Benchmark Investigation of SARS-CoV-2 Mutants’ Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Homology Modeling
3.2. Forced Placement and MD Simulations
3.3. Protein–Protein Docking
3.4. Sequence-Based Prediction with AlphaFold
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, X.; He, C.; Hong, W.; Yang, J.; Wei, X. Research Progress in Spike Mutations of SARS-CoV-2 Variants and Vaccine Development. Med. Res. Rev. 2023, 43, 932–971. [Google Scholar] [CrossRef] [PubMed]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.; Bezbaruah, R.; Deka, K.; Nongrang, L.; Kalita, T. The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines 2022, 10, 1926. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Sasi, S.; Pillai, S.G.; Nag, A.; Shukla, D.; Singhal, R.; Phalke, S.; Velu, G.S.K. SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front. Med. 2022, 9, 815389. [Google Scholar] [CrossRef]
- Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dam, K.-M.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; et al. SARS-CoV-2 Neutralizing Antibody Structures Inform Therapeutic Strategies. Nature 2020, 588, 682–687. [Google Scholar] [CrossRef]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A Neutralizing Human Antibody Binds to the N-Terminal Domain of the Spike Protein of SARS-CoV-2. Science 2020, 369, 650–655. [Google Scholar] [CrossRef]
- Wan, J.; Xing, S.; Ding, L.; Wang, Y.; Gu, C.; Wu, Y.; Rong, B.; Li, C.; Wang, S.; Chen, K.; et al. Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection. Cell Rep. 2020, 32, 107918. [Google Scholar] [CrossRef]
- Shi, R.; Shan, C.; Duan, X.; Chen, Z.; Liu, P.; Song, J.; Song, T.; Bi, X.; Han, C.; Wu, L.; et al. A Human Neutralizing Antibody Targets the Receptor-Binding Site of SARS-CoV-2. Nature 2020, 584, 120–124. [Google Scholar] [CrossRef]
- Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schäfer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; et al. Potently Neutralizing and Protective Human Antibodies against SARS-CoV-2. Nature 2020, 584, 443–449. [Google Scholar] [CrossRef]
- Ju, B.; Zhang, Q.; Ge, J.; Wang, R.; Sun, J.; Ge, X.; Yu, J.; Shan, S.; Zhou, B.; Song, S.; et al. Human Neutralizing Antibodies Elicited by SARS-CoV-2 Infection. Nature 2020, 584, 115–119. [Google Scholar] [CrossRef]
- Passariello, M.; Gentile, C.; Ferrucci, V.; Sasso, E.; Vetrei, C.; Fusco, G.; Viscardi, M.; Brandi, S.; Cerino, P.; Zambrano, N.; et al. Novel Human Neutralizing MAbs Specific for Spike-RBD of SARS-CoV-2. Sci. Rep. 2021, 11, 11046. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Jian, F.; Wang, J.; Yu, Y.; Song, W.; Yisimayi, A.; Wang, J.; An, R.; Chen, X.; Zhang, N.; et al. Imprinted SARS-CoV-2 Humoral Immunity Induces Convergent Omicron RBD Evolution. Nature 2022, 614, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Errico, J.M.; Zhao, H.; Chen, R.E.; Liu, Z.; Case, J.B.; Ma, M.; Schmitz, A.J.; Rau, M.J.; Fitzpatrick, J.A.J.; Shi, P.-Y.; et al. Structural Mechanism of SARS-CoV-2 Neutralization by Two Murine Antibodies Targeting the RBD. Cell Rep. 2021, 37, 109881. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Lam, E.C.; St. Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 Variants Escape Neutralization by Vaccine-Induced Humoral Immunity. Cell 2021, 184, 2372–2383. [Google Scholar] [CrossRef]
- Liu, Z.; VanBlargan, L.A.; Bloyet, L.-M.; Rothlauf, P.W.; Chen, R.E.; Stumpf, S.; Zhao, H.; Errico, J.M.; Theel, E.S.; Liebeskind, M.J.; et al. Identification of SARS-CoV-2 Spike Mutations That Attenuate Monoclonal and Serum Antibody Neutralization. Cell Host Microbe 2021, 29, 477–488. [Google Scholar] [CrossRef]
- Sun, C.; Xie, C.; Bu, G.-L.; Zhong, L.-Y.; Zeng, M.-S. Molecular Characteristics, Immune Evasion, and Impact of SARS-CoV-2 Variants. Signal Transduct. Target. Ther. 2022, 7, 202. [Google Scholar] [CrossRef]
- Dadonaite, B.; Crawford, K.H.D.; Radford, C.E.; Farrell, A.G.; Yu, T.C.; Hannon, W.W.; Zhou, P.; Andrabi, R.; Burton, D.R.; Liu, L.; et al. A Pseudovirus System Enables Deep Mutational Scanning of the Full SARS-CoV-2 Spike. Cell 2023, 186, 1263–1278. [Google Scholar] [CrossRef]
- Gupta, D.; Kumar, M.; Sharma, P.; Mohan, T.; Prakash, A.; Kumari, R.; Kaur, P. Effect of Double Mutation (L452R and E484Q) on the Binding Affinity of Monoclonal Antibodies (MAbs) against the RBD—A Target for Vaccine Development. Vaccines 2022, 11, 23. [Google Scholar] [CrossRef]
- Baral, P.; Bhattarai, N.; Hossen, M.L.; Stebliankin, V.; Gerstman, B.S.; Narasimhan, G.; Chapagain, P.P. Mutation-Induced Changes in the Receptor-Binding Interface of the SARS-CoV-2 Delta Variant B.1.617.2 and Implications for Immune Evasion. Biochem. Biophys. Res. Commun. 2021, 574, 14–19. [Google Scholar] [CrossRef]
- Zhang, J.; Cong, Y.; Duan, L.; Zhang, J.Z.H. Combined Antibodies Evusheld against the SARS-CoV-2 Omicron Variants BA.1.1 and BA.5: Immune Escape Mechanism from Molecular Simulation. J. Chem. Inf. Model. 2023, 63, 5297–5308. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, L.; Peng, C.; Yang, Y.; Shi, Y.; Gong, L.; Xu, Z.; Zhu, W. Predicting Spike Protein NTD Mutations of SARS-CoV-2 Causing Immune Evasion by Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2022, 24, 3410–3419. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Peng, C.; Yang, Y.; Shi, Y.; Zhou, L.; Xu, Z.; Zhu, W. Exploring the Immune Evasion of SARS-CoV-2 Variant Harboring E484K by Molecular Dynamics Simulations. Brief. Bioinform. 2022, 23, bbab383. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.B.; Ma, Y.B.; Lei, Z.H.; Zhang, X.F.; Li, J.; Li, S.S.; Dong, Z.Y.; Liang, Y.; Li, Q.M.; Su, J.G. Identification of Key Mutations Responsible for the Enhancement of Receptor-Binding Affinity and Immune Escape of SARS-CoV-2 Omicron Variant. J. Mol. Graph. Model. 2023, 124, 108540. [Google Scholar] [CrossRef]
- Luan, B.; Wang, H.; Huynh, T. Enhanced Binding of the N501Y-mutated SARS-CoV-2 Spike Protein to the Human ACE2 Receptor: Insights from Molecular Dynamics Simulations. FEBS Lett. 2021, 595, 1454–1461. [Google Scholar] [CrossRef]
- Socher, E.; Heger, L.; Paulsen, F.; Zunke, F.; Arnold, P. Molecular Dynamics Simulations of the Delta and Omicron SARS-CoV-2 Spike—ACE2 Complexes Reveal Distinct Changes between Both Variants. Comput. Struct. Biotechnol. J. 2022, 20, 1168–1176. [Google Scholar] [CrossRef]
- Jawad, B.; Adhikari, P.; Podgornik, R.; Ching, W.-Y. Key Interacting Residues between RBD of SARS-CoV-2 and ACE2 Receptor: Combination of Molecular Dynamics Simulation and Density Functional Calculation. J. Chem. Inf. Model. 2021, 61, 4425–4441. [Google Scholar] [CrossRef]
- Ali, A.; Vijayan, R. Dynamics of the ACE2–SARS-CoV-2/SARS-CoV Spike Protein Interface Reveal Unique Mechanisms. Sci. Rep. 2020, 10, 14214. [Google Scholar] [CrossRef]
- Chi, L.A.; Barnes, J.E.; Patel, J.S.; Ytreberg, F.M. Exploring the Ability of the MD+FoldX Method to Predict SARS-CoV-2 Antibody Escape Mutations Using Large-Scale Data. Sci. Rep. 2024, 14, 23122. [Google Scholar] [CrossRef]
- Bhandu, P.; Verma, H.; Raju, B.; Narendra, G.; Choudhary, S.; Singh, M.; Singh, P.K.; Silakari, O. Identification of Natural Peptides from “PlantPepDB” Database as Anti-SARS-CoV-2 Agents: A Protein-Protein Docking Approach. Phytomedicine Plus 2023, 3, 100446. [Google Scholar] [CrossRef]
- Souza, P.F.N.; Lopes, F.E.S.; Amaral, J.L.; Freitas, C.D.T.; Oliveira, J.T.A. A Molecular Docking Study Revealed That Synthetic Peptides Induced Conformational Changes in the Structure of SARS-CoV-2 Spike Glycoprotein, Disrupting the Interaction with Human ACE2 Receptor. Int. J. Biol. Macromol. 2020, 164, 66–76. [Google Scholar] [CrossRef]
- Celik, I.; Yadav, R.; Duzgun, Z.; Albogami, S.; El-Shehawi, A.M.; Fatimawali, F.; Idroes, R.; Tallei, T.E.; Emran, T. Bin Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with HACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation. Biology 2021, 10, 880. [Google Scholar] [CrossRef] [PubMed]
- Idrees, D.; Kumar, V. SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins: Potential Clues to Neurodegeneration. Biochem. Biophys. Res. Commun. 2021, 554, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tian, C.; Liu, P.; Guo, D.; Zheng, W.; Huang, X.; Zhang, Y.; Liu, L. Effects of SARS-CoV-2 Mutations on Protein Structures and Intraviral Protein–Protein Interactions. J. Med. Virol. 2021, 93, 2132–2140. [Google Scholar] [CrossRef]
- Ongaro, A.; Oselladore, E.; Memo, M.; Ribaudo, G.; Gianoncelli, A. Insight into the LFA-1/SARS-CoV-2 Orf7a Complex by Protein–Protein Docking, Molecular Dynamics, and MM-GBSA Calculations. J. Chem. Inf. Model. 2021, 61, 2780–2787. [Google Scholar] [CrossRef]
- Egieyeh, S.; Egieyeh, E.; Malan, S.; Christofells, A.; Fielding, B. Computational Drug Repurposing Strategy Predicted Peptide-Based Drugs That Can Potentially Inhibit the Interaction of SARS-CoV-2 Spike Protein with Its Target (HumanACE2). PLoS ONE 2021, 16, e0245258. [Google Scholar] [CrossRef]
- Othman, H.; Bouslama, Z.; Brandenburg, J.-T.; da Rocha, J.; Hamdi, Y.; Ghedira, K.; Srairi-Abid, N.; Hazelhurst, S. Interaction of the Spike Protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, Hot-Spot Analysis and Effect of the Receptor Polymorphism. Biochem. Biophys. Res. Commun. 2020, 527, 702–708. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.; Wang, K.; Gao, Y.; Li, G.; Baptista-Hon, D.T.; Yang, X.H.; Xue, K.; Tai, W.H.; Jiang, Z.; et al. Deep-Learning-Enabled Protein–Protein Interaction Analysis for Prediction of SARS-CoV-2 Infectivity and Variant Evolution. Nat. Med. 2023, 29, 2007–2018. [Google Scholar] [CrossRef]
- Bell, E.W.; Schwartz, J.H.; Freddolino, P.L.; Zhang, Y. PEPPI: Whole-Proteome Protein-Protein Interaction Prediction through Structure and Sequence Similarity, Functional Association, and Machine Learning. J. Mol. Biol. 2022, 434, 167530. [Google Scholar] [CrossRef]
- Chakraborty, A.; Mitra, S.; Bhattacharjee, M.; De, D.; Pal, A.J. Determining Human-Coronavirus Protein-Protein Interaction Using Machine Intelligence. Med. Nov. Technol. Devices 2023, 18, 100228. [Google Scholar] [CrossRef]
- Pavlova, A.; Zhang, Z.; Acharya, A.; Lynch, D.L.; Pang, Y.T.; Mou, Z.; Parks, J.M.; Chipot, C.; Gumbart, J.C. Machine Learning Reveals the Critical Interactions for SARS-CoV-2 Spike Protein Binding to ACE2. J. Phys. Chem. Lett. 2021, 12, 5494–5502. [Google Scholar] [CrossRef]
- Quitté, L.; Leclercq, M.; Prunier, J.; Scott-Boyer, M.-P.; Moroy, G.; Droit, A. A Machine Learning Approach to Identify Key Residues Involved in Protein–Protein Interactions Exemplified with SARS-CoV-2 Variants. Int. J. Mol. Sci. 2024, 25, 6535. [Google Scholar] [CrossRef] [PubMed]
- Ozger, Z.B. A Robust Protein Language Model for SARS-CoV-2 Protein–Protein Interaction Network Prediction. Artif. Intell. Med. 2023, 142, 102574. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, H.; Yu, H.; Li, S.; Zheng, Q.; Xia, N. Neutralizing Antibodies against SARS-CoV-2: Current Understanding, Challenge and Perspective. Antib. Ther. 2020, 3, 285–299. [Google Scholar] [CrossRef]
- Ovchynnykova, O.; Kapusta, K.; Sizochenko, N.; Sukhyy, K.M.; Kolodziejczyk, W.; Hill, G.A.; Saloni, J. Homology Modeling and Molecular Dynamics-Driven Search for Natural Inhibitors That Universally Target Receptor-Binding Domain of Spike Glycoprotein in SARS-CoV-2 Variants. Molecules 2022, 27, 7336. [Google Scholar] [CrossRef]
- Abdalla, M.; Eltayb, W.A.; El-Arabey, A.A.; Singh, K.; Jiang, X. Molecular Dynamic Study of SARS-CoV-2 with Various S Protein Mutations and Their Effect on Thermodynamic Properties. Comput. Biol. Med. 2022, 141, 105025. [Google Scholar] [CrossRef]
- Dike, P.P.; Bhowmick, S.; Eldesoky, G.E.; Wabaidur, S.M.; Patil, P.C.; Islam, M.A. In Silico Identification of Small Molecule Modulators for Disruption of Hsp90–Cdc37 Protein–Protein Interaction Interface for Cancer Therapeutic Application. J. Biomol. Struct. Dyn. 2022, 40, 2082–2098. [Google Scholar] [CrossRef]
- Verma, N.; Srivastava, S.; Malik, R.; Yadav, J.K.; Goyal, P.; Pandey, J. Computational Investigation for Modeling the Protein–Protein Interaction of TasA(28–261)–TapA(33–253): A Decisive Process in Biofilm Formation by Bacillus Subtilis. J. Mol. Model. 2020, 26, 226. [Google Scholar] [CrossRef]
- Shen, Y.; Brenke, R.; Kozakov, D.; Comeau, S.R.; Beglov, D.; Vajda, S. Docking with PIPER and Refinement with SDU in Rounds 6–11 of CAPRI. Proteins Struct. Funct. Bioinform. 2007, 69, 734–742. [Google Scholar] [CrossRef]
- Huang, S.-Y. Exploring the Potential of Global Protein–Protein Docking: An Overview and Critical Assessment of Current Programs for Automatic Ab Initio Docking. Drug Discov. Today 2015, 20, 969–977. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Binbay, F.A.; Rathod, D.C.; George, A.A.P.; Imhof, D. Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals 2023, 16, 1662. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Cao, W.; Dong, C.; Kim, S.; Hou, D.; Tai, W.; Du, L.; Im, W.; Zhang, X.F. Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction. Biophys. J. 2021, 120, 1011–1019. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple Sequence Alignment Using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 2.3.1–2.3.22. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. PIPER: An FFT-based Protein Docking Program with Pairwise Potentials. Proteins Struct. Funct. Bioinform. 2006, 65, 392–406. [Google Scholar] [CrossRef]
- Ovchynnykova, O.; Booth, J.D.; Cocroft, T.M.; Sukhyy, K.M.; Kapusta, K. In Silico Study on Natural Chemical Compounds from Citric Essential Oils as Potential Inhibitors of an Omicron (BA.1) SARS-CoV-2 Mutants’ Spike Glycoprotein. Curr. Comput. Aided Drug Des. 2024, 20, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Wan, X.; Li, X.; Cai, S.; Wan, C. Enhancing the Immunogenicity of RBD Protein Variants through Amino Acid E484 Mutation in SARS-CoV-2. Viruses 2022, 14, 2020. [Google Scholar] [CrossRef]
- Greaney, A.J.; Loes, A.N.; Crawford, K.H.D.; Starr, T.N.; Malone, K.D.; Chu, H.Y.; Bloom, J.D. Comprehensive Mapping of Mutations in the SARS-CoV-2 Receptor-Binding Domain That Affect Recognition by Polyclonal Human Plasma Antibodies. Cell Host Microbe 2021, 29, 463–476. [Google Scholar] [CrossRef]
- Tsai, K.-C.; Lee, Y.-C.; Tseng, T.-S. Comprehensive Deep Mutational Scanning Reveals the Immune-Escaping Hotspots of SARS-CoV-2 Receptor-Binding Domain Targeting Neutralizing Antibodies. Front. Microbiol. 2021, 12, 698365. [Google Scholar] [CrossRef]
- Yang, W.-T.; Huang, W.-H.; Liao, T.-L.; Hsiao, T.-H.; Chuang, H.-N.; Liu, P.-Y. SARS-CoV-2 E484K Mutation Narrative Review: Epidemiology, Immune Escape, Clinical Implications, and Future Considerations. Infect. Drug Resist. 2022, 15, 373–385. [Google Scholar] [CrossRef]
- Schröder, S.; Richter, A.; Veith, T.; Emanuel, J.; Gudermann, L.; Friedmann, K.; Jeworowski, L.M.; Mühlemann, B.; Jones, T.C.; Müller, M.A.; et al. Characterization of Intrinsic and Effective Fitness Changes Caused by Temporarily Fixed Mutations in the SARS-CoV-2 Spike E484 Epitope and Identification of an Epistatic Precondition for the Evolution of E484A in Variant Omicron. Virol. J. 2023, 20, 257. [Google Scholar] [CrossRef]
Variant | #HB | #Salt Bridges | #p Stacking | #vdW Clashes | The Sum of Surface Complementarity | The Sum of Buried SASA |
---|---|---|---|---|---|---|
WT | 10 | 0 | 1 | 0 | 10.44 | 9.625 |
Alpha | 8 | 1 | 1 | 3 | 13.61 | 9.269 |
Beta | 6 | 0 | 0 | 2 | 13.63 | 13.891 |
Gamma | 7 | 0 | 1 | 1 | 10.75 | 7.83 |
Delta | 7 | 0 | 2 | 0 | 8.19 | 7.71 |
Kappa | 8 | 0 | 1 | 2 | 10.73 | 8.128 |
Epsilon | 2 | 0 | 0 | 0 | 9.87 | 7.162 |
Epsilon * | 4 | 0 | 1 | 0 | 9.03 | 7.335 |
Omicron BA.1 | 6 | 0 | 1 | 0 | 9.42 | 7.854 |
Omicron JN.1 | 4 | 0 | 0 | 2 | 8.32 | 7.971 |
Setting | Default | Masked non-CDR | Masked non-CDR + 1 Restrained Residue (10 Å) | Masked non-CDR + 2 Restrained Residue (10 Å) | Masked non-CDR + 2 Restrained Residue (20 Å) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cluster | PIPER Pose Score | RMSD | PIPER Pose Score | RMSD | PIPER Pose Score | RMSD | PIPER Pose Score | RMSD | PIPER Pose Score | RMSD |
Pose 1 | −457.198 a | 7.646 a | −293.516 | 27.978 | −333.482 | 8.291 | −284.895 | 13.655 | −285.438 a | 6.091 a |
Pose 2 | −293.516 | 27.978 | −440.06 | 6.454 | −340.992 | 41.611 | −150.677 a | 6.621 a | −327.952 | 7.772 |
Pose 3 | −388.143 | 12.809 | −359.293 | 24.632 | −328.815 | 32.267 | −150.317 | 8.407 | −329.829 | 20.186 |
Pose 4 | −266.848 | 25.264 | −209.244 a | 3.63 a | −375.115 | 16.898 | −260.251 | 22.411 | −185.388 | 16.432 |
Pose 5 | −258.313 | 30.798 | −349.946 | 29.871 | −241.792 | 35.909 | −242.231 | 12.895 | −166.638 | 17.425 |
Pose 6 | −387.458 | 31.574 | −267.746 | 30.229 | −297.668 | 21.997 | −54.547 | 11.938 | −82.759 | 18.215 |
Pose 7 | −250.088 | 20.188 | −406.003 | 30.684 | −458.749 | 42.156 | −145.266 | 25.732 | −141.188 | 15.38 |
Pose 8 | −250.482 | 33.641 | −175.706 | 24.512 | −256.155 | 13.457 | −96.679 | 8.31 | −14.671 | 16.466 |
Pose 9 | −210.379 | 23.625 | −371.484 | 14.758 | −261.563 | 15.539 | −113.486 | 22.374 | −181.984 | 8.23 |
Pose 10 | −401.988 | 30.996 | −302.371 | 32.238 | −276.454 | 30.954 | −230.137 | 21.929 | ||
Pose 11 | −207.697 | 26.078 | −309.833 | 18.977 | −190.658 a | 7.616 a | −95.969 | 25.936 | ||
Pose 12 | −221.059 | 40.109 | −222.226 | 30.54 | −348.832 | 39.941 | −222.186 | 30.122 | ||
Pose 13 | −271.411 | 31.393 | −206.757 | 23.489 | −235.75 | 24.04 | −218.579 | 26.757 | ||
Pose 14 | −322.635 | 31.796 | −219.762 | 27.718 | −218.887 | 46.816 | −69.551 | 11.574 | ||
Pose 15 | −142.35 | 21.944 | −339.772 | 26.577 | −161.378 | 24.409 | −33.784 | 21.102 | ||
Pose 16 | −317.152 | 14.218 | −250.482 | 33.641 | −294.323 | 22.275 | −53.397 | 30.643 | ||
Pose 17 | −219.762 | 27.718 | −251.206 | 26.989 | −86.457 | 18.959 | −134.117 | 14.686 | ||
Pose 18 | −142.251 | 30.677 | −212.289 | 30.442 | −391.134 | 17.908 | −172.463 | 29.637 | ||
Pose 19 | −309.501 | 10.353 | −247.819 | 30.659 | −360.8 | 40.092 | −93.918 | 24.066 | ||
Pose 20 | −335.719 | 30.454 | −260.417 | 30.23 | −225.572 | 41.739 | ||||
Pose 21 | −260.176 | 20.924 | −263.305 | 24.746 | −222.689 | 36.605 | ||||
Pose 22 | −226.819 | 13.679 | −235.555 | 21.632 | −9.888 | 22.905 | ||||
Pose 23 | −223.198 | 23.523 | −264.263 | 21.063 | −291.837 | 24.137 | ||||
Pose 24 | −206.177 | 22.799 | −366.239 | 11.69 | −164.386 | 31.189 | ||||
Pose 25 | −169.366 | 33.549 | −267.54 | 24.5 | ||||||
Pose 26 | −215.471 | 23.003 | −268.67 | 30.412 | ||||||
Pose 27 | −173.55 | 20.441 | −281.905 | 21.807 | ||||||
Pose 28 | −187.569 | 28.539 | −187.569 | 28.539 | ||||||
Pose 29 | −231.283 | 28.295 | −293.907 | 27.269 | ||||||
Pose 30 | −195.066 | 32.712 | −278.004 | 29.488 | ||||||
Wall time b | 0H 21′ 36″ | 0H 22′ 44″ | 0H 21′ 15″ | 0H 05′ 56″ | 0H 44′ 47″ |
Variant | #HB | #Salt Bridges | #p Stacking | #vdW Clashes | Surface Complementarity | Buried SASA |
---|---|---|---|---|---|---|
WT | 6 | 0 | 0 | 23 | 8.92 | 8.491 |
Alpha | 1 | 0 | 0 | 119 | 9.01 | 9.95 |
Beta | 1 | 0 | 1 | 93 | 7.76 | 10.44 |
Gamma | 2 | 0 | 1 | 74 | 7.18 | 9.297 |
Delta | 0 | 0 | 0 | 76 | 7.31 | 10.365 |
Kappa | 2 | 0 | 4 | 77 | 6.09 | 10.21 |
Epsilon | 0 | 0 | 1 | 84 | 6.09 | 6.754 |
Omicron BA.1 | 1 | 0 | 0 | 66 | 10.71 | 12.984 |
Omicron JN.1 | 0 | 0 | 0 | 59 | 7.41 | 13.464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapusta, K.; McGowan, A.; Banerjee, S.; Wang, J.; Kolodziejczyk, W.; Leszczynski, J. Benchmark Investigation of SARS-CoV-2 Mutants’ Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture. Curr. Issues Mol. Biol. 2024, 46, 12550-12573. https://doi.org/10.3390/cimb46110745
Kapusta K, McGowan A, Banerjee S, Wang J, Kolodziejczyk W, Leszczynski J. Benchmark Investigation of SARS-CoV-2 Mutants’ Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture. Current Issues in Molecular Biology. 2024; 46(11):12550-12573. https://doi.org/10.3390/cimb46110745
Chicago/Turabian StyleKapusta, Karina, Allyson McGowan, Santanu Banerjee, Jing Wang, Wojciech Kolodziejczyk, and Jerzy Leszczynski. 2024. "Benchmark Investigation of SARS-CoV-2 Mutants’ Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture" Current Issues in Molecular Biology 46, no. 11: 12550-12573. https://doi.org/10.3390/cimb46110745
APA StyleKapusta, K., McGowan, A., Banerjee, S., Wang, J., Kolodziejczyk, W., & Leszczynski, J. (2024). Benchmark Investigation of SARS-CoV-2 Mutants’ Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture. Current Issues in Molecular Biology, 46(11), 12550-12573. https://doi.org/10.3390/cimb46110745