Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anti-TM4SF1 Antibodies
2.2. Cells and Cell Culture
2.3. Flow Cytometry
2.4. Generation of TM4SF1 Knockout Mice
2.5. PCR Genotyping
2.6. Multi-Gene Transcriptional Profiling (MGTP) Approach to Quantitative Real-Time PCR (qPCR)
2.7. Mouse Organ Harvest and Immunohistochemical (IHC) Staining
2.8. Embryo Images, Videos and Immunostaining
2.9. Statistical Analysis
3. Results
3.1. TM4SF1 Expression Is Largely Limited to Endothelial Cells In Vitro and In Vivo
3.2. Tm4sf1-Knockout Mice Are Embryonic Lethal at Embryonic Day 9.5 (E9.5)
3.3. Tm4sf1-Heterozygous Embryos Were Smaller in Size, and Approximately Half Evolved Significant Brain Hemorrhage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, M.D.; Ni, J.; Rudy, G.B. The L6 membrane proteins--a new four-transmembrane superfamily. Protein Sci. 2000, 9, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Stipp, C.S.; Kolesnikova, T.V.; Hemler, M.E. Functional domains in tetraspanin proteins. Trends Biochem. Sci. 2003, 28, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, I.; Beaumier, P.L.; Hellstrom, K.E. Antitumor effects of L6, an IgG2a antibody that reacts with most human carcinomas. Proc. Natl. Acad. Sci. USA 1986, 83, 7059–7063. [Google Scholar] [CrossRef] [PubMed]
- Marken, J.S.; Schieven, G.L.; Hellstrom, I.; Hellstrom, K.E.; Aruffo, A. Cloning and expression of the tumor-associated antigen L6. Proc. Natl. Acad. Sci. USA 1992, 89, 3503–3507. [Google Scholar] [CrossRef] [PubMed]
- DeNardo, S.J.; O'Grady, L.F.; Macey, D.J.; Kroger, L.A.; DeNardo, G.L.; Lamborn, K.R.; Levy, N.B.; Mills, S.L.; Hellstrom, I.; Hellstrom, K.E. Quantitative imaging of mouse L-6 monoclonal antibody in breast cancer patients to develop a therapeutic strategy. Int. J. Rad. Appl. Instrum. B 1991, 18, 621–631. [Google Scholar] [CrossRef]
- Shih, S.C.; Zukauskas, A.; Li, D.; Liu, G.; Ang, L.H.; Nagy, J.A.; Brown, L.F.; Dvorak, H.F. The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res. 2009, 69, 3272–3277. [Google Scholar] [CrossRef]
- Sciuto, T.E.; Merley, A.; Lin, C.I.; Richardson, D.; Liu, Y.; Li, D.; Dvorak, A.M.; Dvorak, H.F.; Jaminet, S.C. Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2015, 465, 338–343. [Google Scholar] [CrossRef]
- Zukauskas, A.; Merley, A.; Li, D.; Ang, L.H.; Sciuto, T.E.; Salman, S.; Dvorak, A.M.; Dvorak, H.F.; Jaminet, S.C. TM4SF1: A tetraspanin-like protein necessary for nanopodia formation and endothelial cell migration. Angiogenesis 2011, 14, 345–354. [Google Scholar] [CrossRef]
- Lin, C.I.; Merley, A.; Sciuto, T.E.; Li, D.; Dvorak, A.M.; Melero-Martin, J.M.; Dvorak, H.F.; Jaminet, S.C. TM4SF1: A new vascular therapeutic target in cancer. Angiogenesis 2014, 17, 897–907. [Google Scholar] [CrossRef]
- Lin, C.I.; Lau, C.Y.; Li, D.; Jaminet, S.C. Nanopodia-Thin, fragile membrane projections with roles in cell movement and intercellular interactions. J. Vis. Exp. JoVE 2014, 86, 51320. [Google Scholar] [CrossRef]
- Visintin, A.; Knowlton, K.; Tyminski, E.; Lin, C.I.; Zheng, X.; Marquette, K.; Jain, S.; Tchistiakova, L.; Li, D.; O’Donnell, C.J.; et al. Novel Anti-TM4SF1 Antibody-Drug Conjugates with Activity against Tumor Cells and Tumor Vasculature. Mol. Cancer Ther. 2015, 14, 1868–1876. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Janes, L.; Beeler, D.; Spokes, K.C.; Smith, J.; Li, D.; Jaminet, S.C.; Oettgen, P.; Aird, W.C. Role of RNA splicing in mediating lineage-specific expression of the von Willebrand factor gene in the endothelium. Blood 2013, 121, 4404–4412. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraj, P.; Le Bras, A.; Mitchell, N.; Kondo, M.; Juliao, S.; Wasserman, M.; Beeler, D.; Spokes, K.; Aird, W.C.; Baldwin, H.S.; et al. Erg is a crucial regulator of endocardial-mesenchymal transformation during cardiac valve morphogenesis. Development 2012, 139, 3973–3985. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Li, D.; Merley, A.; Zukauskas, A.; Aird, W.C.; Dvorak, H.F.; Shih, S.C. A multi-gene transcriptional profiling approach to the discovery of cell signature markers. Cytotechnology 2010, 63, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.F.; Dezube, B.J.; Tognazzi, K.; Dvorak, H.F.; Yancopoulos, G.D. Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am. J. Pathol. 2000, 156, 2179–2183. [Google Scholar] [CrossRef]
- Swift, M.R.; Weinstein, B.M. Arterial-venous specification during development. Circ. Res. 2009, 104, 576–588. [Google Scholar] [CrossRef]
- Beck, L., Jr.; D’Amore, P.A. Vascular development: Cellular and molecular regulation. FASEB J. 1997, 11, 365–373. [Google Scholar] [CrossRef]
- Ding, R.; Darland, D.C.; Parmacek, M.S.; D’Amore, P.A. Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem Cells Dev. 2004, 13, 509–520. [Google Scholar] [CrossRef]
- Gu, W.; Hong, X.; Le Bras, A.; Nowak, W.N.; Issa Bhaloo, S.; Deng, J.; Xie, Y.; Hu, Y.; Ruan, X.Z.; Xu, Q. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. J. Biol. Chem. 2018, 293, 8089–8102. [Google Scholar] [CrossRef]
- Pettersson, A.; Nagy, J.A.; Brown, L.F.; Sundberg, C.; Morgan, E.; Jungles, S.; Carter, R.; Krieger, J.E.; Manseau, E.J.; Harvey, V.S.; et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Investig. 2000, 80, 99–115. [Google Scholar] [CrossRef]
- Conway, E.M.; Collen, D.; Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 2001, 49, 507–521. [Google Scholar] [CrossRef]
- Nagy, J.A.; Vasile, E.; Feng, D.; Sundberg, C.; Brown, L.F.; Detmar, M.J.; Lawitts, J.A.; Benjamin, L.; Tan, X.; Manseau, E.J.; et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med. 2002, 196, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cox, S.R.; Morita, T.; Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circ. Res. 1995, 77, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Breier, G.; Albrecht, U.; Sterrer, S.; Risau, W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 1992, 114, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Carver-Moore, K.; Chen, H.; Dowd, M.; Lu, L.; O'Shea, K.S.; Powell-Braxton, L.; Hillan, K.J.; Moore, M.W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996, 380, 439–442. [Google Scholar] [CrossRef]
- Carmeliet, P.; Ferreira, V.; Breier, G.; Pollefeyt, S.; Kieckens, L.; Gertsenstein, M.; Fahrig, M.; Vandenhoeck, A.; Harpal, K.; Eberhardt, C.; et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996, 380, 435–439. [Google Scholar] [CrossRef]
- Zhu, J.; Motejlek, K.; Wang, D.; Zang, K.; Schmidt, A.; Reichardt, L.F. beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 2002, 129, 2891–2903. [Google Scholar] [CrossRef]
- Shalaby, F.; Ho, J.; Stanford, W.L.; Fischer, K.D.; Schuh, A.C.; Schwartz, L.; Bernstein, A.; Rossant, J. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997, 89, 981–990. [Google Scholar] [CrossRef]
- Risau, W. Mechanisms of angiogenesis. Nature 1997, 386, 671–674. [Google Scholar] [CrossRef]
- Udan, R.S.; Culver, J.C.; Dickinson, M.E. Understanding vascular development. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 327–346. [Google Scholar] [CrossRef]
- Drake, C.J.; Fleming, P.A. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 2000, 95, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, M.F.; Speck, N.A.; Peeters, M.C.; Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 2000, 19, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Inman, K.E.; Downs, K.M. The murine allantois: Emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 2007, 45, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Fong, G.H.; Rossant, J.; Gertsenstein, M.; Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995, 376, 66–70. [Google Scholar] [CrossRef]
- Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.F.; Breitman, M.L.; Schuh, A.C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995, 376, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Hellstrom, M.; Kalen, M.; Lindahl, P.; Abramsson, A.; Betsholtz, C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999, 126, 3047–3055. [Google Scholar] [CrossRef]
- Heldin, C.H.; Wasteson, A.; Westermark, B. Platelet-derived growth factor. Mol. Cell Endocrinol. 1985, 39, 169–187. [Google Scholar] [CrossRef]
- Liao, H.J.; Kume, T.; McKay, C.; Xu, M.J.; Ihle, J.N.; Carpenter, G. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J. Biol. Chem. 2002, 277, 9335–9341. [Google Scholar] [CrossRef]
- Wilson, R.; McGuire, C.; Mohun, T.; Project, D. Deciphering the mechanisms of developmental disorders: Phenotype analysis of embryos from mutant mouse lines. Nucleic Acids Res. 2016, 44, D855–D861. [Google Scholar] [CrossRef]
- Spyropoulos, D.D.; Pharr, P.N.; Lavenburg, K.R.; Jackers, P.; Papas, T.S.; Ogawa, M.; Watson, D.K. Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell Biol. 2000, 20, 5643–5652. [Google Scholar] [CrossRef] [PubMed]
- McCarty, J.H.; Monahan-Earley, R.A.; Brown, L.F.; Keller, M.; Gerhardt, H.; Rubin, K.; Shani, M.; Dvorak, H.F.; Wolburg, H.; Bader, B.L.; et al. Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol. Cell Biol. 2002, 22, 7667–7677. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rarick, K.R.; Ramchandran, R. Established, New and Emerging Concepts in Brain Vascular Development. Front. Physiol. 2021, 12, 636736. [Google Scholar] [CrossRef] [PubMed]
# of Embryos (% over Total #) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | +/+ | +/− a | +/− b | +/− c | −/− | Total # | Litters | #/Litter | Viable −/− | +/− a: +/+ |
E9.5 | 34 (29.6) | 63 (54.8) | 0 (0.0) | 0 (0.0) | 16 (13.9) | 113 | 12 | 9.4 | 0 | 1.85 |
E10.5 | 22 (30.1) | 41 (56.2) | 2 (0.0) | 0 (0.0) | 10 (13.7) | 75 | 9 | 8.3 | 0 | 1.86 |
E12.5 | 33 (34.0) | 58 (59.8) | 0 (0.0) | 0 (0.0) | 6 (6.2) § | 97 | 10 | 9.7 | 0 | 1.76 |
E14.5 | 25 (39.1) | 29 (45.3) | 4 (6.3) | 2 (3.1) | 4 (6.3) § | 64 | 8 | 8.0 | 0 | 1.16 |
E16.5 | 27 (40.3) | 26 (38.8) | 7 (10.4) | 1 (1.5) | 6 (9.0) § | 67 | 8 | 8.4 | 0 | 0.96 |
E18.5 | 34 (39.1) | 31 (35.6) | 19 (21.8) | 3 (3.4) | 0 (0.0) | 87 | 11 | 7.9 | 0 | 0.91 |
WA | 80 (51.9) | 74 (48.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 154 | 30 | 5.1 | 0 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-I.; Merley, A.; Wada, H.; Zheng, J.; Jaminet, S.-C.S. Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development. Curr. Issues Mol. Biol. 2024, 46, 13105-13118. https://doi.org/10.3390/cimb46110781
Lin C-I, Merley A, Wada H, Zheng J, Jaminet S-CS. Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development. Current Issues in Molecular Biology. 2024; 46(11):13105-13118. https://doi.org/10.3390/cimb46110781
Chicago/Turabian StyleLin, Chi-Iou, Anne Merley, Hiromi Wada, Jianwei Zheng, and Shou-Ching S. Jaminet. 2024. "Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development" Current Issues in Molecular Biology 46, no. 11: 13105-13118. https://doi.org/10.3390/cimb46110781
APA StyleLin, C. -I., Merley, A., Wada, H., Zheng, J., & Jaminet, S. -C. S. (2024). Transmembrane-4 L-Six Family Member-1 Is Essential for Embryonic Blood Vessel Development. Current Issues in Molecular Biology, 46(11), 13105-13118. https://doi.org/10.3390/cimb46110781