Bacterial Cellulose Membrane Experimentally Implanted in the Peritoneum of Wistar Rats—Inflammatory Immunoreactivity and Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cellulose Membrane
2.2. Animals and Procedure
2.3. Biochemicals Tests and Oxidative Stress
2.4. Histopathology and Immunohistochemistry (IHC)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Oxidative Stress
3.2. Biochemical Tests
3.3. Histopathology
3.4. Immunohistochemistry (IHC) CD20, CD3 e F4/80
3.5. Immunohistochemistry (IHC) Type I; III and IV Collagens and α-SMA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klemm, D. Nanocelluloses: A new family of nature-based materials. Angew. Chem.-Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Dourado, F.; Ryngajllo, M.; Jedrzejczak-Krzepkowska, M.; Bielecki, S.; Gama, M. Taxonomic Review and Microbial Ecology in Bacterial NanoCellulose Fermentation. In Bacterial Nanocellulose: From Biotechnology to Bioeconomy; Gama, M., Bielecky, S., Dourado, F., Eds.; Elsevier: Amsterdam, The Nederland, 2016; pp. 1–17. [Google Scholar]
- Gu, J.; Catchmark, J.M. Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr. Polym. 2012, 88, 547–557. [Google Scholar] [CrossRef]
- Czaja, W.; Romanovicz, D.; Brown, R.M. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 2004, 11, 403–411. [Google Scholar] [CrossRef]
- Feng, L.-M.; Huang, Y.-Y.; Zheng, D.-X.; Feng, D.-S.; Lin, W.-H.; Ma, Y.-Z. Toxicological assessment of microbial cellulose food of nata de coco. China Trop. Med. 2015, 15, 651–654. [Google Scholar]
- De Souza Munhoz, L.L.; Guillens, L.C.; Alves, B.C.; Nascimento, M.G.O.F.D.; Meneguin, A.B.; Carbinatto, F.M.; Arruda, G.; Da Silva Barud, H.; De Aro, A.; De Roch Casagrande, L.; et al. Bacterial nanocellulose/calcium alginate hydrogel for the treatment of burns. Acta Cirúrgica Bras. 2024, 39, e393324. [Google Scholar] [CrossRef]
- Schramm, M.; Hestrin, S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 1954, 11, 123–129. [Google Scholar] [CrossRef]
- Helenius, G.; Bäckdahl, H.; Bodin, A.; Nannmark, U.; Gatenholm, P.; Risberg, B. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. Part A 2005, 76, 431–438. [Google Scholar] [CrossRef]
- Zharikov, A.N.; Lubyansky, V.G.; Gladysheva, E.K.; Skiba, E.A.; Budaeva, V.V.; Semyonova, E.N.; Zharikov, A.A.; Sakovich, G.V. Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials. J. Mater. Sci. Mater. Med. 2018, 29, 95. [Google Scholar] [CrossRef]
- Hakkarainen, T.; Koivuniemi, R.; Kosonen, M.; Escobedo-Lucea, C.; Sanz-Garcia, A.; Vuola, J.; Valtonen, J.; Tammela, P.; Mäkitie, A.; Luukko, K.; et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 2016, 244, 292–301. [Google Scholar] [CrossRef]
- Pinto, F.C.M.; De-Oliveira, A.C.A.X.; De-Carvalho, R.R.; Gomes-Carneiro, M.R.; Coelho, D.R.; Lima, S.V.C.; Paumgartten, F.J.R.; Aguiar, J.L.A. Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses. Carbohydr. Polym. 2015, 137, 556–560. [Google Scholar] [CrossRef]
- Okiyama, A.; Motoki, M.; Yamanaka, S. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll. 1992, 6, 479–487. [Google Scholar] [CrossRef]
- Da Rosa Almeida, A.; Stegemann, C.; Maciel, M.V.O.B.; De Braga Da Costa, A.; Schadeck, T.R.C.; De Souza Medeiros, H.; Stegemann, M.; De Armas, R.D. Produção de celulose bacteriana (CB) em diferentes meios a partir de culturas de kombucha. Food Sci. Today 2024, 3, 20–25. [Google Scholar] [CrossRef]
- Zahedmanesh, H.; Mackle, J.N.; Sellborn, A.; Drotz, K.; Bodin, A.; Gatenholm, P.; Lally, C. Bacterial cellulose as a potential vascular graft: Mechanical characterization and constitutive model development. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 97, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.F.; Pereira, T.; Silva, N.H.C.S.; Gomes, F.P.; Silvestre, A.J.D.; Freire, C.S.R.; Lobo, J.M.S.; Costa, P.C. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 2014, 86, 332–336. [Google Scholar] [CrossRef]
- Barud, H.G.O.; Da S Barud, H.; Cavicchioli, M.; Amaral, T.S.D.; De Oliveira Junior, O.B.; Santos, D.M.; De Oliveira Almeida Petersen, A.L.; Celes, F.; Borges, V.M.; De Oliveira, C.I.; et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr. Polym. 2015, 128, 41–51. [Google Scholar] [CrossRef]
- Schumann, D.A.; Wippermann, J.; Klemm, D.O.; Kramer, F.; Koth, D.; Kosmehl, H.; Wahlers, T.; Salehi-Gelani, S. Artificial vascular implants from bacterial cellulose: Preliminary results of small arterial substitutes. Cellulose 2008, 16, 877–885. [Google Scholar] [CrossRef]
- Zaborowska, M.; Bodin, A.; Bäckdahl, H.; Popp, J.; Goldstein, A.; Gatenholm, P. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 2010, 6, 2540–2547. [Google Scholar] [CrossRef]
- Kowalska-Ludwicka, K. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch. Med. Sci 2013, 9, 527–534. [Google Scholar] [CrossRef]
- Martínez Ávila, H.; Schwarz, S.; Feldmann, E.-M.; Mantas, A.; von Bomhard, A.; Gatenholm, P.; Rotter, N. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 2014, 98, 7423–7435. [Google Scholar] [CrossRef]
- Zhang, L.-K.; Du, S.; Wang, X.; Jiao, Y.; Yin, L.; Zhang, Y.; Guan, Y.-Q. Bacterial cellulose based composites enhanced transdermal drug targeting for breast cancer treatment. Chem. Eng. J. 2019, 370, 749–759. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, J.; Zhao, S.; Luo, H.; Yang, Z.; Gama, M.; Zhang, Q.; Su, D.; Wan, Y. Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose 2020, 27, 2775–2784. [Google Scholar] [CrossRef]
- Jing, Y.; Ma, X.; Xu, C.; Tian, H.-L.; Chen, S.-W. Repair of dural defects with electrospun bacterial cellulose membranes in a rabbit experimental model. Mater. Sci. Eng. C 2020, 117, 111246. [Google Scholar] [CrossRef]
- De Moraes Rebello Pinho, A.M.; Kencis, C.C.S.; Miranda, D.R.P.; De Sousa Neto, O.M. Traumatic perforations of the tympanic membrane: Immediate clinical recovery with the use of bacterial cellulose film. Braz. J. Otorhinolaryngol. 2020, 86, 727–733. [Google Scholar] [CrossRef]
- Custódio, F.A.F.; De Castro, L.M.; Unterkircher, E.; Porto, A.C.R.C.; Braga, I.S.; Hataka, A.; Jozala, A.F.; Grotto, D. Evaluation of bacterial nanocellulose membranes loaded or not with nisin as a complementary treatment in surgical dehorning wounds in bovines. Pharmaceutics 2021, 13, 688. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Lin, S.-C.; Wu, Y.-H.; Hu, C.-Y.; Chen, Y.-T.; Chen, Y.-C. The antimicrobial effects of bacterial cellulose produced by Komagataeibacter intermedius in promoting wound healing in diabetic mice. Int. J. Mol. Sci. 2022, 23, 5456. [Google Scholar] [CrossRef]
- De Oliveira, G.M.; Filho, A.O.G.; Da Silva, J.G.M.; Da Silva Junior, A.G.; De Oliveira, M.D.L.; De Andrade, C.A.S.; Lins, E.M. Bacterial cellulose biomaterials for the treatment of lower limb ulcers. Rev. Do Colégio Bras. De Cir. 2023, 50, e20233536. [Google Scholar] [CrossRef]
- Jozala, A.F.; Pértile, R.A.N.; Santos, C.A.D.; De Carvalho Santos-Ebinuma, V.; Seckler, M.M.; Gama, F.M.; Pessoa, A. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 2014, 99, 1181–1190. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxide. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analisys; Prentice-Hall: Upper Saddle River, NJ, USA, 1996; p. 718. [Google Scholar]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, H.; Wang, Z.; Ding, J.; Wang, S.; Huang, B.; Ke, S.; Gao, C. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J. Mater. Chem. B 2019, 7, 5019–5037. [Google Scholar] [CrossRef]
- Jeong, S.I.; Lee, S.E.; Yang, H.; Jin, Y.-H.; Park, C.-S.; Park, Y.S. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell. Toxicol. 2010, 6, 370–377. [Google Scholar] [CrossRef]
- Pértile, R.A.N.; Moreira, S.; Da Costa, R.M.G.; Correia, A.; Guãrdao, L.; Gartner, F.; Vilanova, M.; Gama, M. Bacterial cellulose: Long-term biocompatibility studies. J. Biomater. Sci. Polym. Ed. 2012, 23, 1339–1354. [Google Scholar] [CrossRef]
- Maia, G.T.d.S.; De Albuquerque, A.V.; Filho, E.D.M.; De Lira Neto, F.T.; De Souza, V.S.B.; Da Silva, A.A.; De Melo Lira, M.M.; Lima, S.V.C. Bacterial cellulose to reinforce urethrovesical anastomosis. A translational study. Acta Cirúrgica Bras. 2018, 33, 673–683. [Google Scholar] [CrossRef]
- Wahid, F.; Zhao, X.J.; Jia, S.R.; Bai, H.; Zhong, C. Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives. Compos. Part B Eng. 2020, 200, 108208. [Google Scholar] [CrossRef]
- Cherng, J.-H.; Chou, S.-C.; Chen, C.-L.; Wang, Y.-W.; Chang, S.-J.; Fan, G.-Y.; Leung, F.-S.; Meng, E. Bacterial cellulose as a potential bio-scaffold for effective re-epithelialization therapy. Pharmaceutics 2021, 13, 1592. [Google Scholar] [CrossRef]
- Wahid, F.; Huang, L.-H.; Zhao, X.-Q.; Li, W.-C.; Wang, Y.-Y.; Jia, S.-R.; Zhong, C. Bacterial cellulose and its potential for biomedical applications. Biotechnol. Adv. 2021, 53, 107856. [Google Scholar] [CrossRef]
- Wahid, F.; Zhao, X.J.; Zhao, X.Q.; Ma, X.F.; Xue, N.; Liu, X.Z.; Wang, F.P.; Jia, S.R.; Zhong, C. Fabrication of bacterial cellulose-based dressings for promoting infected wound healing. ACS Appl. Mater. Interfaces 2021, 13, 32716–32728. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lim, Y.-M.; Jeong, S.I.; An, S.-J.; Kang, S.-S.; Jeong, C.-M.; Huh, J.-B. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J. Adv. Prosthodont. 2015, 7, 484. [Google Scholar] [CrossRef] [PubMed]
- Nimeskern, L.; Ávila, H.M.; Sundberg, J.; Gatenholm, P.; Müller, R.; Stok, K.S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J. Mech. Behav. Biomed. Mater./J. Mech. Behav. Biomed. Mater. 2013, 22, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.S. Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin. Immunol. 2008, 20, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.L.; Park, J.; Yao, S.; Blakney, A.K.; Nguyen, H.V.; Katz, B.H.; Jensen, J.T.; Woodrow, K.A. Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants. Biomaterials 2021, 273, 120806. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, K.O.; Bertolo, R.; de Almeida Ibanez, N.L.; Alves, M.R.; Onuma, T.P.; Ribeiro, G.C.; de Souza Porto, A.J.; Barbeito, C.G.; Pinato, L.; Jozala, A.F.; et al. Bacterial Cellulose Membrane Experimentally Implanted in the Peritoneum of Wistar Rats—Inflammatory Immunoreactivity and Oxidative Stress. Curr. Issues Mol. Biol. 2024, 46, 11729-11748. https://doi.org/10.3390/cimb46110697
Santos KO, Bertolo R, de Almeida Ibanez NL, Alves MR, Onuma TP, Ribeiro GC, de Souza Porto AJ, Barbeito CG, Pinato L, Jozala AF, et al. Bacterial Cellulose Membrane Experimentally Implanted in the Peritoneum of Wistar Rats—Inflammatory Immunoreactivity and Oxidative Stress. Current Issues in Molecular Biology. 2024; 46(11):11729-11748. https://doi.org/10.3390/cimb46110697
Chicago/Turabian StyleSantos, Karina Oliveira, Rebecca Bertolo, Natasha Lien de Almeida Ibanez, Mônica Rodrigues Alves, Tatiana Pessoa Onuma, Gabriella Costa Ribeiro, Anna Julia de Souza Porto, Cláudio Gustavo Barbeito, Luciana Pinato, Angela Faustino Jozala, and et al. 2024. "Bacterial Cellulose Membrane Experimentally Implanted in the Peritoneum of Wistar Rats—Inflammatory Immunoreactivity and Oxidative Stress" Current Issues in Molecular Biology 46, no. 11: 11729-11748. https://doi.org/10.3390/cimb46110697
APA StyleSantos, K. O., Bertolo, R., de Almeida Ibanez, N. L., Alves, M. R., Onuma, T. P., Ribeiro, G. C., de Souza Porto, A. J., Barbeito, C. G., Pinato, L., Jozala, A. F., Grotto, D., & Hataka, A. (2024). Bacterial Cellulose Membrane Experimentally Implanted in the Peritoneum of Wistar Rats—Inflammatory Immunoreactivity and Oxidative Stress. Current Issues in Molecular Biology, 46(11), 11729-11748. https://doi.org/10.3390/cimb46110697