture improved hepatic steatosis in HFD-induced NAFLD rats by regulating intestinal microbiota. Front. Microbiol. 2023, 14, 1131092. [Google Scholar] [CrossRef]
- Sharma, A.; Anand, S.K.; Singh, N.; Dwarkanath, A.; Dwivedi, U.N.; Kakkar, P. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats. Food Funct. 2021, 12, 892–909. [Google Scholar] [CrossRef]
- Hardie, D.G.; Schaffer, B.E.; Brunet, A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol. 2016, 26, 190–201. [Google Scholar] [CrossRef]
- Hardie, D.G. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol. 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Ponnusamy, L.; Natarajan, S.R.; Thangaraj, K.; Manoharan, R. Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188379. [Google Scholar] [CrossRef]
- Fang, C.; Pan, J.; Qu, N.; Lei, Y.; Han, J.; Zhang, J.; Han, D. The AMPK pathway in fatty liver disease. Front. Physiol. 2022, 13, 970292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, M.S.; Goldstein, J.L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89, 331–340. [Google Scholar] [CrossRef]
- Bertolio, R.; Napoletano, F.; Mano, M.; Maurer-Stroh, S.; Fantuz, M.; Zannini, A.; Bicciato, S.; Sorrentino, G.; Del Sal, G. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat. Commun. 2019, 10, 1326. [Google Scholar] [CrossRef]
- Hampton, R.Y. Proteolysis and sterol regulation. Annu. Rev. Cell Dev. Biol. 2002, 18, 345–378. [Google Scholar] [CrossRef]
- Osna, N.A.; Donohue, T.M., Jr.; Kharbanda, K.K. Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Res. 2017, 38, 147–161. [Google Scholar]
- Ge, X.; Wang, C.; Chen, H.; Liu, T.; Chen, L.; Huang, Y.; Zeng, F.; Liu, B. Luteolin cooperated with metformin hydrochloride alleviates lipid metabolism disorders and optimizes intestinal flora compositions of high-fat diet mice. Food Funct. 2020, 11, 10033–10046. [Google Scholar] [CrossRef]
- Ho, C.; Gao, Y.; Zheng, D.; Liu, Y.; Shan, S.; Fang, B.; Zhao, Y.; Song, D.; Zhang, Y.; Li, Q. Alisol A attenuates high-fat-diet-induced obesity and metabolic disorders via the AMPK/ACC/SREBP-1c pathway. J. Cell Mol. Med. 2019, 23, 5108–5118. [Google Scholar] [CrossRef]
- Lin, L.; Zeng, L.; Liu, A.; Peng, Y.; Yuan, D.; Zhang, S.; Li, Y.; Chen, J.; Xiao, W.; Gong, Z. l-Theanine regulates glucose, lipid, and protein metabolism via insulin and AMP-activated protein kinase signaling pathways. Food Funct. 2020, 11, 1798–1809. [Google Scholar] [CrossRef]
- Yu, M.; Li, G.; Tang, C.-L.; Gao, R.-Q.; Feng, Q.-T.; Cao, J. Effect of electroacupunctrue stimulation at “Fenglong”(ST 40) on expression of SREBP-1 c in non-alcoholic fatty liver disease rats. Zhen Ci Yan Jiu = Acupunct. Res. 2017, 42, 308–314. [Google Scholar]
- Hong, K.D.; Wan, T.; Lu, S.Y. Clinical Experience of Acupuncture Treatment for Non-Alcoholic Fatty Liver Disease. Evid Based Complement Altern. Med. 2022, 2022, 2447529. [Google Scholar] [CrossRef]
- Bonnefont, J.P.; Djouadi, F.; Prip-Buus, C.; Gobin, S.; Munnich, A.; Bastin, J. Carnitine palmitoyltransferases 1 and 2: Biochemical, molecular and medical aspects. Mol. Asp. Med. 2004, 25, 495–520. [Google Scholar] [CrossRef]
- You, L.; Wang, T.; Li, W.; Zhang, J.; Zheng, C.; Zheng, Y.; Li, S.; Shang, Z.; Lin, J.; Wang, F.; et al. Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways. J. Ethnopharmacol. 2024, 329, 118165. [Google Scholar] [CrossRef]
- Todisco, S.; Santarsiero, A.; Convertini, P.; De Stefano, G.; Gilio, M.; Iacobazzi, V.; Infantino, V. PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). Biology 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Villafranca, J.; Guillen, A.; Castro, J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie 2008, 90, 460–466. [Google Scholar] [CrossRef]
- Smith, B.K.; Marcinko, K.; Desjardins, E.M.; Lally, J.S.; Ford, R.J.; Steinberg, G.R. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E730–E740. [Google Scholar] [CrossRef]
- Pai, R.K.; Jairath, V.; Hogan, M.; Zou, G.; Adeyi, O.A.; Anstee, Q.M.; Aqel, B.A.; Behling, C.; Carey, E.J.; Clouston, A.D. Reliability of histologic assessment for NAFLD and development of an expanded NAFLD activity score. Hepatology 2022, 76, 1150–1163. [Google Scholar] [CrossRef]
- Li, Q.P.; Dou, Y.X.; Huang, Z.W.; Chen, H.B.; Li, Y.C.; Chen, J.N.; Liu, Y.H.; Huang, X.Q.; Zeng, H.F.; Yang, X.B.; et al. Therapeutic effect of oxyberberine on obese non-alcoholic fatty liver disease rats. Phytomedicine 2021, 85, 153550. [Google Scholar] [CrossRef]
- Huang, R.; Guo, F.; Li, Y.; Liang, Y.; Li, G.; Fu, P.; Ma, L. Activation of AMPK by triptolide alleviates nonalcoholic fatty liver disease by improving hepatic lipid metabolism, inflammation and fibrosis. Phytomedicine 2021, 92, 153739. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, P.; Li, Z.; Luo, Y.; Shen, J.; Li, R.; Zheng, H.; Liang, Y.; Xia, N. Liraglutide Improves Non-Alcoholic Fatty Liver Disease In Diabetic Mice By Modulating Inflammatory Signaling Pathways. Drug Des. Devel. Ther. 2019, 13, 4065–4074. [Google Scholar] [CrossRef]
- Sharma, A. Lipid droplets associated perilipins protein insights into finding a therapeutic target approach to cure non-alcoholic fatty liver disease (NAFLD). Future J. Pharm. Sci. 2022, 8, 1. [Google Scholar] [CrossRef]
Target Gene | Primer Sequence |
---|---|
GAPDH | F: 5′-GGC ACA GTC AAG GCT GAG AAT G-3′ R: 5′-ATG GTG GTG AAG ACG CCA GTA-3′ |
AMPK | F: 5′-GCT CGC AGT GGC TTA TCA T-3′ R: 5′-TGG ACA GCG TGC TTT GG-3′ |
SREBP1 | F: 5′-GGA CGA GCT ACC CTT CGG T-3′ R: 5′-CTG TCT CAC CCC CAG CAT AG-3′ |
ACC | F: 5′-CAC ATC ATG AAG GAG GAG G-3′ R: 5′-GCT ATC ACA CAG CCT GGG TC-3′ |
PPARα | F: 5′-TGC GGACTA CCA GTA CTT AGG G-3′ R: 5′-GCT GGA GAG AGG GTG TCT GT-3′ |
CPT1 | F: 5′-AAC TTT GTG CAG GCC ATG ATG-3′ R: 5′-GGC AGA AGA TGG CGG TCG-3′ |
CPT2 | F: 5′-GCC TCT CTT GGA TGA CAG C-3′ R: 5′-CTG GTG TGC TTA TTC TGC T-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Choi, D.; Park, J.; Kim, J.G.; Choi, T.; Youn, D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr. Issues Mol. Biol. 2024, 46, 11580-11592. https://doi.org/10.3390/cimb46100687
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Current Issues in Molecular Biology. 2024; 46(10):11580-11592. https://doi.org/10.3390/cimb46100687
Chicago/Turabian StyleLee, Yumi, Donghee Choi, Junghye Park, Jae Gwan Kim, Taejin Choi, and Daehwan Youn. 2024. "The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats" Current Issues in Molecular Biology 46, no. 10: 11580-11592. https://doi.org/10.3390/cimb46100687
APA StyleLee, Y., Choi, D., Park, J., Kim, J. G., Choi, T., & Youn, D. (2024). The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Current Issues in Molecular Biology, 46(10), 11580-11592. https://doi.org/10.3390/cimb46100687