Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria
Abstract
:1. Introduction
1.1. When Scale Greatly Exceeds Carrying Capacity
1.2. Antibiotic Usage in Animal Husbandry: A Regulatory Perspective
1.2.1. Progress and Severe Gaps in Legislation
1.2.2. Is Legislation Using Science Responsibly?
1.2.3. Legislation Is Not the End
2. The Galliformes Order (Chicken-like Birds) and Linum (The Flaxes)
2.1. Natural Characteristics of Galliformes and Linum: A Symbiosis
2.2. Parasitic Infection Has Played a Key Role in Chicken Evolution
3. Flaxseed’s Effect on Innate and Adaptive Immune Function in Chickens
3.1. Brief Overview of the Heterophil to Lymphocyte Ratio (H/L) in Chickens: Implications for Gut Microbiome, Short-Chain Fatty Acids (SCFAs), HDACi, and Adaptive Immune Capacity
3.2. Whole Flaxseed Strengthens the Adaptive Immune Capacity of Laying Hens by Attenuating the Heterophil to Lymphocyte Ratio (H/L)
4. Flaxseed Accelerates Chicken Recovery from Microbial Infection
4.1. Flaxseed Versus S. Enteritidis (“Salmonella Infection”)
4.2. Flaxseed Versus Eimeria (“Coccidiosis Infection”): Strong but Mixed Results
5. Understanding Flaxseed’s Anti-Vitamin B6 Effect on Chicken Immunity: A Future Path for Poultry Research
5.1. Vitamin B6 Antagonism: A Tool Leveraged by Medicinal Plants and Allopathic Medicine
5.2. Flaxseed’s Anti-Vitamin B6 Effect on One-Carbon Metabolism and Cellular Bioenergetics
5.3. Whole Flaxseed’s Immunological Role as a PEMT Activator: A Case for S. enterica
5.3.1. Review of S. enterica’s Insult to the Follicular Granulosa: Implications for Estrogen Synthesis and Hepatic Lipoprotein Metabolism
5.3.2. Whole Flaxseed Accelerates Laying Hen Recovery from S. enterica Infection by Sustaining PEMT Activity: A Model for Compensating S. enterica’s Insult to Estrogen
5.4. Immune Implications for Defatted Flaxseed as a Metformin Homologue
5.4.1. Review of Metformin’s Immuno-Reproductive Effects in Chickens
5.4.2. Defatted Flaxseed as an Accelerator of Immune Cell Expansion: Implications for Increased Thymidine Synthesis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
1ADP | 1-amino D-proline |
5DR | 5′-deoxyribonuclease |
A. galli | Ascaridia galli |
AGP | Antibiotic growth promoter |
AMP | Adenosine monophosphate |
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
Breg | Regulatory B-cell |
dTMP | Deoxythymidine monophosphate |
dTTP | Deoxythymidine triphosphate |
dUMP | Deoxyuracil monophosphate |
DNA | Deoxyribonucleic acid |
ERE | Estrogen response element |
E. maxima | Eimeria maxima |
E. tenella | Eimeria tenella |
EU | European Union |
FAO | Fatty acid oxidation |
G. biloba | Gingko biloba |
HDACi (or HDACis) | Histone deacetylase inhibitor (or histone deacetylase inhibitors) |
HDL | High-density lipoprotein |
H/L | Heterophil to lymphocyte ratio |
IFN-γ | Interferon gamma |
IL (e.g., IL-1β) | Interleukin |
L. utassitissimum | Linum utassitissimum (common flax) |
LPS | Lypopolysaccharide |
Ma | Million years ago |
MPN | 4′-methylpyridoxine or 4′-methoxypyridoxine |
MTHFR | Methylenetetrahydrofolate reductase |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
PEMT | Phosphatidylethanolamine methyltransferase |
p.i. | Post-inoculation |
PLP | Pyridoxal 5′-phosphate |
S. enterica | Salmonella enterica |
S. Enteritidis | Salmonella enterica Enteritidis serovar |
S. Typhimurium | Salmonella enterica Typhimurium serovar |
SAH | S-adenosylhomocysteine |
SAM | S-adenosylmethionine |
SCFA | Short-chain fatty acid |
SHMT1 | Serine hydroxymethyltransferase (cytosolic) |
SHMT2 | Serine hydroxymethyltransferase (mitochondrial) |
TNF-α | Tumor necrosis factor-α |
TLR (e.g., TLR4) | Toll-like receptor |
US | United States |
USDA | United States Department of Agriculture |
VLDL | Very-low-density lipoprotein |
References
- OECD and Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2022–2031; OECD: Paris, France; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; Volume 2022. [Google Scholar]
- Mace, J.L.; Knight, A. The Impacts of Colony Cages on the Welfare of Chickens Farmed for Meat. Animals 2022, 12, 2988. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 January 2024).
- Callaghan, C.T.; Nakagawa, S.; Cornwell, W.K. Global Abundance Estimates for 9,700 Bird Species. Proc. Natl. Acad. Sci. USA 2021, 118, e2023170118. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.E.; Thomas, R.; Williams, M.; Zalasiewicz, J.; Edgeworth, M.; Miller, H.; Coles, B.; Foster, A.; Burton, E.J.; Marume, U. The Broiler Chicken as a Signal of a Human Reconfigured Biosphere. R. Soc. Open Sci. 2018, 5, 180325. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, E.; Hansen, J.; Boussios, D. USDA Agricultural Projections to 2031; USDA: Washington, DC, USA, 2022. [Google Scholar]
- Moore, P.R.; Evenson, A.; Luckey, T.D.; McCoy, E.; Elvehjem, C.A.; Hart, E.B. Use Sulfasuxidine, Streptothricin, and Streptomycin in Nutritional Studies with the Chick. J. Biol. Chem. 1946, 165, 437–441. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Mavroeidis, A.; Papadopoulos, G.; Roussis, I.; Bilalis, D.; Kakabouki, I. On the Path towards a Greener EU: A Mini Review on Flax (Linum usitatissimum L.) as a Case Study. Plants 2023, 12, 1102. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, D.; Jin, X.; Feng, Y.; Guo, Y. Synthetic Microbiome for a Sustainable Poultry Industry. Innovation 2023, 4, 100357. [Google Scholar] [CrossRef]
- Starr, M.P.; Reynolds, D.M. Streptomycin Resistance of Coliform Bacteria from Turkeys Fed Streptomycin. Am. J. Public Health Nations Health 1951, 41, 1375–1380. [Google Scholar] [CrossRef]
- Elam, J.F.; Gee, L.L.; Couch, J.R. Effect of Feeding Penicillin on the Life Cycle of the Chick. Proc. Soc. Exp. Biol. Med. 1951, 77, 209–213. [Google Scholar] [CrossRef]
- Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine. Swann Report; H.M.S.O.: London, UK, 1969. [Google Scholar]
- Levy, S.B.; FitzGerald, G.B.; Macone, A.B. Changes in Intestinal Flora of Farm Personnel after Introduction of a Tetracycline-Supplemented Feed on a Farm. N. Engl. J. Med. 1976, 295, 583–588. [Google Scholar] [CrossRef]
- Levy, S.B. Emergence of Antibiotic-Resistant Bacteria in the Intestinal Flora of Farm Inhabitants. J. Infect. Dis. 1978, 137, 688–690. [Google Scholar] [CrossRef]
- Cooke, E.M.; Breaden, A.; Shooter, R.A.; O’Farrell, S. Antibiotic sensitivity of escherichia coli isolated from animals, food, hospital patients, and normal people. Lancet 1971, 298, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Dibner, J.J.; Richards, J.D. Antibiotic Growth Promoters in Agriculture: History and Mode of Action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef]
- Kirchhelle, C. Pharming Animals: A Global History of Antibiotics in Food Production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef]
- Wen, R.; Li, C.; Zhao, M.; Wang, H.; Tang, Y. Withdrawal of Antibiotic Growth Promoters in China and Its Impact on the Foodborne Pathogen Campylobacter Coli of Swine Origin. Front. Microbiol. 2022, 13, 1004725. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Hu, Y.J.; Cowling, B.J. Reducing Antibiotic Use in Livestock, China. Bull. World Health Organ. 2020, 98, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic Use in Food Animals Worldwide, with a Focus on Africa: Pluses and Minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef]
- Mutua, F.; Sharma, G.; Grace, D.; Bandyopadhyay, S.; Shome, B.; Lindahl, J. A Review of Animal Health and Drug Use Practices in India, and Their Possible Link to Antimicrobial Resistance. Antimicrob. Resist. Infect. Control 2020, 9, 103. [Google Scholar] [CrossRef]
- Da Silva, R.A.; Arenas, N.E.; Luiza, V.L.; Bermudez, J.A.Z.; Clarke, S.E. Regulations on the Use of Antibiotics in Livestock Production in South America: A Comparative Literature Analysis. Antibiotics 2023, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Van Boeckel, T.; Teillant, A. The Economic Costs of Withdrawing Antimicrobial Growth Promoters from the Livestock Sector; OECD Food, Agriculture and Fisheries Papers; OECD: Paris, France, 2015; Volume 78. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Antimicrobial Use and Resistance in Food-Producing Animals and the Environment: An African Perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Belete, M.; Saravanan, M. A Systematic Review on Drug Resistant Urinary Tract Infection Among Pregnant Women in Developing Countries in Africa and Asia; 2005–2016. Infect. Drug Resist. 2020, 13, 1465–1477. [Google Scholar] [CrossRef]
- Food Safety Network Tyson Foods to Remove ‘No Antibiotics Ever’ Label by End of Year. Available online: https://www.foodsafetynews.com/2023/07/tyson-foods-to-remove-no-antibiotics-ever-label-by-end-of-year/ (accessed on 27 December 2023).
- Karavolias, J.; Salois, M.J.; Baker, K.T.; Watkins, K. Raised without Antibiotics: Impact on Animal Welfare and Implications for Food Policy. Transl. Anim. Sci. 2018, 2, 337–348. [Google Scholar] [CrossRef]
- Chapman, H.D. Biochemical, Genetic and Applied Aspects of Drug Resistance in Eimeria Parasites of the Fowl. Avian Pathol. 1997, 26, 221–244. [Google Scholar] [CrossRef]
- Li, G.; De Oliveira, D.M.P.; Walker, M.J. The Antimicrobial and Immunomodulatory Effects of Ionophores for the Treatment of Human Infection. J. Inorg. Biochem. 2022, 227, 111661. [Google Scholar] [CrossRef] [PubMed]
- Long, P.; Johnson, J.; MCKENZIE, M. Anticoccidial Activity of Combinations of Narasin and Nicarbazin1. Poult. Sci. 1988, 67, 248–252. [Google Scholar] [CrossRef]
- Chapman, H.D.; Rathinam, T. Focused Review: The Role of Drug Combinations for the Control of Coccidiosis in Commercially Reared Chickens. Int. J. Parasitol. Drugs Drug Resist. 2022, 18, 32–42. [Google Scholar] [CrossRef]
- Soutter, F.; Werling, D.; Tomley, F.M.; Blake, D.P. Poultry Coccidiosis: Design and Interpretation of Vaccine Studies. Front. Veter-Sci. 2020, 7, 101. [Google Scholar] [CrossRef]
- Ahmad, R.; Yu, Y.-H.; Hua, K.-F.; Chen, W.-J.; Zaborski, D.; Dybus, A.; Hsiao, F.S.-H.; Cheng, Y.-H. Management and Control of Coccidiosis in Poultry—A Review. Anim. Biosci. 2023, 37, 1–15. [Google Scholar] [CrossRef]
- Quiroz-Castañeda, R.E.; Dantán-González, E. Control of Avian Coccidiosis: Future and Present Natural Alternatives. Biomed Res. Int. 2015, 2015, 430610. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Han, B.; Lin, Z.; Liu, Q.; Liu, Z.; Si, H.; Hu, D. Effects of Six Natural Compounds and Their Derivatives on the Control of Coccidiosis in Chickens. Microorganisms 2024, 12, 601. [Google Scholar] [CrossRef] [PubMed]
- El-Shall, N.A.; Abd El-Hack, M.E.; Albaqami, N.M.; Khafaga, A.F.; Taha, A.E.; Swelum, A.A.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; AbuQamar, S.F.; et al. Phytochemical Control of Poultry Coccidiosis: A Review. Poult. Sci. 2022, 101, 101542. [Google Scholar] [CrossRef]
- Allen, P.C.; Danforth, H.; Levander, O.A. Interaction of Dietary Flaxseed with Coccidia Infections in Chickens. Poult. Sci. 1997, 76, 822–827. [Google Scholar] [CrossRef]
- Stockholm AP News (Associated Press News) Sweden’s Largest Egg Producer to Cull All Its Chickens Following Recurrent Salmonella Outbreaks. Available online: https://apnews.com/article/sweden-chicken-farm-salmonella-outbreak-cull-1c718dfbaa8499551a32675057a30861#:~:text=In%20August%2C%20340%2C000%20chickens%20had,be%20affected%20by%20the%20culling. (accessed on 26 December 2023).
- Ruhal, R.; Kataria, R. Biofilm Patterns in Gram-Positive and Gram-Negative Bacteria. Microbiol. Res. 2021, 251, 126829. [Google Scholar] [CrossRef]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm Formation by Salmonella sp. in the Poultry Industry: Detection, Control and Eradication Strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef]
- Marks, L.; Reddinger, R.; Hakansson, A. High Levels of Genetic Recombination during Nasopharyngeal Carriage and Biofilm Formation in Streptococcus Pneumoniae. mBio 2012, 3, 10–1128. [Google Scholar] [CrossRef]
- Guard-Petter, J. The Chicken, the Egg and Salmonella Enteritidis. Environ. Microbiol. 2001, 3, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Gast, R.; Humphrey, T.J.; Van Immerseel, F. Mechanisms of Egg Contamination by Salmonella Enteritidis. FEMS Microbiol. Rev. 2009, 33, 718–738. [Google Scholar] [CrossRef]
- Gast, R.K.; Guraya, R.; Guard-Bouldin, J.; Holt, P.S.; Moore, R.W. Colonization of Specific Regions of the Reproductive Tract and Deposition at Different Locations Inside Eggs Laid by Hens Infected with Salmonella Enteritidis or Salmonella Heidelberg. Avian Dis. 2007, 51, 40–44. [Google Scholar] [CrossRef]
- Anastasiadou, M.; Michailidis, G. Cytokine Activation during Embryonic Development and in Hen Ovary and Vagina during Reproductive Age and Salmonella Infection. Res. Vet. Sci. 2016, 109, 86–93. [Google Scholar] [CrossRef]
- Shivaprasad, H.L.; Timoney, J.F.; Morales, S.; Lucio, B.; Baker, R.C. Pathogenesis of Salmonella Enteritidis Infection in Laying Chickens. I. Studies on Egg Transmission, Clinical Signs, Fecal Shedding, and Serologic Responses. Avian Dis. 1990, 34, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, B.C. Sexually Transmitted Disease in Birds: Occurrence and Evolutionary Significance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 339, 491–497. [Google Scholar] [CrossRef]
- Field, D.J.; Benito, J.; Chen, A.; Jagt, J.W.M.; Ksepka, D.T. Late Cretaceous Neornithine from Europe Illuminates the Origins of Crown Birds. Nature 2020, 579, 397–401. [Google Scholar] [CrossRef]
- Coles, B.H. 13—Galliformes. In Handbook of Avian Medicine, 2nd ed.; Tully, T.N., Dorrestein, G.M., Jones, A.K., Cooper, J.E., Eds.; W.B. Saunders: Edinburgh, UK, 2009; pp. 309–334. ISBN 978-0-7020-2874-8. [Google Scholar]
- Maguilla, E.; Escudero, M.; Ruíz-Martín, J.; Arroyo, J. Origin and Diversification of Flax and Their Relationship with Heterostyly across the Range. J. Biogeogr. 2021, 48, 1994–2007. [Google Scholar] [CrossRef]
- McDill, J.; Repplinger, M.; Simpson, B.; Kadereit, J. The Phylogeny of Linum and Linaceae Subfamily Linoideae, with Implications for Their Systematics, Biogeography, and Evolution of Heterostyly. Syst. Bot. 2009, 34, 386–405. [Google Scholar] [CrossRef]
- Vander Wall, S.B.; Kuhn, K.M.; Gworek, J.R. Two-Phase Seed Dispersal: Linking the Effects of Frugivorous Birds and Seed-Caching Rodents. Oecologia 2005, 145, 282–287. [Google Scholar] [CrossRef]
- Camargo, P.H.S.A.; Martins, M.M.; Feitosa, R.M.; Christianini, A. V Bird and Ant Synergy Increases the Seed Dispersal Effectiveness of an Ornithochoric Shrub. Oecologia 2016, 181, 507–518. [Google Scholar] [CrossRef]
- Loiselle, B.A. Seeds in Droppings of Tropical Fruit-Eating Birds: Importance of Considering Seed Composition. Oecologia 1990, 82, 494–500. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Yerou, H.; Ben Larbi, M.; M’Hamdi, N.; Najar, T. Insects as an Alternative Protein Source for Poultry Nutrition: A Review. Front. Vet. Sci. 2023, 10, 1200031. [Google Scholar] [CrossRef]
- Biasato, I.; Bellezza Oddon, S.; Chemello, G.; Gariglio, M.; Fiorilla, E.; Dabbou, S.; Pipan, M.; Dekleva, D.; Macchi, E.; Gasco, L.; et al. Welfare Implications for Broiler Chickens Reared in an Insect Larvae-Enriched Environment: Focus on Bird Behaviour, Plumage Status, Leg Health, and Excreta Corticosterone. Front. Physiol. 2022, 13, 930158. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Gui, B.; Arnison, P.G.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) Bioactive Compounds and Peptide Nomenclature: A Review. Trends Food Sci. Technol. 2014, 38, 5–20. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed-a Potential Functional Food Source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Frohne, D.; Pfander, H. A Color Atlas of Poisonous Plants; Wolfe Publishing: London, UK, 1984. [Google Scholar]
- Foster, S.; Duke, J. A Field Guide to Medicinal Plants and Herbs of Eastern and Central North America, 1st ed.; Peterson Field Guide Series; Houghton Mifflin: Boston, MA, USA, 1990. [Google Scholar]
- Liu, F.-H.; Chen, X.; Long, B.; Shuai, R.-Y.; Long, C.-L. Historical and Botanical Evidence of Distribution, Cultivation and Utilization of Linum usitatissimum L. (Flax) in China. Veg. Hist. Archaeobot. 2011, 20, 561–566. [Google Scholar] [CrossRef]
- Hadley, M.; Lacher, C.; Mitchel-Fetch, J. Fibre in flaxseed. In Proceedings of the 54th Flax Institute of United States, Fargo, ND, USA, 30–31 January 1992; Flax Institute of the United States: Fargo, ND, USA, 1992; pp. 79–83. [Google Scholar]
- Cui, S. Polysaccharide Gums from Agricultural Products, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Nowak, W.; Jeziorek, M. The Role of Flaxseed in Improving Human Health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, R.; Kobayashi, Y. Effects of Diet and Gizzard Muscularity on Grit Use in Domestic Chickens. PeerJ 2020, 8, e10277. [Google Scholar] [CrossRef]
- Sosulski, F.W.; Bakal, A. Isolated Proteins from Rapeseed, Flax and Sunflower Meals. Can. Inst. Food Technol. J. 1969, 2, 28–32. [Google Scholar] [CrossRef]
- Dev, D.K.; Quensel, E.; Hansen, R. Nitrogen Extractability and Buffer Capacity of Defatted Linseed (Linum usitatissimum L.). Flour. J. Sci. Food Agric. 1986, 37, 199–205. [Google Scholar] [CrossRef]
- Oomah, B.D. Flaxseed as a Functional Food Source. J. Sci. Food Agric. 2001, 81, 889–894. [Google Scholar] [CrossRef]
- Tamasgen, N. Effects of Replacing Soybean Meal with Linseed Meal in Broiler Diet on Selected Broilers’ Blood Parameters, Meat Chemical Composition, Fatty Acid Profiles, and Sensory Characteristics. Front. Anim. Sci. 2022, 3, 945685. [Google Scholar] [CrossRef]
- Darwin, C. The Variation of Animals and Plants under Domestication; John Murray: London, UK, 1868. [Google Scholar]
- Eriksson, J.; Larson, G.; Gunnarsson, U.; Bed’hom, B.; Tixier-Boichard, M.; Strömstedt, L.; Wright, D.; Jungerius, A.; Vereijken, A.; Randi, E.; et al. Identification of the Yellow Skin Gene Reveals a Hybrid Origin of the Domestic Chicken. PLoS Genet. 2008, 4, e1000010. [Google Scholar] [CrossRef]
- Lawal, R.A.; Martin, S.H.; Vanmechelen, K.; Vereijken, A.; Silva, P.; Al-Atiyat, R.M.; Aljumaah, R.S.; Mwacharo, J.M.; Wu, D.-D.; Zhang, Y.-P.; et al. The Wild Species Genome Ancestry of Domestic Chickens. BMC Biol. 2020, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Fumihito, A.; Miyake, T.; Takada, M.; Shingu, R.; Endo, T.; Gojobori, T.; Kondo, N.; Ohno, S. Monophyletic Origin and Unique Dispersal Patterns of Domestic Fowls. Proc. Natl. Acad. Sci. USA 1996, 93, 6792–6795. [Google Scholar] [CrossRef] [PubMed]
- Ligon, J.D.; Thornhill, R.; Zuk, M.; Johnson, K. Male-Male Competition, Ornamentation and the Role of Testosterone in Sexual Selection in Red Jungle Fowl. Anim. Behav. 1990, 40, 367–373. [Google Scholar] [CrossRef]
- Zuk, M.; Popma, S.L.; Johnsen, T.S. Male Courtship Displays, Ornaments and Female Mate Choice in Captive Red Jungle Fowl. Behaviour 1995, 132, 821–836. [Google Scholar] [CrossRef]
- Parker, T.H.; Ligon, J.D. Female Mating Preferences in Red Junglefowl: A Meta-Analysis. Ethol. Ecol. Evol. 2003, 15, 63–72. [Google Scholar] [CrossRef]
- Lozano, G. Carotenoids, Parasites, and Sexual Selection. Oikos 1994, 70, 309–311. [Google Scholar] [CrossRef]
- Zuk, M.; Thornhill, R.; Ligon, J.; Johnson, K. Parasites and Mate Choice in Red Jungle Fowl. Am. Zool. 1990, 30, 235–244. [Google Scholar] [CrossRef]
- Eigaard, N.M.; Schou, T.W.; Permin, A.; Christensen, J.P.; Ekstrøm, C.T.; Ambrosini, F.; Cianci, D.; Bisgaard, M. Infection and Excretion of Salmonella Enteritidis in Two Different Chicken Lines with Concurrent Ascaridia Galli Infection. Avian Pathol. 2006, 35, 487–493. [Google Scholar] [CrossRef]
- Peterson, E.H. Coccidiosis in Laying Hens Due Presumably to Eimeria Acervulina. Ann. N. Y. Acad. Sci. 1949, 52, 464–467. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The Use of Leukocyte Profiles to Measure Stress in Vertebrates: A Review for Ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Palacios, M.G.; Cunnick, J.E.; Vleck, D.; Vleck, C.M. Ontogeny of Innate and Adaptive Immune Defense Components in Free-Living Tree Swallows, Tachycineta Bicolor. Dev. Comp. Immunol. 2009, 33, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Genovese, K.J.; He, H.; Swaggerty, C.L.; Kogut, M.H. The Avian Heterophil. Dev. Comp. Immunol. 2013, 41, 334–340. [Google Scholar] [CrossRef]
- Davis, A.K.; Cook, K.C.; Altizer, S. Leukocyte Profiles in Wild House Finches with and without Mycoplasmal Conjunctivitis, a Recently Emerged Bacterial Disease. Ecohealth 2004, 1, 362–373. [Google Scholar] [CrossRef]
- Lobato, E.; Moreno, J.; Merino, S.; Sanz, J.J.; Arriero, E. Haematological Variables Are Good Predictors of Recruitment in Nestling Pied Flycatchers (Ficedula hypoleuca). Écoscience 2005, 12, 27–34. [Google Scholar] [CrossRef]
- Kilgas, P.; Tilgar, V.; Mänd, R. Hematological Health State Indices Predict Local Survival in a Small Passerine Bird, the Great Tit (Parus major). Physiol. Biochem. Zool. 2006, 79, 565–572. [Google Scholar] [CrossRef]
- Thiam, M.; Wang, Q.; Barreto Sánchez, A.L.; Zhang, J.; Ding, J.; Wang, H.; Zhang, Q.; Zhang, N.; Wang, J.; Li, Q.; et al. Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Front. Immunol. 2022, 13, 816689. [Google Scholar] [CrossRef] [PubMed]
- Al-Murrani, W.K.; Al-Rawi, I.K.; Raof, N.M. Genetic Resistance to Salmonella Typhimurium in Two Lines of Chickens Selected as Resistant and Sensitive on the Basis of Heterophil/Lymphocyte Ratio. Br. Poult. Sci. 2002, 43, 501–507. [Google Scholar] [CrossRef]
- Thiam, M.; Barreto Sánchez, A.L.; Zhang, J.; Wen, J.; Zhao, G.; Wang, Q. Investigation of the Potential of Heterophil/Lymphocyte Ratio as a Biomarker to Predict Colonization Resistance and Inflammatory Response to Salmonella Enteritidis Infection in Chicken. Pathogens 2022, 11, 72. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.; Zheng, Y.; Zhang, M.; Fei, W.; Sun, D.; Zhao, M.; Ye, Y.; Zheng, C. Short-Chain Fatty Acids Regulate B Cells Differentiation via the FFA2 Receptor to Alleviate Rheumatoid Arthritis. Br. J. Pharmacol. 2022, 179, 4315–4329. [Google Scholar] [CrossRef]
- Sanchez, H.N.; Moroney, J.B.; Gan, H.; Shen, T.; Im, J.L.; Li, T.; Taylor, J.R.; Zan, H.; Casali, P. B Cell-Intrinsic Epigenetic Modulation of Antibody Responses by Dietary Fiber-Derived Short-Chain Fatty Acids. Nat. Commun. 2020, 11, 60. [Google Scholar] [CrossRef]
- Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota Metabolite Butyrate Constrains Neutrophil Functions and Ameliorates Mucosal Inflammation in Inflammatory Bowel Disease. Gut Microbes 2021, 13, 1968257. [Google Scholar] [CrossRef] [PubMed]
- Govers, A.M.A.P.; Wiggers, C.R.M.; van Boxtel, R.; Mokry, M.; Nieuwenhuis, E.E.S.; Creyghton, M.P.; Bartels, M.; Coffer, P.J. Transcriptomic and Epigenomic Profiling of Histone Deacetylase Inhibitor Treatment Reveals Distinct Gene Regulation Profiles Leading to Impaired Neutrophil Development. Hemasphere 2019, 3, e270. [Google Scholar] [CrossRef]
- Chriett, S.; Dąbek, A.; Wojtala, M.; Vidal, H.; Balcerczyk, A.; Pirola, L. Prominent Action of Butyrate over β-Hydroxybutyrate as Histone Deacetylase Inhibitor, Transcriptional Modulator and Anti-Inflammatory Molecule. Sci. Rep. 2019, 9, 742. [Google Scholar] [CrossRef]
- Mombelli, M.; Lugrin, J.; Rubino, I.; Chanson, A.-L.; Giddey, M.; Calandra, T.; Roger, T. Histone Deacetylase Inhibitors Impair Antibacterial Defenses of Macrophages. J. Infect. Dis. 2011, 204, 1367–1374. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.L.; Targan, S.R.; Elson III, C.O. Microbiota Activation and Regulation of Innate and Adaptive Immunity. Immunol. Rev. 2014, 260, 206–220. [Google Scholar] [CrossRef]
- Zou, F.; Qiu, Y.; Huang, Y.; Zou, H.; Cheng, X.; Niu, Q.; Luo, A.; Sun, J. Effects of Short-Chain Fatty Acids in Inhibiting HDAC and Activating P38 MAPK Are Critical for Promoting B10 Cell Generation and Function. Cell Death Dis. 2021, 12, 582. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Lee, H.; Kwon, O.; Lee, E.; Bok, J.; Cho, C.; Choi, Y.; Kang, S. Effects of Flaxseed Supplementation on Omega-6 to Omega-3 Fatty Acid Balance, Lipid Mediator Profile, Proinflammatory Cytokines and Stress Indices in Laying Hens. J. Appl. Anim. Res. 2021, 49, 460–471. [Google Scholar] [CrossRef]
- Shafey, T.M.; Al-Batshan, H.A.; Farhan, A.M.S. The Effect of Dietary Flaxseed Meal on Liver and Egg Yolk Fatty Acid Profiles, Immune Response and Antioxidant Status of Laying Hens. Ital. J. Anim. Sci. 2015, 14, 3939. [Google Scholar] [CrossRef]
- Weston, W.C.; Hales, K.H.; Hales, D.B. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023, 13, 945. [Google Scholar] [CrossRef]
- Pal, P.; Johns, E.; Petrik, J.; Hales, K.; Hales, D.B. A Whole Flaxseed Supplemented Diet Reduces Fibrosis and Enhances Immune Infiltration in Laying Hen Model of Ovarian Cancer. In Proceedings of the 9th Illinois Symposium on Reproductive Science, Chicago, IL, USA, 11–13 November 2019. [Google Scholar]
- Laumont, C.M.; Banville, A.C.; Gilardi, M.; Hollern, D.P.; Nelson, B.H. Tumour-Infiltrating B Cells: Immunological Mechanisms, Clinical Impact and Therapeutic Opportunities. Nat. Rev. Cancer 2022, 22, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ma, B.; Liao, Z.; Li, W.; Zhang, T.; Lei, C.; Wang, H. Flaxseed Supplementation in Chicken Feed Accelerates Salmonella Enterica Subsp. Enterica Serovar Enteritidis Clearance, Modulates Cecum Microbiota, and Influences Ovarian Gene Expression in Laying Hens. Biomolecules 2023, 13, 1353. [Google Scholar] [CrossRef]
- Aziza, A.; Awadin, W. Impact of Dietary Supplementation of Whole Flaxseed and Flaxseed Meal to Infected Broiler Chickens with Eimeria Tenella. Asian J. Anim. Vet. Adv. 2018, 13, 166–174. [Google Scholar] [CrossRef]
- Allen, P.C.; Danforth, H.; Stitt, P.A. Effects of Nutritionally Balanced and Stabilized Flaxmeal-Based Diets on Eimeria tenella Infections in Chickens. Poult. Sci. 2000, 79, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.C.; Danforth, H.D. Effects of Dietary Supplementation with N-3 Fatty Acid Ethyl Esters on Coccidiosis in Chickens. Poult. Sci. 1998, 77, 1631–1635. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.; Danforth, H.; Levander, O. Diets High in N-3 Fatty Acids Reduce Cecal Lesion Scores in Chickens Infected with Eimeria Tenella. Poult. Sci. 1996, 75, 179–185. [Google Scholar] [CrossRef]
- Macdonald, S.; Martineau, D.; Martineau, H. Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect. Immun. 2019, 87, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Jebessa, E.; Guo, L.; Chen, X.; Bello, S.F.; Cai, B.; Girma, M.; Hanotte, O.; Nie, Q. Influence of Eimeria maxima Coccidia Infection on Gut Microbiome Diversity and Composition of the Jejunum and Cecum of Indigenous Chicken. Front. Immunol. 2022, 13, 994224. [Google Scholar] [CrossRef]
- Huang, J.; Liu, T.; Li, K.; Song, X.; Yan, R.; Xu, L.; Li, X. Proteomic Analysis of Protein Interactions between Eimeria maxima Sporozoites and Chicken Jejunal Epithelial Cells by Shotgun LC-MS/MS. Parasit. Vectors 2018, 11, 226. [Google Scholar] [CrossRef]
- Collier, C.T.; Hofacre, C.L.; Payne, A.M.; Anderson, D.B.; Kaiser, P.; Mackie, R.I.; Gaskins, H.R. Coccidia-Induced Mucogenesis Promotes the Onset of Necrotic Enteritis by Supporting Clostridium Perfringens Growth. Vet. Immunol. Immunopathol. 2008, 122, 104–115. [Google Scholar] [CrossRef]
- Klosterman, H.J.; Lamoureux, G.L.; Parsons, J.L. Isolation, Characterization, and Synthesis of Linatine. A Vitamin B6 Antagonist from Flaxseed (Linum usitatissimum)*. Biochemistry 1967, 6, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Klosterman, H.J. Vitamin B6 Antagonists of Natural Origin. J. Agric. Food Chem. 1974, 22, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Arenz, A.; Klein, M.; Fiehe, K.; Groß, J.; Drewke, C.; Hemscheidt, T.; Leistner, E. Occurrence of Neurotoxic 4′-O-Methylpyridoxine in Ginkgo biloba Leaves, Ginkgo Medications and Japanese Ginkgo Food. Plant Medica 1996, 62, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Ishigaki, S.; Ueda, K.; Sakata, M.; Haga, M. An Antivitamin B6, 4’-Methoxypyridoxine, from the Seed of Ginkgo biloba L. Chem. Pharm. Bull. 1985, 33, 3555–3557. [Google Scholar] [CrossRef]
- Zhang, X.H.; Sun, Z.Y.; Cao, F.L.; Ahmad, H.; Yang, X.H.; Zhao, L.G.; Wang, T. Effects of Dietary Supplementation with Fermented Ginkgo Leaves on Antioxidant Capacity, Intestinal Morphology and Microbial Ecology in Broiler Chicks. Br. Poult. Sci. 2015, 56, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wan, X.L.; Zhang, X.H.; Zhao, L.G.; He, J.T.; Zhang, J.F.; Zhang, L.L.; Wang, T. Effect of Supplemental Fermented Ginkgo biloba Leaves at Different Levels on Growth Performance, Meat Quality, and Antioxidant Status of Breast and Thigh Muscles in Broiler Chickens. Poult. Sci. 2017, 96, 869–877. [Google Scholar] [CrossRef]
- Ren, X.J.; Yang, Z.B.; Ding, X.; Yang, C.W. Effects of Ginkgo biloba Leaves (Ginkgo biloba) and Ginkgo biloba Extract on Nutrient and Energy Utilization of Broilers. Poult. Sci. 2018, 97, 1342–1351. [Google Scholar] [CrossRef]
- Cao, F.L.; Zhang, X.H.; Yu, W.W.; Zhao, L.G.; Wang, T. Effect of Feeding Fermented Ginkgo biloba Leaves on Growth Performance, Meat Quality, and Lipid Metabolism in Broilers. Poult. Sci. 2012, 91, 1210–1221. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, J.F.; Wan, X.L.; Huang, Q.; He, J.T.; Zhang, X.H.; Zhao, L.G.; Zhang, L.L.; Wang, T. Effect of Fermented Ginkgo biloba Leaves on Nutrient Utilisation, Intestinal Digestive Function and Antioxidant Capacity in Broilers. Br. Poult. Sci. 2019, 60, 47–55. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Zhang, M.; Wu, J.-X.; Li, Y.-B.; Sun, J.-R.; Tang, S.; Bao, E.-D. Gingko Biloba Extract EGB761 Alleviates Heat-Stress Damage in Chicken Heart Tissue by Stimulating Hsp70 Expression in Vivo in Vascular Endothelial Cells. Br. Poult. Sci. 2020, 61, 180–187. [Google Scholar] [CrossRef]
- Yang, X.; Li, D.; Zhang, M.; Feng, Y.; Jin, X.; Liu, D.; Guo, Y.; Hu, Y. Ginkgo biloba Extract Alleviates Fatty Liver Hemorrhagic Syndrome in Laying Hens via Reshaping Gut Microbiota. J. Anim. Sci. Biotechnol. 2023, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, L.; Cao, F.; Ahmad, H.; Wang, G.; Wang, T. Effects of Feeding Fermented Ginkgo biloba Leaves on Small Intestinal Morphology, Absorption, and Immunomodulation of Early Lipopolysaccharide-Challenged Chicks. Poult. Sci. 2013, 92, 119–130. [Google Scholar] [CrossRef] [PubMed]
- El-Kasrawy, N.I.; Majrashi, K.A.; El-Naggar, K.; Elreheim, A.M.A.; Essa, B.H.; Mahmoud, S.F.; Ibrahim, S.A.; Raafat, M.; Abd El-Hack, M.E.; Aboghanima, M.M. Impacts of Supplemental Ginkgo biloba Oil on Broilers’ Growth, Blood Indices, Intestinal and Hepatic Morphology and Expression of Growth-Related Genes. Poult. Sci. 2023, 102, 102520. [Google Scholar] [CrossRef]
- Liu, X.; Cao, G.; Wang, Q.; Yao, X.; Fang, B. The Effect of Bacillus Coagulans-Fermented and Nonfermented Ginkgo biloba on the Immunity Status of Broiler Chickens. J. Anim. Sci. 2015, 93, 3384–3394. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Bostami, A.B.M.R.; Islam, M.; Mun, H.; Ko, S.Y.; Yang, C.-J. Effect of Fermented Ginkgo biloba and Camelia Sinensis-Based Probiotics on Growth Performance, Immunity and Caecal Microbiology in Broilers. Int. J. Poult. Sci. 2016, 15, 62–71. [Google Scholar] [CrossRef]
- Witters, L.A. The Blooming of the French Lilac. J. Clin. Investig. 2001, 108, 1105–1107. [Google Scholar] [CrossRef]
- Tramonti, A.; Cuyàs, E.; Encinar, J.A.; Pietzke, M.; Paone, A.; Verdura, S.; Arbusà, A.; Martin-Castillo, B.; Giardina, G.; Joven, J.; et al. Metformin Is a Pyridoxal-5′-Phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers 2021, 13, 4009. [Google Scholar] [CrossRef] [PubMed]
- Heidari, R.; Niknahad, H.; Jamshidzadeh, A.; Azarpira, N.; Bazyari, M.; Najibi, A. Carbonyl Traps as Potential Protective Agents against Methimazole-Induced Liver Injury. J. Biochem. Mol. Toxicol. 2015, 29, 173–181. [Google Scholar] [CrossRef]
- Shapiro, H.K. Carbonyl-Trapping Therapeutic Strategies. Am. J. Ther. 1998, 5, 323–354. [Google Scholar] [CrossRef]
- Mount Sinai Health System Vitamin B6 (Pyridoxine). Available online: https://www.mountsinai.org/health-library/supplement/vitamin-b6-pyridoxine (accessed on 25 November 2023).
- Madhusudhan, K.; Ramesh, H.; Ogawa, T.; Sasaoka, K.; Singh, N. Detoxification of Commercial Linseed Meal for Use in Broiler Rations. Poult. Sci. 1986, 65, 164–171. [Google Scholar] [CrossRef]
- Weston, W.C.; Hales, K.H.; Hales, D.B. Flaxseed Increases Animal Lifespan and Reduces Ovarian Cancer Severity by Toxically Augmenting One-Carbon Metabolism. Molecules 2021, 26, 5674. [Google Scholar] [CrossRef] [PubMed]
- Takafumi, O.; Ryohei, T.; Muneyoshi, K.; Tetsuya, K.; Tsutomu, F.; Haruyuki, I.; Tomoyoshi, S.; Kazunori, K.; Tokichi, M.; Dai, H.; et al. Stimulating S-Adenosyl-l-Methionine Synthesis Extends Lifespan via Activation of AMPK. Proc. Natl. Acad. Sci. USA 2016, 113, 11913–11918. [Google Scholar] [CrossRef]
- Bhatia, M.; Thakur, J.; Suyal, S.; Oniel, R.; Chakraborty, R.; Pradhan, S.; Sharma, M.; Sengupta, S.; Laxman, S.; Masakapalli, S.K.; et al. Allosteric Inhibition of MTHFR Prevents Futile SAM Cycling and Maintains Nucleotide Pools in One-Carbon Metabolism. J. Biol. Chem. 2020, 295, 16037–16057. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Zhang, L.; Li, J.; Xing, T.; Gao, F. Intracellular Calcium Overload and Activation of CaMKK/AMPK Signaling Are Related to the Acceleration of Muscle Glycolysis of Broiler Chickens Subjected to Acute Stress. J. Agric. Food Chem. 2023, 71, 4091–4100. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, D.; Lin, H.; Li, H.; Zhao, J.; Jiao, H.C.; Wang, X. Adiponectin Reduces Lipid Content in Chicken Myoblasts by Activating AMPK Signaling Pathway. Biosci. Rep. 2022, 42, BSR20212549. [Google Scholar] [CrossRef]
- Kogut, M.H.; Genovese, K.J.; He, H.; Arsenault, R.J. AMPK and MTOR: Sensors and Regulators of Immunometabolic Changes during Salmonella Infection in the Chicken. Poult. Sci. 2016, 95, 345–353. [Google Scholar] [CrossRef]
- Rahman, M.M.; Guard-Petter, J.; Carlson, R.W. A Virulent Isolate of Salmonella Enteritidis Produces a Salmonella Typhi-like Lipopolysaccharide. J. Bacteriol. 1997, 179, 2126–2131. [Google Scholar] [CrossRef]
- Li, W.-H.; Liu, Y.-L.; Lun, J.-C.; He, Y.-M.; Tang, L.-P. Heat Stress Inhibits TLR4-NF-ΚB and TLR4-TBK1 Signaling Pathways in Broilers Infected with Salmonella Typhimurium. Int. J. Biometeorol. 2021, 65, 1895–1903. [Google Scholar] [CrossRef]
- Bosshart, H.; Heinzelmann, M. Targeting Bacterial Endotoxin. Ann. N. Y. Acad. Sci. 2007, 1096, 1–17. [Google Scholar] [CrossRef]
- Rhee, S.H. Lipopolysaccharide: Basic Biochemistry, Intracellular Signaling, and Physiological Impacts in the Gut. Intest. Res. 2014, 12, 90–95. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Ulevitch, R.I.; Wright, S.D.; Sibley, C.H.; Ding, A.; Nathan, C.F. Gram-Negative Endotoxin: An Extraordinary Lipid with Profound Effects on Eukaryotic Signal Transduction1. FASEB J. 1991, 5, 2652–2660. [Google Scholar] [CrossRef] [PubMed]
- Kogut, M.H. Dynamics of a Protective Avian Inflammatory Response: The Role of an IL-8-like Cytokine in the Recruitment of Heterophils to the Site of Organ Invasion by Salmonella Enteritidis. Comp. Immunol. Microbiol. Infect. Dis. 2002, 25, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-L.; Fan, Y.-C.; Tseng, C.-H.; Chiu, C.-H.; Tsai, H.-J.; Chou, C.-H. Salmonella Enteritidis Infection Slows Steroidogenesis and Impedes Cell Growth in Hen Granulosa Cells. Avian Dis. 2014, 58, 511–517. [Google Scholar] [CrossRef]
- Wang, C.; Tseng, C.; Chuang, T.; Chiu, C.; Chou, C. Mechanism of Decreased Progesterone Synthesis in Salmonella Enteritidis-Infected Chicken Granulosa Cells. Taiwan Vet. J. 2013, 39, 225–232. [Google Scholar]
- Ying, S.; Guo, J.; Dai, Z.; Zhu, H.; Yu, J.; Ma, W.; Li, J.; Akhtar, M.F.; Shi, Z. Time Course Effect of Lipopolysaccharide on Toll-like Receptors Expression and Steroidogenesis in the Chinese Goose Ovary. Reproduction 2017, 153, 509–518. [Google Scholar] [CrossRef]
- Wang, C.-L.; Fan, Y.-C.; Wang, C.; Tsai, H.-J.; Chou, C.-H. The Impact of Salmonella Enteritidis on Lipid Accumulation in Chicken Hepatocytes. Avian Pathol. 2016, 45, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-J.; Chiu, C.-H.; Wang, C.-L.; Chou, C.-H. A Time-Course Study of Gene Responses of Chicken Granulosa Cells to Salmonella Enteritidis Infection. Vet. Microbiol. 2010, 144, 325–333. [Google Scholar] [CrossRef]
- Berchieri Jr, A.; Wigley, P.; Page, K.; Murphy, C.K.; Barrow, P.A. Further Studies on Vertical Transmission and Persistence of Salmonella Enterica Serovar Enteritidis Phage Type 4 in Chickens. Avian Pathol. 2001, 30, 297–310. [Google Scholar] [CrossRef]
- Ren, J.; Tian, W.; Jiang, K.; Wang, Z.; Wang, D.; Li, Z.; Yan, F.; Wang, Y.; Tian, Y.; Ou, K.; et al. Global Investigation of Estrogen-Responsive Genes Regulating Lipid Metabolism in the Liver of Laying Hens. BMC Genom. 2021, 22, 428. [Google Scholar] [CrossRef]
- Resseguie, M.; Song, J.; da Costa, K.-A.; Wang, S.; Kozyreva, O.; Zeisel, S.H. Estrogen Regulation of the Human PEMT (Phosphatidylethanolamine N-Methyltransferase) Gene. FASEB J. 2006, 20, A612. [Google Scholar] [CrossRef]
- Walkey, C.J.; Yu, L.; Agellon, L.B.; Vance, D.E. Biochemical and Evolutionary Significance of Phospholipid Methylation. J. Biol. Chem. 1998, 273, 27043–27046. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.E.; Walkey, C.J.; Cui, Z. Phosphatidylethanolamine N-Methyltransferase from Liver. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1997, 1348, 142–150. [Google Scholar] [CrossRef]
- Vance, D.E. Role of Phosphatidylcholine Biosynthesis in the Regulation of Lipoprotein Homeostasis. Curr. Opin. Lipidol. 2008, 19, 229–234. [Google Scholar] [CrossRef]
- Ye, C.; Sutter, B.M.; Wang, Y.; Kuang, Z.; Tu, B.P. A Metabolic Function for Phospholipid and Histone Methylation. Mol. Cell 2017, 66, 180–193.e8. [Google Scholar] [CrossRef] [PubMed]
- Resseguie, M.; Song, J.; Niculescu, M.D.; da Costa, K.-A.; Randall, T.A.; Zeisel, S.H. Phosphatidylethanolamine N-Methyltransferase (PEMT) Gene Expression Is Induced by Estrogen in Human and Mouse Primary Hepatocytes. FASEB J. 2007, 21, 2622–2632. [Google Scholar] [CrossRef]
- Kieber, M.; Ono, T.; Oliver, R.C.; Nyenhuis, S.B.; Tieleman, D.P.; Columbus, L. The Fluidity of Phosphocholine and Maltoside Micelles and the Effect of CHAPS. Biophys. J. 2019, 116, 1682–1691. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Noga, A.A.; Zhao, Y.; Vance, D.E. An Unexpected Requirement for PhosphatidylethanolamineN-Methyltransferase in the Secretion of Very Low Density Lipoproteins. J. Biol. Chem. 2002, 277, 42358–42365. [Google Scholar] [CrossRef]
- Verkade, H.J.; Fast, D.G.; Rusiñol, A.E.; Scraba, D.G.; Vance, D.E. Impaired Biosynthesis of Phosphatidylcholine Causes a Decrease in the Number of Very Low Density Lipoprotein Particles in the Golgi but Not in the Endoplasmic Reticulum of Rat Liver. J. Biol. Chem. 1993, 268, 24990–24996. [Google Scholar] [CrossRef]
- Wan, S.; van der Veen, J.N.; N’Goma, J.-C.B.; Nelson, R.C.; Vance, D.E.; Jacobs, R.L. Hepatic PEMT Activity Mediates Liver Health, Weight Gain, and Insulin Resistance. FASEB J. 2019, 33, 10986–10995. [Google Scholar] [CrossRef]
- Van der Veen, J.N.; Lingrell, S.; Gao, X.; Quiroga, A.D.; Takawale, A.; Armstrong, E.A.; Yager, J.Y.; Kassiri, Z.; Lehner, R.; Vance, D.E.; et al. Pioglitazone Attenuates Hepatic Inflammation and Fibrosis in Phosphatidylethanolamine N-Methyltransferase-Deficient Mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016, 310, G526–G538. [Google Scholar] [CrossRef]
- Han, R. Plasma Lipoproteins Are Important Components of the Immune System. Microbiol. Immunol. 2010, 54, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Pirillo, A.; Bonacina, F.; Norata, G.D. HDL in Innate and Adaptive Immunity. Cardiovasc. Res. 2014, 103, 372–383. [Google Scholar] [CrossRef]
- Sampedro, M.C.; Motrán, C.; Gruppi, A.; Kivatinitz, S.C. VLDL Modulates the Cytokine Secretion Profile to a Proinflammatory Pattern. Biochem. Biophys. Res. Commun. 2001, 285, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Ballester, M.; Herrero-Cervera, A.; Vinué, Á.; Martínez-Hervás, S.; González-Navarro, H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020, 12, 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Bevan, M.J. CD8+ T Cells: Foot Soldiers of the Immune System. Immunity 2011, 35, 161–168. [Google Scholar] [CrossRef]
- Michailidis, G.; Giannenas, I. Stimulation of Inflammatory Response in Chicken Sertoli Cells Following Metformin Exposure. J. Hell. Vet. Med. Soc. 2024, 75, 6999–7006. [Google Scholar] [CrossRef]
- Fennell, M.; Radecki, S.; Proudman, J.; Scanes, C. The Suppressive Effects of Testosterone on Growth in Young Chickens Appears to Be Mediated via a Peripheral Androgen Receptor; Studies of the Anti-Androgen ICI 176,334. Poult. Sci. 1996, 75, 763–766. [Google Scholar] [CrossRef]
- Faure, M.; Guibert, E.; Alves, S.; Pain, B.; Ramé, C.; Dupont, J.; Brillard, J.P.; Froment, P. The Insulin Sensitiser Metformin Regulates Chicken Sertoli and Germ Cell Populations. Reproduction 2016, 151, 527–538. [Google Scholar] [CrossRef]
- Nguyen, T.M.D. Metformin—An Agent Stimulating Motility and Acrosome Reaction in Chicken Sperm. CTU J. Innov. Sustain. Dev. 2017, 6, 47–55. [Google Scholar] [CrossRef]
- Nguyen, T.M.D.; Grasseau, I.; Blesbois, E. New Insights in the AMPK Regulation in Chicken Spermatozoa: Role of Direct AMPK Activator and Relationship between AMPK and PKA Pathways. Theriogenology 2019, 140, 1–7. [Google Scholar] [CrossRef]
- Nguyen, T.M.D.; Alves, S.; Grasseau, I.; Métayer-Coustard, S.; Praud, C.; Froment, P.; Blesbois, E. Central Role of 5′-AMP-Activated Protein Kinase in Chicken Sperm Functions1. Biol. Reprod. 2014, 91, 121. [Google Scholar] [CrossRef] [PubMed]
- Weaver, E.A.; Ramachandran, R. Metformin Improves Ovarian Function and Increases Egg Production in Broiler Breeder Hens. Reproduction 2023, 165, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Ma, Y.; Zhou, S.; Bao, T.; Mi, Y.; Zeng, W.; Li, J.; Zhang, C. Metformin Prevents Follicular Atresia in Aging Laying Chickens through Activation of PI3K/AKT and Calcium Signaling Pathways. Oxidative Med. Cell. Longev. 2020, 2020, 3648040. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, A.H.; Miyaki, T.; Imai, K. The Effect of Aging on the Ovarian Follicular Growth in Laying Hens. Poult. Sci. 1983, 62, 670–674. [Google Scholar] [CrossRef]
- Bai, J.; Wang, X.; Chen, Y.; Yuan, Q.; Yang, Z.; Mi, Y.; Zhang, C. Nobiletin Ameliorates Aging of Chicken Ovarian Prehierarchical Follicles by Suppressing Oxidative Stress and Promoting Autophagy. Cells 2024, 13, 415. [Google Scholar] [CrossRef]
- Wigley, P.; Barrow, P.; Schat, K.A. Subchapter 11.3—The Avian Reproductive Immune System. In Avian Immunology, 3rd ed.; Kaspers, B., Schat, K.A., Göbel, T.W., Vervelde, L., Eds.; Academic Press: Boston, MA, USA, 2022; pp. 343–352. ISBN 978-0-12-818708-1. [Google Scholar]
- Ma, E.H.; Bantug, G.; Griss, T.; Condotta, S.; Johnson, R.M.; Samborska, B.; Mainolfi, N.; Suri, V.; Guak, H.; Balmer, M.L.; et al. Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metab. 2017, 25, 345–357. [Google Scholar] [CrossRef]
- Di Cresce, C.; Figueredo, R.; Ferguson, P.J.; Vincent, M.D.; Koropatnick, J. Combining Small Interfering RNAs Targeting Thymidylate Synthase and Thymidine Kinase 1 or 2 Sensitizes Human Tumor Cells to 5-Fluorodeoxyuridine and Pemetrexed. J. Pharmacol. Exp. Ther. 2011, 338, 952–963. [Google Scholar] [CrossRef]
- Derenzini, M.; Montanaro, L.; Treré, D.; Chillà, A.; Tazzari, P.L.; Dall’Olio, F.; Öfner, D. Thymidylate Synthase Protein Expression and Activity Are Related to the Cell Proliferation Rate in Human Cancer Cell Lines. Mol. Pathol. 2002, 55, 310. [Google Scholar] [CrossRef]
- Izeradjene, K.; Revillard, J.-P.; Genestier, L. Inhibition of Thymidine Synthesis by Folate Analogues Induces a Fas–Fas Ligand-Independent Deletion of Superantigen-Reactive Peripheral T Cells. Int. Immunol. 2001, 13, 85–93. [Google Scholar] [CrossRef]
- Sugitani, N.; Vendetti, F.P.; Cipriano, A.J.; Pandya, P.; Deppas, J.J.; Moiseeva, T.N.; Schamus-Haynes, S.; Wang, Y.; Palmer, D.; Osmanbeyoglu, H.U.; et al. Thymidine Rescues ATR Kinase Inhibition Induced Deoxyuridine Contamination in Genomic DNA, Cell Death, and Type 1 Interferon Expression. bioRxiv 2022, 40, 111371. [Google Scholar] [CrossRef]
- Pontarin, G.; Ferraro, P.; Valentino, M.L.; Hirano, M.; Reichard, P.; Bianchi, V. Mitochondrial DNA Depletion and Thymidine Phosphate Pool Dynamics in a Cellular Model of Mitochondrial Neurogastrointestinal Encephalomyopathy. J. Biol. Chem. 2006, 281, 22720–22728. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.F.; Miettinen, T.P.; Elbashir, R.; Nabel, C.S.; Darnell, A.M.; Do, B.T.; Manalis, S.R.; Lewis, C.A.; Vander Heiden, M.G. Nucleotide Imbalance Decouples Cell Growth from Cell Proliferation. Nat. Cell Biol. 2022, 24, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Zupanc, G.K.H.; Horschke, I. Salvage Pathway of Pyrimidine Synthesis: Divergence of Substrate Specificity in Two Related Species of Teleostean Fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996, 114, 269–274. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weston, W.C.; Hales, K.H.; Hales, D.B. Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Curr. Issues Mol. Biol. 2024, 46, 12322-12342. https://doi.org/10.3390/cimb46110732
Weston WC, Hales KH, Hales DB. Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Current Issues in Molecular Biology. 2024; 46(11):12322-12342. https://doi.org/10.3390/cimb46110732
Chicago/Turabian StyleWeston, William C., Karen H. Hales, and Dale B. Hales. 2024. "Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria" Current Issues in Molecular Biology 46, no. 11: 12322-12342. https://doi.org/10.3390/cimb46110732
APA StyleWeston, W. C., Hales, K. H., & Hales, D. B. (2024). Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Current Issues in Molecular Biology, 46(11), 12322-12342. https://doi.org/10.3390/cimb46110732