Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results
3.1. Ovarian Histology and Follicle Counts
3.2. Anti-Oxidative Capacity
3.3. Serum and Follicular Hormones
3.4. Cd and Se Deposition
3.5. Expression Levels of Autophagy-Related mRNAs
3.6. Ultrastructure of Granulosa Cell Layer of Follicles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martelli, A.; Rousselet, E.; Dycke, C.; Bouron, A.; Moulis, J.M. Cadmium toxicity in animal cells by interference with essential metals. Biochimie 2006, 88, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Dukic-Ćosic, D.; Baralic, K.; Javorac, D.; Djordjevic, A.B.; Bulat, Z. An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 2020, 19, 56–62. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, Y.; Fan, R.; Qiu, C.; Zhong, S.; Wei, L.; Luo, D. Effect of Cadmium on Cellular Ultrastructure in Mouse Ovary. Ultrastruct. Pathol. 2015, 39, 324–328. [Google Scholar] [CrossRef]
- Zhang, W.; Pang, F.; Huang, Y.; Yan, P.; Lin, W. Cadmium exerts toxic effects on ovarian steroid hormone release in rats. Toxicol. Lett. 2008, 182, 18–23. [Google Scholar] [CrossRef]
- Zhao, M.; He, W.; Tao, C.; Zhang, B.; Wang, S.; Sun, Z.; Xiong, Z.; Zhang, N. Transcriptomics and transmission ultrastructural examination reveals the nephrotoxicity of cadmium in laying hens. Environ. Sci. Pollut. Res. 2022, 29, 39041–39051. [Google Scholar] [CrossRef]
- Kitamura, A.; Yoshimura, Y.; Okamoto, T. Changes in the Populations of Mitotic and Apoptotic Cells in White Follicles during Atresia in Hens. Poult. Sci. 2002, 81, 408–413. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; He, J.; Li, J.; Zhang, J.; Xing, H.; Xu, S. Ovarian toxicity induced by dietary cadmium in hen. Biol. Trace Elem. Res. 2012, 148, 53–60. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Z.; Yin, H.; Min, Y.; Li, S. Alleviation Mechanisms of Selenium on Cadmium-Spiked in Chicken Ovarian Tissue: Perspectives from Autophagy and Energy Metabolism. Biol. Trace Elem. Res. 2018, 186, 521–528. [Google Scholar] [CrossRef]
- Tao, C.; Zhang, B.; Wei, X.; Zhao, M.; Sun, Z.; Wang, S.; Bi, J.; Qi, D.; Sun, L.; Zhang, N. Effects of dietary cadmium supplementation on production performance, cadmium residue in eggs, and hepatic damage in laying hens. Environ. Sci. Pollut. Res. 2020, 27, 33103–33111. [Google Scholar] [CrossRef]
- Olgun, O.; Yildiz, A.O.; Şahin, A. Evaluation of dietary presence or use of cadmium in poultry. World Poult. Sci. J. 2020, 76, 64–73. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, W.; Dai, H.; Cao, F.; Zhang, G.; Wu, F. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 2012, 235, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xing, L.; Zhang, R. Effects of Se and Cd co-treatment on the morphology, oxidative stress, and ion concentrations in the ovaries of laying hens. Biol. Trace Elem. Res. 2018, 183, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Newairy, A.A.; El-Sharaky, A.S.; Badreldeen, M.M.; Eweda, S.M.; Sheweita, S.A. The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicology 2007, 242, 23–30. [Google Scholar] [CrossRef]
- Wan, N.; Xu, Z.; Liu, T.; Min, Y.; Li, S. Ameliorative Effects of Selenium on Cadmium-Induced Injury in the Chicken Ovary: Mechanisms of Oxidative Stress and Endoplasmic Reticulum Stress in Cadmium-Induced Apoptosis. Biol. Trace Elem. Res. 2018, 184, 463–473. [Google Scholar] [CrossRef]
- Messaoudi, I.; El Heni, J.; Hammouda, F.; Saïd, K.; Kerkeni, A. Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol. Trace Elem. Res. 2009, 130, 152–161. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Luo, K.; Liu, Y.; Zhou, M.; Yan, S.; Shi, H.; Cai, Y. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem. Toxicol. 2013, 58, 61–67. [Google Scholar] [CrossRef]
- Zia, M.W.; Khalique, A.; Naveed, S.; Hussain, J. Impact of selenium supplementation on productive performance and egg selenium status in native Aseel chicken. Ital. J. Anim. Sci. 2016, 15, 649–657. [Google Scholar] [CrossRef]
- Frustaci, A.; Sabbioni, E.; Fortaner, S.; Farina, M.; del Torchio, R.; Tafani, M.; Ciriolo, M.R.; Russo, M.; Chimenti, C. Selenium- and zinc-deficient cardiomyopathy in human intestinal malabsorption: Preliminary results of selenium/zinc infusion. Eur. J. Heart Fail. 2012, 14, 202–210. [Google Scholar] [CrossRef]
- Liu, R.; Jia, T.; Cui, Y.; Lin, H.; Li, S. The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy. Biol. Trace Elem. Res. 2018, 184, 240–246. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Wu, C.; Song, J.; Li, L.; Jiang, Y.; Applegate, T.J.; Wu, B.; Liu, G.; Wang, J.; Lin, Y.; Zhang, K.; et al. Protective Effects of Selenized Yeast on the Combination of Cadmium, Lead, Mercury, and Chromium-induced Toxicity in Laying Hens. Front. Vet. Sci. 2022, 9, 958056. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jia, R.; Gong, H.; Celi, P.; Zhuo, Y.; Ding, X.; Bai, S.; Zeng, Q.; Yin, H.; Xu, S.; et al. The effect of oxidative stress on the chicken ovary: Involvement of microbiota and melatonin interventions. Antioxidants 2021, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Hua, L.; Feng, B.; Jiang, X.; Li, J.; Jiang, D.; Huang, X.; Zhua, Y.; Li, Z.; Yan, L.; et al. Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. EBioMedicine 2019, 41, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, X.; Chimbaka, I.M.; Qin, N.; Xu, X.; Liswaniso, S.; Xu, R.; Gonzalez, J.M. Transcriptome analysis of ovarian follicles reveals potential pivotal genes associated with increased and decreased rates of chicken egg production. Front. Genet. 2021, 12, 622751. [Google Scholar] [CrossRef]
- He, H.; Li, D.; Tian, Y.; Wei, Q.; Amevor, F.K.; Sun, C.; Yu, C.; Yang, C.; Du, H.; Jiang, X. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1. J. Anim. Sci. Biotechnol. 2022, 13, 55. [Google Scholar] [CrossRef]
- Massanyi, P.; Massanyi, M.; Madeddu, R.; Stawarz, R.; Lukac, N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics 2020, 8, 94. [Google Scholar] [CrossRef]
- Zheng, Y.; Qiu, Y.; Wang, Q.; Gao, M.; Cao, Z.; Luan, X. ADPN Regulates Oxidative Stress-Induced Follicular Atresia in Geese by Modulating Granulosa Cell Apoptosis and Autophagy. Int. J. Mol. Sci. 2024, 25, 5400. [Google Scholar] [CrossRef]
- Han, S.; Wang, J.; Cui, C.; Yu, C.; Zhang, Y.; Li, D.; Ma, M.; Du, H.; Jiang, X.; Zhu, Q.; et al. Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken. Poult. Sci. 2022, 101, 101524. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Fan, R.; Yang, J.; Jin, X.; Hamid, S.; Xu, S. Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 2018, 194, 396–402. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, X.; Zhao, R.; Zhang, R.; Xu, C.; Wang, X.; Liu, C.; Hu, X.; Huang, S.; Chen, L. Cadmium results in accumulation of autophagosomes-dependent apoptosis through activating Akt-impaired autophagic flux in neuronal cells. Cell. Signal. 2019, 55, 26–39. [Google Scholar] [CrossRef]
- Shi, Q.; Jin, X.; Fan, R.; Xing, M.; Guo, J.; Zhang, Z.; Zhang, J.; Xu, S. Cadmium-mediated miR-30a-GRP78 leads to JNK-dependent autophagy in chicken kidney. Chemosphere 2019, 215, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; He, S.; Cao, Y.; Lu, Y.; Peng, Y.; Zou, H.; Tang, X.; Ran, D.; Ma, Y.; Liu, Z. Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway. Environ. Toxicol. 2023, 38, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Yu, W.; Han, L.; Yang, S.; Wang, Y.; Ren, T.; Yu, J.; Zhao, A. ROS activates autophagy in follicular granulosa cells via mTOR pathway to regulate broodiness in goose. Anim. Reprod. Sci. 2012, 185, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Munson, M.J.; Ganley, I.G. MTOR, PIK3C3, and autophagy: Signaling the beginning from the end. Autophagy 2015, 11, 2375–2376. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Okabe, M.; Emoto, T.; Kurasaki, M.; Kojima, Y. Restriction of cadmium transfer to eggs from laying hens exposed to cadmium. J. Toxicol. Environ. Health 1997, 51, 15–22. [Google Scholar] [CrossRef]
- Chou, C.H.; Chen, M.J. The effect of steroid hormones on ovarian follicle development. Vitam. Horm. 2018, 107, 155–175. [Google Scholar]
- Vrsanska, S.; Nagyova, E.; Mlynarcíkova, A.; Fickova, M.; Kolena, J. Components of cigarette smoke inhibit expansion of oocyte-cumulus complexes from porcine follicles. Physiol. Res. 2003, 52, 383–387. [Google Scholar] [CrossRef]
- Huff, M.O.M.; Todd, S.L.; Bleser, A.S.; Riggs, K.A.; Dougherty, S.M.; Klinge, C.M. Cadmium chloride and sodium arsenate, environmental estrogens in cigarette smoke, activate estrogen signaling pathways to induce proliferation in a human lung adenocarcinoma cell line. FASEB J. 2007, 21, A255. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.F.; Li, Y.M.; Chen, N.; Fan, Y.; Huang, W.K.; Hu, S.; Rao, M.; Zhang, Y.; Su, P. Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway. Cell Death Dis. 2020, 11, 46. [Google Scholar] [CrossRef]
- Surai, P.F.; Fisinin, V.I. Selenium in poultry breeder nutrition: An update. Anim. Feed Sci. Technol. 2014, 191, 1–15. [Google Scholar] [CrossRef]
- El-kazaz, S.E.; Abo-Samaha, M.I.; Hafez, M.H.; El-Shobokshy, S.A.; Wirtu, G. Dietary supplementation of nano-selenium improves reproductive performance, sexual behavior and deposition of selenium in the testis and ovary of Japanese quail. J. Adv. Vet. Anim. Res. 2020, 7, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Wenzhong, W.; Tong, Z.; Hongjin, L.; Ying, C.; Jun, X. Role of Hydrogen Sulfide on Autophagy in Liver Injuries Induced by Selenium Deficiency in Chickens. Biol. Trace Elem. Res. 2017, 175, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; El-Houjeiri, L.; Pause, A. mTOR pathways in cancer and autophagy. Cancers 2018, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.; Tan, H.L.; Huang, Q.; Ong, C.N.; Shen, H.M. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 2009, 5, 824–834. [Google Scholar] [CrossRef]
- Mizushima, N. Autophagy: Process and function. Gene Dev. 2007, 21, 2861–2873. [Google Scholar] [CrossRef]
- Liu, S.; Xu, F.P.; Yang, Z.J.; Li, M.; Min, Y.H.; Li, S. Cadmium-induced injury and the ameliorative effects of selenium on chicken splenic lymphocytes: Mechanisms of oxidative stress and apoptosis. Biol. Trace Elem. Res. 2014, 160, 340–351. [Google Scholar] [CrossRef]
- Storelli, M.M.; Marcotrigiano, G.O. Mercury speciation and relationship between mercury and selenium in liver of Galeus melastomus from the Mediterranean sea. Bull. Environ. Contam. Toxicol. 2002, 69, 516–522. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Y.; An, Y.; Tian, Y.; Li, S.; Teng, X. Selenium for the mitigation of toxicity induced by lead in chicken testes through regulating mRNA expressions of HSPs and selenoproteins. Environ. Sci. Pollut. Res. 2017, 24, 14312–14321. [Google Scholar] [CrossRef]
- Wirth, T. Small organoselenium compounds: More than just glutathione peroxidase mimics. Angew. Chem. Int. Ed. 2015, 54, 10074–10076. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Jiang, Y.; Zhou, Z.; Zhang, Y.; Zhou, Y.; Bai, S.; Li, J.; Wu, F.; Wang, J.; Lyu, Y. Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells. Curr. Issues Mol. Biol. 2024, 46, 13119-13130. https://doi.org/10.3390/cimb46110782
Wu C, Jiang Y, Zhou Z, Zhang Y, Zhou Y, Bai S, Li J, Wu F, Wang J, Lyu Y. Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells. Current Issues in Molecular Biology. 2024; 46(11):13119-13130. https://doi.org/10.3390/cimb46110782
Chicago/Turabian StyleWu, Caimei, Yuxuan Jiang, Ziyun Zhou, Yuwei Zhang, Yixuan Zhou, Shiping Bai, Jian Li, Fali Wu, Jianping Wang, and Yang Lyu. 2024. "Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells" Current Issues in Molecular Biology 46, no. 11: 13119-13130. https://doi.org/10.3390/cimb46110782
APA StyleWu, C., Jiang, Y., Zhou, Z., Zhang, Y., Zhou, Y., Bai, S., Li, J., Wu, F., Wang, J., & Lyu, Y. (2024). Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells. Current Issues in Molecular Biology, 46(11), 13119-13130. https://doi.org/10.3390/cimb46110782