Two-Sample Mendelian Randomization Study Identifies Tissue-Dependent Risk Genes in Autoimmune Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mendelian Randomization (MR)
2.2. Two-Sample MR (MR-Base)
2.3. Harmonizing and Data Cleaning
2.4. Statistical Tests
3. Results
3.1. Crohn’s Disease (CD)
3.2. Ulcerative Colitis (UC)
3.3. Rheumatoid Arthritis (RA)
3.4. Multiple Sclerosis (MS)
3.5. Type 1 Diabetes (T1D)
3.6. Systemic Lupus Erythematosus (SLE)
3.7. Shared Risk Genes Across Multiple Autoimmune Diseases and Related Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Wang, F.S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med. 2015, 278, 369–395. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Misra, S.; Verbakel, J.Y.; Verbeke, G.; Molenberghs, G.; Taylor, P.N.; Mason, J.; Sattar, N.; McMurray, J.J.; McInnes, I.B. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet 2023, 401, 1878–1890. [Google Scholar] [CrossRef]
- Baranzini, S.E. The genetics of autoimmune diseases: A networked perspective. Curr. Opin. Immunol. 2009, 21, 596–605. [Google Scholar] [CrossRef]
- Sartor, R.B. Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 390–407. [Google Scholar] [CrossRef]
- Aletaha, D.; Smolen, J.S. Diagnosis and management of rheumatoid arthritis: A review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Kurkó, J.; Besenyei, T.; Laki, J.; Glant, T.T.; Mikecz, K.; Szekanecz, Z. Genetics of rheumatoid arthritis—A comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J. Multiple sclerosis progression: Time for a new mechanism-driven framework. Lancet Neurol. 2023, 22, 78–88. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Stys, P.K.; Tsutsui, S.; Gafson, A.R.; ‘t Hart, B.A.; Belachew, S.; Geurts, J.J. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front. Cell. Neurosci. 2024, 18, 1426231. [Google Scholar] [CrossRef]
- Baranzini, S.E.; Wang, J.; Gibson, R.A.; Galwey, N.; Naegelin, Y.; Barkhof, F.; Radue, E.-W.; Lindberg, R.L.; Uitdehaag, B.M.; Johnson, M.R. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum. Mol. Genet. 2009, 18, 767–778. [Google Scholar] [CrossRef]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Gershwin, M.E.; Chang, C. Diagnostic criteria for systemic lupus erythematosus: A critical review. J. Autoimmun. 2014, 48, 10–13. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, P.; Tong, Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: A meta-analysis. Int. J. Rheum. Dis. 2015, 18, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Harroud, A.; Hafler, D.A. Common genetic factors among autoimmune diseases. Science 2023, 380, 485–490. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 2023, 19, 509–524. [Google Scholar] [CrossRef]
- de Vries, R.R.; Van Rood, J. HLA and autoimmunity. In Perspectives on Autoimmunity; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–17. [Google Scholar]
- Tizaoui, K.; Terrazzino, S.; Cargnin, S.; Lee, K.H.; Gauckler, P.; Li, H.; Shin, J.I.; Kronbichler, A. The role of PTPN22 in the pathogenesis of autoimmune diseases: A comprehensive review. Semin. Arthritis Rheum. 2021, 51, 513–522. [Google Scholar] [CrossRef]
- Boehm, F.J.; Zhou, X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput. Struct. Biotechnol. J. 2022, 20, 2338–2351. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A. Commentary: Two-sample Mendelian randomization: Opportunities and challenges. Int. J. Epidemiol. 2016, 45, 908–915. [Google Scholar] [CrossRef]
- Richardson, T.G.; Hemani, G.; Gaunt, T.R.; Relton, C.L.; Davey Smith, G. A transcriptome-wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human phenome. Nat. Commun. 2020, 11, 185. [Google Scholar] [CrossRef]
- Chen, C.; Wang, P.; Zhang, R.-D.; Fang, Y.; Jiang, L.-Q.; Fang, X.; Zhao, Y.; Wang, D.-G.; Ni, J.; Pan, H.-F. Mendelian randomization as a tool to gain insights into the mosaic causes of autoimmune diseases. Autoimmun. Rev. 2022, 21, 103210. [Google Scholar] [CrossRef]
- Xu, Q.; Ni, J.-J.; Han, B.-X.; Yan, S.-S.; Wei, X.-T.; Feng, G.-J.; Zhang, H.; Zhang, L.; Li, B.; Pei, Y.-F. Causal relationship between gut microbiota and autoimmune diseases: A two-sample Mendelian randomization study. Front. Immunol. 2022, 12, 746998. [Google Scholar] [CrossRef] [PubMed]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Consortium, G. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Sanderson, E.; Glymour, M.M.; Holmes, M.V.; Kang, H.; Morrison, J.; Munafò, M.R.; Palmer, T.; Schooling, C.M.; Wallace, C.; Zhao, Q. Mendelian randomization. Nat. Rev. Methods Primers 2022, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Sollis, E.; Mosaku, A.; Abid, A.; Buniello, A.; Cerezo, M.; Gil, L.; Groza, T.; Güneş, O.; Hall, P.; Hayhurst, J. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023, 51, D977–D985. [Google Scholar] [CrossRef]
- Gilad, Y.; Rifkin, S.A.; Pritchard, J.K. Revealing the architecture of gene regulation: The promise of eQTL studies. Trends Genet. 2008, 24, 408–415. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [PubMed]
- Decker, G.A.G.; Loftus Jr, E.V.; Pasha, T.M.; Tremaine, W.J.; Sandborn, W.J. Crohn’s disease of the esophagus: Clinical features and outcomes. Inflamm. Bowel Dis. 2001, 7, 113–119. [Google Scholar] [CrossRef]
- Ford, H. Clinical presentation and diagnosis of multiple sclerosis. Clin. Med. 2020, 20, 380–383. [Google Scholar] [CrossRef]
- Megiorni, F.; Pizzuti, A. HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: Practical implications of the HLA molecular typing. J. Biomed. Sci. 2012, 19, 88. [Google Scholar] [CrossRef]
- Badenhoop, K.; Walfish, P.G.; Rau, H.; Fischer, S.; Nicolay, A.; Bogner, U.; Schleusener, H.; Usadel, K. Susceptibility and resistance alleles of human leukocyte antigen (HLA) DQA1 and HLA DQB1 are shared in endocrine autoimmune disease. J. Clin. Endocrinol. Metab. 1995, 80, 2112–2117. [Google Scholar] [PubMed]
- Andreasi, R.B.; Khan, M.; Galuppi, E.; Govoni, M.; Rubini, M. THU0022 Replication analysis of gene-gene interaction between HLA-DQA2 and HLA-DQB2 variants in italian rheumatoid arthritis patients. Ann. Rheum. Dis. 2017, 76, 207. [Google Scholar]
- Simmonds, M.; Gough, S. The HLA region and autoimmune disease: Associations and mechanisms of action. Curr. Genom. 2007, 8, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, M.U.; Lam, M.T.; Glass, C.K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 2011, 90, 430–440. [Google Scholar] [CrossRef]
GWAS Study ID | Disease | Population | Sample Size | Number of SNPs |
---|---|---|---|---|
ukb-b-8210 | CD | European | 462,933 | 9,851,867 |
ebi-a-GCST90014023 | T1D | European | 520,580 | 59,999,551 |
ebi-a-GCST90018917 | Lupus | European | 482,911 | 24,198,877 |
ebi-a-GCST90038685 | RA | European | 484,598 | 9,587,836 |
ukb-b-17670 | MS | European | 462,933 | 9,851,867 |
ebi-a-GCST90038684 | UC | European | 484,598 | 9,587,836 |
Gene | Disease | ||||
---|---|---|---|---|---|
Ulcerative Colitis | Rheumatoid Arthritis | Multiple Sclerosis | Type 1 Diabetes | Systemic Lupus Erythematosus | |
HLA-DQA1 | 26 tissues | 26 tissues | 19 tissues | 26 tissues | |
HLA-DQA2 | 26 tissues | 25 tissues | 10 tissues | 27 tissues | |
HLA-DRB6 | 2 tissues | 29 tissues | 21 tissues | 29 tissues | |
HLA-DRB1 | 23 tissues | 6 tissues | 25 tissues | 21 tissues | |
HLA-DQB2 | 16 tissues | 18 tissues | 12 tissues | 22 tissues | |
C4A | 1 tissue | 1 tissue | 31 tissues | 28 tissues | |
CYP21A1P | 1 tissue | 13 tissues | 14 tissues | 19 tissues | 12 tissues |
HLA-DQB1-AS1 | 11 tissues | 18 tissues | 3 tissues | 18 tissues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, R.; Ma, L. Two-Sample Mendelian Randomization Study Identifies Tissue-Dependent Risk Genes in Autoimmune Diseases. Curr. Issues Mol. Biol. 2024, 46, 12311-12321. https://doi.org/10.3390/cimb46110731
Chiu R, Ma L. Two-Sample Mendelian Randomization Study Identifies Tissue-Dependent Risk Genes in Autoimmune Diseases. Current Issues in Molecular Biology. 2024; 46(11):12311-12321. https://doi.org/10.3390/cimb46110731
Chicago/Turabian StyleChiu, Ryan, and Li Ma. 2024. "Two-Sample Mendelian Randomization Study Identifies Tissue-Dependent Risk Genes in Autoimmune Diseases" Current Issues in Molecular Biology 46, no. 11: 12311-12321. https://doi.org/10.3390/cimb46110731
APA StyleChiu, R., & Ma, L. (2024). Two-Sample Mendelian Randomization Study Identifies Tissue-Dependent Risk Genes in Autoimmune Diseases. Current Issues in Molecular Biology, 46(11), 12311-12321. https://doi.org/10.3390/cimb46110731