From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology
Abstract
:1. Introduction
2. Next-Generation Sequencing Techniques (NGS)
2.1. Whole-Genome Sequencing (WGS)
2.2. Whole-Exome Sequencing (WES)
2.3. Single-Cell RNA Sequencing (sc-RNA-Seq)
Cancer | Single cells | Transcriptomic Landscape | References |
---|---|---|---|
Breast Cancer | 27,028 (primary tissue), 69,768 (axillary lymph nodes) | - Breast Cancer Stem Cells (BCSCs): Identified as CD44+/ALDH2+/ALDH6A1+. - Heterogeneity: Inter- and intratumor variation linked to 103 gene downregulations. - Metastasis Genes: PTMA, STC2, CST3, RAMP3. - CNV Clusters: Cluster_4 showed high mutation rates associated with lymph node metastasis. - Immune Interactions: NECTIN2-TIGIT interactions promote immune escape. - Key DEGs in TNBC: B2M, CD52, PTMA, GZMK. | [43] |
Lung Cancer | 220,716 | - Heterogeneity: Distinction between AT2 and basal cell types. Fibroblast and NE key cell types that distinguish two tumor subtypes from their adjacent tissues. - Key Driver Genes: EGFR, KRAS, BRAF, ERBB2, MET. Potential Therapeutic Targets: Specific subclones of AT2 and basal cells. - Prognosis: Better PFS and ORR with targeted therapies. | [44] |
Pancreatic Ductal Adenocarcinoma (PDAC) | 6236 | - Heterogeneity: Notable intertumor variation.Tumorigenicity: Cancer stem cells as primary drivers. - Pathways: Enrichment in IL6/JAK/STAT3, PI3K/AKT/MTOR, TGF-β signaling. Gene expression: High expression during PDAC (EPCAM, KRT19, MUC1, CEACAM6). - Key Drivers: VEGF/VEGFR, HIF2, and P53 signaling pathway, MMP7, TSPAN8, MSLN, LAMC2, KLK6, and LY6D. - Genes Involved in Tumor Progression: MUC1 and CEACAM6. | [45] |
Colorectal Cancer (CRC) | 9120 | - DEGs: Lower expression of enterocyte (CA1, CA2) and endocrine markers (PYY, GCG); metallothionein family genes (MT1H and MT1G), higher expression of LY6E, FXYD5, TGFBI. - Metastasis: Upregulation of EKC/KEOPS. - Key Mutations: KRAS mutations in actively dividing tumors. - Potential Therapeutic targets: PPAR inhibitors, WNT inhibitors. | [46] |
HBV-associated Hepatocellular Carcinoma (HCC) | >1000 | - Heterogeneity: Intertumor heterogeneity more prominent than the intratumor due to the cells clustering together according to similarities of global transcriptomic profile, LCSC markers, inferred CNV status, and RTK expression. - Prognosis: Poor outcomes linked to high TAM markers. - Drug Resistance: Intratumor heterogeneity leads to resistance against RTK inhibitors. - Potential Therapeutic Targets: TIGIT–NECTIN2 axis. | [47] |
Acute Myeloid Leukemia (AML) | 91,772 | - Potential Targets: Enhanced interaction between HLA-F, HLA-E, HLA-C, and B/CD8 + T/HSC-Prog/plasma in NK cells. - Recurrence Risk: Associated with CD4+ Tregs. - Gene Expression: Overexpression of inflammatory response genes, CD14+ monocytes, hyperactive BATF. - Signaling Pathways: Increased activity in T cell subsets of CD4+ and CD8+ T cell signaling pathways related to TNFA, NFKB, hypoxia, KRAS, MTORC1, and other hallmark gene sets in AML patients using GSVA and GSEA. - Progression: Associated with an increase in the number of CD14+ monocytes and monocyte-DCs as the CNVs changed. - Heterogeneity: CNV and intercellular interaction networks in HSC-Prog cells. HSC-Prog exhibits great heterogeneity in chromosomal structure. | [48] |
3. NGS for Personalized Oncology
3.1. Tumor Heterogeneity
3.2. Targeted Therapy
3.3. Resistance Mechanisms
3.4. Prognosis and Predictive Biomarkers
3.5. Identification of Driver Mutations
4. Data Analysis and Bioinformatics Tools
5. Challenges and Opportunities
6. Conclusions
Funding
Conflicts of Interest
References
- Guan, Y.F.; Li, G.R.; Wang, R.J.; Yi, Y.T.; Yang, L.; Jiang, D.; Zhang, X.P.; Peng, Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin. J. Cancer 2012, 31, 463. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-generation sequencing technology: Current trends and advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Serratì, S.; De Summa, S.; Pilato, B.; Petriella, D.; Lacalamita, R.; Tommasi, S.; Pinto, R. Next-generation sequencing: Advances and applications in cancer diagnosis. OncoTargets Ther. 2016, 9, 7355–7365. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.S.P.; Tan, D.S.W.; Tan, I.B.H.; Yan, B.; Choo, S.P.; Chng, W.J.; Hwang, W.Y.K. Recommendations to improve the clinical adoption of NGS-based cancer diagnostics in Singapore. Asia-Pac. J. Clin. Oncol. 2020, 16, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Wardell, C.P.; Furuta, M.; Taniguchi, H.; Fujimoto, A. Cancer whole-genome sequencing: Present and future. Oncogene 2015, 34, 5943–5950. [Google Scholar] [CrossRef]
- Bagger, F.O.; Borgwardt, L.; Jespersen, A.S.; Hansen, A.R.; Bertelsen, B.; Kodama, M.; Nielsen, F.C. Whole genome sequencing in clinical practice. BMC Med. Genom. 2024, 17, 39. [Google Scholar] [CrossRef]
- Rosenquist, R.; Cuppen, E.; Buettner, R.; Caldas, C.; Dreau, H.; Elemento, O.; Frederix, G.; Grimmond, S.; Haferlach, T.; Jobanputra, V.; et al. Clinical utility of whole-genome sequencing in precision oncology. In Seminars in Cancer Biology; Academic Press: New York, NY, USA, 2022; Volume 84, pp. 32–39. [Google Scholar]
- Meggendorfer, M.; Jobanputra, V.; Wrzeszczynski, K.O.; Roepman, P.; de Bruijn, E.; Cuppen, E.; Buttner, R.; Caldas, C.; Grimmond, S.; Mullighan, C.G.; et al. Analytical demands to use whole-genome sequencing in precision oncology. In Seminars in Cancer Biology; Academic Press: New York, NY, USA, 2022; Volume 84, pp. 16–22. [Google Scholar]
- Munchel, S.; Hoang, Y.; Zhao, Y.; Cottrell, J.; Klotzle, B.; Godwin, A.K.; Koestler, D.; Beyerlein, P.; Fan, J.B.; Bibikova, M.; et al. Targeted or whole genome sequencing of formalin fixed tissue samples: Potential applications in cancer genomics. Oncotarget 2015, 6, 25943. [Google Scholar] [CrossRef]
- Mathieson, W.; Thomas, G.A. Why formalin-fixed, paraffin-embedded biospecimens must be used in genomic medicine: An evidence-based review and conclusion. J. Histochem. Cytochem. 2020, 68, 543–552. [Google Scholar] [CrossRef]
- Samsom, K.G.; Bosch, L.J.; Schipper, L.J.; Schout, D.; Roepman, P.; Boelens, M.C.; Lalezari, F.; Klompenhouwer, E.G.; de Langen, A.J.; Buffart, T.E.; et al. Optimized whole-genome sequencing workflow for tumor diagnostics in routine pathology practice. Nat. Protoc. 2024, 19, 700–726. [Google Scholar] [CrossRef]
- Nelson, A.C.; Yohe, S.L. Cancer whole-genome sequencing: The quest for comprehensive genomic profiling in routine oncology care. J. Mol. Diagn. 2021, 23, 784–787. [Google Scholar] [CrossRef]
- Foley, S.B.; Rios, J.J.; Mgbemena, V.E.; Robinson, L.S.; Hampel, H.L.; Toland, A.E.; Durham, L.; Ross, T.S. Use of whole genome sequencing for diagnosis and discovery in the cancer genetics clinic. EBioMedicine 2015, 2, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, X.; Wang, O.; Bi, Y.; Xing, X.; Cui, M.; Wang, M.; Tao, W.; Liao, Q.; Zhao, Y. The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int. J. Cancer 2020, 147, 2446–2457. [Google Scholar] [CrossRef] [PubMed]
- Staaf, J.; Glodzik, D.; Bosch, A.; Vallon-Christersson, J.; Reuterswärd, C.; Häkkinen, J.; Degasperi, A.; Amarante, T.D.; Saal, L.H.; Hegardt, C.; et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 2019, 25, 1526–1533. [Google Scholar] [CrossRef]
- Wang, K.; Yuen, S.T.; Xu, J.; Lee, S.P.; Yan, H.H.; Shi, S.T.; Siu, H.C.; Deng, S.; Chu, K.M.; Law, S.; et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 2014, 46, 573–582. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543. [Google Scholar] [CrossRef] [PubMed]
- Mendelaar, P.A.; Smid, M.; van Riet, J.; Angus, L.; Labots, M.; Steeghs, N.; Hendriks, M.P.; Cirkel, G.A.; van Rooijen, J.M.; Ten Tije, A.J.; et al. Whole genome sequencing of metastatic colorectal cancer reveals prior treatment effects and specific metastasis features. Nat. Commun. 2021, 12, 574. [Google Scholar] [CrossRef]
- Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Lee, J.W.; Lee, M.; Kim, H.S.; Chung, H.H.; Kim, J.W.; Park, N.H.; Song, Y.S.; Seo, J.S. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol. Oncol. 2018, 148, 375–382. [Google Scholar] [CrossRef]
- Wu, S.; Ou, T.; Xing, N.; Lu, J.; Wan, S.; Wang, C.; Zhang, X.; Yang, F.; Huang, Y.; Cai, Z. Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat. Commun. 2019, 10, 720. [Google Scholar] [CrossRef]
- Huang, J.; Qian, Z.; Gong, Y.; Wang, Y.; Guan, Y.; Han, Y.; Yi, X.; Huang, W.; Ji, L.; Xu, J.; et al. Comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer identifies potential targets for cervical cancer early warning. J. Med. Genet. 2019, 56, 186–194. [Google Scholar] [CrossRef]
- Pal, S.K.; Ali, S.M.; Yakirevich, E.; Geynisman, D.M.; Karam, J.A.; Elvin, J.A.; Frampton, G.M.; Huang, X.; Lin, D.I.; Rosenzweig, M.; et al. Characterization of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling. Eur. Urol. 2018, 73, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, A.; Furuta, M.; Totoki, Y.; Tsunoda, T.; Kato, M.; Shiraishi, Y.; Tanaka, H.; Taniguchi, H.; Kawakami, Y.; Ueno, M.; et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 2016, 48, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Tu, S.J.; Chen, H.D.; Chung, C.C.; Hsu, M.H.; Chou, Y.P.; Lee, Y.T.; Yen, J.C.; Jeng, L.B.; Chang, J.G. Whole genome and RNA sequencing analyses for 254 Taiwanese hepatocellular carcinomas. Biomark. Res. 2023, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Christen, F.; Hoyer, K.; Yoshida, K.; Hou, H.A.; Waldhueter, N.; Heuser, M.; Hills, R.K.; Chan, W.; Hablesreiter, R.; Blau, O.; et al. Genomic landscape and clonal evolution of acute myeloid leukemia with t (8; 21): An international study on 331 patients. Blood J. Am. Soc. Hematol. 2019, 133, 1140–1151. [Google Scholar]
- Rabbani, B.; Tekin, M.; Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J. Hum. Genet. 2014, 59, 5–15. [Google Scholar] [CrossRef]
- Bartha, Á.; Győrffy, B. Comprehensive outline of whole exome sequencing data analysis tools available in clinical oncology. Cancers 2019, 11, 1725. [Google Scholar] [CrossRef]
- Cifola, I.; Pietrelli, A.; Consolandi, C.; Severgnini, M.; Mangano, E.; Russo, V.; De Bellis, G.; Battaglia, C. Comprehensive genomic characterization of cutaneous malignant melanoma cell lines derived from metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS ONE 2013, 8, e63597. [Google Scholar] [CrossRef]
- Harbst, K.; Lauss, M.; Cirenajwis, H.; Isaksson, K.; Rosengren, F.; Törngren, T.; Kvist, A.; Johansson, M.C.; Vallon-Christersson, J.; Baldetorp, B.; et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Res. 2016, 76, 4765–4774. [Google Scholar] [CrossRef]
- Thomson, J.P.; Hollis, R.L.; van Baal, J.; Ilenkovan, N.; Churchman, M.; van de Vijver, K.; Dijk, F.; Meynert, A.M.; Bartos, C.; Rye, T.; et al. Whole exome sequencing of low grade serous ovarian carcinoma identifies genomic events associated with clinical outcome. Gynecol. Oncol. 2023, 174, 157–166. [Google Scholar] [CrossRef]
- Luo, R.; Chong, W.; Wei, Q.; Zhang, Z.; Wang, C.; Ye, Z.; Abu-Khalaf, M.M.; Silver, D.P.; Stapp, R.T.; Jiang, W.; et al. Whole-exome sequencing identifies somatic mutations and intratumor heterogeneity in inflammatory breast cancer. NPJ Breast Cancer 2021, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Grassi, E.; Durante, S.; Astolfi, A.; Tarantino, G.; Indio, V.; Freier, E.; Vecchiarelli, S.; Ricci, C.; Casadei, R.; Formica, F.; et al. Mutational burden of resectable pancreatic cancer, as determined by whole transcriptome and whole exome sequencing, predicts a poor prognosis. Int. J. Oncol. 2018, 52, 1972–1980. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.I.; Traverso, G.; Zhang, M.; Roberts, N.J.; Khan, M.A.; Joseph, C.; Lauwers, G.Y.; Selaru, F.M.; Popoli, M.; Pittman, M.E.; et al. Whole-exome sequencing analyses of inflammatory bowel Disease− Associated colorectal cancers. Gastroenterology 2016, 150, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Halik, A.; Tilgner, M.; Silva, P.; Estrada, N.; Altwasser, R.; Jahn, E.; Heuser, M.; Hou, H.A.; Pratcorona, M.; Hills, R.K.; et al. Genomic characterization of AML with aberrations of chromosome 7: A multinational cohort of 519 patients. J. Hematol. Oncol. 2024, 17, 70. [Google Scholar] [CrossRef]
- Wang, J.; Dean, D.C.; Hornicek, F.J.; Shi, H.; Duan, Z. RNA sequencing (RNA-Seq) and its application in ovarian cancer. Gynecol. Oncol. 2019, 152, 194–201. [Google Scholar] [CrossRef]
- Wang, L.; Mo, S.; Li, X.; He, Y.; Yang, J. Single-cell RNA-seq reveals the immune escape and drug resistance mechanisms of mantle cell lymphoma. Cancer Biol. Med. 2020, 17, 726. [Google Scholar] [CrossRef]
- Hong, M.; Tao, S.; Zhang, L.; Diao, L.T.; Huang, X.; Huang, S.; Xie, S.J.; Xiao, Z.D.; Zhang, H. RNA sequencing: New technologies and applications in cancer research. J. Hematol. Oncol. 2020, 13, 166. [Google Scholar] [CrossRef]
- Zhao, Z.; Meng, F.; Wang, W.; Wang, Z.; Zhang, C.; Jiang, T. Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci. Data 2017, 4, 170024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, D.; Peng, M.; Tang, L.; Ouyang, J.; Xiong, F.; Guo, C.; Tang, Y.; Zhou, Y.; Liao, Q.; et al. Single-cell RNA sequencing in cancer research. J. Exp. Clin. Cancer Res. 2021, 40, 81. [Google Scholar] [CrossRef]
- Ding, S.; Chen, X.; Shen, K. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Commun. 2020, 40, 329–344. [Google Scholar] [CrossRef]
- Sun, G.; Li, Z.; Rong, D.; Zhang, H.; Shi, X.; Yang, W.; Zheng, W.; Sun, G.; Wu, F.; Cao, H.; et al. Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol. Ther.-Oncolytics 2021, 21, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, R.; Xie, H.; Hu, L.; Wang, C.; Xu, J.; Zhu, C.; Liu, Y.; Gao, F.; Li, X.; et al. Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 2021, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Y.; Wang, C.; Yang, Y.; Ni, Y.; Wang, Z.; Song, T.; Yao, M.; Liu, Z.; Chao, N.; et al. Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer. Signal Transduct. Target. Ther. 2022, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, S.; Hu, Y.; Huang, W. Single-cell RNA transcriptome reveals the intra-tumoral heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov. 2021, 7, 331. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Zhou, X.; Mao, Y.; Wang, W.; Gao, S.; Wang, W.; Gao, Y.; Chen, K.; Yu, S.; et al. Single-cell genomic and transcriptomic landscapes of primary and metastatic colorectal cancer tumors. Genome Med. 2022, 14, 93. [Google Scholar] [CrossRef]
- Ho, D.W.H.; Tsui, Y.M.; Chan, L.K.; Sze, K.M.F.; Zhang, X.; Cheu, J.W.S.; Chiu, Y.T.; Lee, J.M.F.; Chan, A.C.Y.; Cheung, E.T.Y.; et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat. Commun. 2021, 12, 3684. [Google Scholar] [CrossRef]
- Hu, X.; Cao, D.; Zhou, Z.; Wang, Z.; Zeng, J.; Hong, W.X. Single-cell transcriptomic profiling reveals immune cell heterogeneity in acute myeloid leukaemia peripheral blood mononuclear cells after chemotherapy. Cell. Oncol. 2024, 47, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Späth, S.S.; Marjani, S.L.; Zhang, W.; Pan, X. Characterization of cancer genomic heterogeneity by next-generation sequencing advances precision medicine in cancer treatment. Precis. Clin. Med. 2018, 1, 29–48. [Google Scholar] [CrossRef]
- Wong, S.S.; Kim, K.M.; Ting, J.C.; Yu, K.; Fu, J.; Liu, S.; Cristescu, R.; Nebozhyn, M.; Gong, L.; Yue, Y.G.; et al. Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing. Nat. Commun. 2014, 5, 5477. [Google Scholar] [CrossRef]
- Morrison, C.D.; Liu, P.; Woloszynska-Read, A.; Zhang, J.; Luo, W.; Qin, M.; Bshara, W.; Conroy, J.M.; Sabatini, L.; Vedell, P.; et al. Whole-genome sequencing identifies genomic heterogeneity at a nucleotide and chromosomal level in bladder cancer. Proc. Natl. Acad. Sci. USA 2014, 111, E672–E681. [Google Scholar] [CrossRef]
- Zhang, X.C.; Xu, C.; Mitchell, R.M.; Zhang, B.; Zhao, D.; Li, Y.; Huang, X.; Fan, W.; Wang, H.; Lerma, L.A.; et al. Tumor evolution and intratumor heterogeneity of an oropharyngeal squamous cell carcinoma revealed by whole-genome sequencing. Neoplasia 2013, 15, 1371–1378, IN6–IN7. [Google Scholar] [CrossRef] [PubMed]
- Leong, T.L.; Gayevskiy, V.; Steinfort, D.P.; De Massy, M.R.; Gonzalez-Rajal, A.; Marini, K.D.; Stone, E.; Chin, V.; Havryk, A.; Plit, M.; et al. Deep multi-region whole-genome sequencing reveals heterogeneity and gene-by-environment interactions in treatment-naive, metastatic lung cancer. Oncogene 2019, 38, 1661–1675. [Google Scholar] [CrossRef]
- Ishaque, N.; Abba, M.L.; Hauser, C.; Patil, N.; Paramasivam, N.; Huebschmann, D.; Leupold, J.H.; Balasubramanian, G.P.; Kleinheinz, K.; Toprak, U.H.; et al. Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nat. Commun. 2018, 9, 4782. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yoon, J.K.; Kim, B.; Kim, S.; Kim, M.A.; Lim, H.; Bang, D.; Song, Y.S. Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing. BMC cancer 2015, 15, 85. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.Y.; Hu, Z.; Hou, Q.; Zhang, H.; Li, Y.; Li, S.; Yue, J.; Jiang, Z.; Weissman, S.M.; et al. Evolution and heterogeneity of non-hereditary colorectal cancer revealed by single-cell exome sequencing. Oncogene 2017, 36, 2857–2867. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Shi, R.; Zhao, T.; Wang, Y.; Anastasov, N.; Rosemann, M.; Fang, W. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol. Immunother. 2021, 70, 189–202. [Google Scholar] [CrossRef]
- Shanmugam, V.; Ramanathan, R.K.; Lavender, N.A.; Sinari, S.; Chadha, M.; Liang, W.S.; Kurdoglu, A.; Izatt, T.; Christoforides, A.; Benson, H.; et al. Whole genome sequencing reveals potential targets for therapy in patients with refractory KRAS mutated metastatic colorectal cancer. BMC Med. Genom. 2014, 7, 36. [Google Scholar] [CrossRef]
- Griewank, K.G.; Scolyer, R.A.; Thompson, J.F.; Flaherty, K.T.; Schadendorf, D.; Murali, R. Genetic alterations and personalized medicine in melanoma: Progress and future prospects. J. Natl. Cancer Inst. 2014, 106, djt435. [Google Scholar] [CrossRef]
- Vergani, E.; Busico, A.; Dugo, M.; Devecchi, A.; Valeri, B.; Cossa, M.; Di Guardo, L.; De Cecco, L.; Feltrin, E.; Valle, G.; et al. Genetic layout of melanoma lesions is associated with BRAF/MEK-targeted therapy resistance and transcriptional profiles. J. Investig. Dermatol. 2022, 142, 3030–3040. [Google Scholar] [CrossRef]
- Stockhammer, P.; Grant, M.; Wurtz, A.; Foggetti, G.; Expósito, F.; Gu, J.; Zhao, H.; Choi, J.; Chung, S.; Li, F.; et al. Co-occurring alterations in multiple tumor suppressor genes are associated with worse outcomes in patients with EGFR-mutant lung cancer. J. Thorac. Oncol. 2024, 19, 240–251. [Google Scholar] [CrossRef]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Witkiewicz, A.K.; McMillan, E.A.; Balaji, U.; Baek, G.; Lin, W.C.; Mansour, J.; Mollaee, M.; Wagner, K.U.; Koduru, P.; Yopp, A.; et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015, 6, 6744. [Google Scholar] [CrossRef]
- Ross, J.S.; Wang, K.; Gay, L.; Otto, G.A.; White, E.; Iwanik, K.; Palmer, G.; Yelensky, R.; Lipson, D.M.; Chmielecki, J.; et al. Comprehensive genomic profiling of carcinoma of unknown primary site: New routes to targeted therapies. JAMA Oncol. 2015, 1, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Ali, S.M.; Wang, K.; Khaira, D.; Palma, N.A.; Chmielecki, J.; Palmer, G.A.; Morosini, D.; Elvin, J.A.; Fernandez, S.V.; et al. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res. Treat. 2015, 154, 155–162. [Google Scholar] [CrossRef]
- Chung, J.H.; Dewal, N.; Sokol, E.; Mathew, P.; Whitehead, R.; Millis, S.Z.; Frampton, G.M.; Bratslavsky, G.; Pal, S.K.; Lee, R.J.; et al. Prospective comprehensive genomic profiling of primary and metastatic prostate tumors. JCO Precis. Oncol. 2019, 3, 1–23. [Google Scholar] [CrossRef]
- Bahceci, D.H.; Grenert, J.P.; Jordan, R.C.; Horvai, A.E. Genomic Profiling of the Craniofacial Ossifying Fibroma by Next-Generation Sequencing. Head Neck Pathol. 2023, 17, 722–730. [Google Scholar] [CrossRef]
- Demeure, M.J.; Aziz, M.; Rosenberg, R.; Gurley, S.D.; Bussey, K.J.; Carpten, J.D. Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4–ALK translocation as a therapeutic target. World J. Surg. 2014, 38, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Rosati, D.; Giordano, A. Single-cell RNA sequencing and bioinformatics as tools to decipher cancer heterogenicity and mechanisms of drug resistance. Biochem. Pharmacol. 2022, 195, 114811. [Google Scholar] [CrossRef]
- Guo, L.; Cheng, H.; Liu, J.; Shao, W.; Luo, L.; Zheng, W.; Sun, S.; Kong, D.; Chen, C. Based on whole-exome sequencing to explore the rule of Herceptin and TKI resistance in breast cancer patients. BMC Med. Genom. 2024, 17, 25. [Google Scholar] [CrossRef]
- Turajlic, S.; Furney, S.J.; Stamp, G.; Rana, S.; Ricken, G.; Oduko, Y.; Saturno, G.; Springer, C.; Hayes, A.; Gore, M.; et al. Whole-genome sequencing reveals complex mechanisms of intrinsic resistance to BRAF inhibition. Ann. Oncol. 2014, 25, 959–967. [Google Scholar] [CrossRef]
- Patch, A.M.; Christie, E.L.; Etemadmoghadam, D.; Garsed, D.W.; George, J.; Fereday, S.; Nones, K.; Cowin, P.; Alsop, K.; Bailey, P.J.; et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature 2015, 521, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Ali, S.M.; Wang, K.; Palmer, G.; Yelensky, R.; Lipson, D.; Miller, V.A.; Zajchowski, D.; Shawver, L.K.; Stephens, P.J. Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies. Gynecol. Oncol. 2013, 130, 554–559. [Google Scholar] [CrossRef]
- Miyamoto, D.T.; Zheng, Y.; Wittner, B.S.; Lee, R.J.; Zhu, H.; Broderick, K.T.; Desai, R.; Fox, D.B.; Brannigan, B.W.; Trautwein, J.; et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 2015, 349, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Itamochi, H.; Oishi, T.; Oumi, N.; Takeuchi, S.; Yoshihara, K.; Mikami, M.; Yaegashi, N.; Terao, Y.; Takehara, K.; Ushijima, K.; et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br. J. Cancer 2017, 117, 717–724. [Google Scholar] [CrossRef]
- Marchetti, A.; Del Grammastro, M.; Felicioni, L.; Malatesta, S.; Filice, G.; Centi, I.; De Pas, T.; Santoro, A.; Chella, A.; Brandes, A.A.; et al. Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: Toward a real-time liquid biopsy for treatment. PLoS ONE 2014, 9, e103883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, N.; Deng, H.; Chen, X.; Chen, Q.; Wang, Q.; Sun, L.; Wen, Y.; Cao, X.; Luo, Z.; et al. Prognostic value of circulating tumor DNA using target next-generation sequencing in extensive-stage small-cell lung cancer. Lung Cancer 2023, 178, 11–19. [Google Scholar] [CrossRef]
- Yamada, A.; Yu, P.; Lin, W.; Okugawa, Y.; Boland, C.R.; Goel, A. A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci. Rep. 2018, 8, 575. [Google Scholar] [CrossRef]
- Ho, D.W.; Yang, Z.F.; Yi, K.; Lam, C.T.; Ng, M.N.; Yu, W.C.; Lau, J.; Wan, T.; Wang, X.; Yan, Z.; et al. Gene expression profiling of liver cancer stem cells by RNA-sequencing. PLoS ONE 2012, 7, e37159. [Google Scholar] [CrossRef]
- Ostroverkhova, D.; Przytycka, T.M.; Panchenko, A.R. Cancer driver mutations: Predictions and reality. Trends Mol. Med. 2023, 29, 554–566. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Shao, D.I.; Deng, Q.; Tang, H.; Liu, Z.; Chen, X.; Guo, F.; Lin, Y.; Mao, M.; et al. Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients. Cancer Sci. 2017, 108, 2487–2494. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Mokrab, Y.; Halabi, N.; Shan, J.; Razali, R.; Kunji, K.; Syed, N.; Temanni, R.; Subramanian, M.; Ceccarelli, M.; et al. Genetic predisposition to cancer across people of different ancestries in Qatar: A population-based, cohort study. Lancet Oncol. 2022, 23, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Oliveira, J.; Sousa, M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J. Clin. Med. 2020, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Jäger, N. Bioinformatics workflows for clinical applications in precision oncology. In Seminars in Cancer Biology; Academic Press: New York, NY, USA, 2022; Volume 84, pp. 103–112. [Google Scholar]
- Zheng, H.; Zhang, G.; Zhang, L.; Wang, Q.; Li, H.; Han, Y.; Xie, L.; Yan, Z.; Li, Y.; An, Y.; et al. Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. Front. Oncol. 2020, 10, 68. [Google Scholar] [CrossRef]
- Cortés-Ciriano, I.; Gulhan, D.C.; Lee, J.J.K.; Melloni, G.E.; Park, P.J. Computational analysis of cancer genome sequencing data. Nat. Rev. Genet. 2022, 23, 298–314. [Google Scholar] [CrossRef]
- Corti, G.; Bartolini, A.; Crisafulli, G.; Novara, L.; Rospo, G.; Montone, M.; Negrino, C.; Mussolin, B.; Buscarino, M.; Isella, C.; et al. A genomic analysis workflow for colorectal cancer precision oncology. Clin. Color. Cancer 2019, 18, 91–101. [Google Scholar] [CrossRef]
- Dotolo, S.; Esposito Abate, R.; Roma, C.; Guido, D.; Preziosi, A.; Tropea, B.; Palluzzi, F.; Giacò, L.; Normanno, N. Bioinformatics: From NGS data to biological complexity in variant detection and oncological clinical practice. Biomedicines 2022, 10, 2074. [Google Scholar] [CrossRef]
- Gupta, V.; Vashisht, V.; Vashisht, A.; Mondal, A.K.; Alptekin, A.; Singh, H.; Kolhe, R. Comprehensive Analysis of Clinically Relevant Copy Number Alterations (CNAs) Using a 523-Gene Next-Generation Sequencing Panel and NxClinical Software in Solid Tumors. Genes 2024, 15, 396. [Google Scholar] [CrossRef]
- Van Allen, E.M.; Wagle, N.; Levy, M.A. Clinical analysis and interpretation of cancer genome data. J. Clin. Oncol. 2013, 31, 1825. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Li, X.; Gan, Y.; Han, S.; Rong, P.; Wang, W.; Li, W.; Zhou, L. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 2023, 12, 998222. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Zuo, F.; Shi, H.; Jing, J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. In Seminars in Cancer Biology; Academic Press: New York, NY, USA, 2023; Volume 88, pp. 187–200. [Google Scholar]
- Champion, M.; Brennan, K.; Croonenborghs, T.; Gentles, A.J.; Pochet, N.; Gevaert, O. Module analysis captures pancancer genetically and epigenetically deregulated cancer driver genes for smoking and antiviral response. EBioMedicine 2018, 27, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Xu, T.; Cai, J.; Zhao, Y.; Cao, W.; Fichera, A.; Liu, X.; Yao, J.; Wang, H. Development and validation of an image-based deep learning algorithm for detection of synchronous peritoneal carcinomatosis in colorectal cancer. Ann. Surg. 2022, 275, e645–e651. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, F.B.; Michel, B.; Lasla, H.; Gouraud, W.; François, A.-F.; Girka, F.; Lecointre, T.; Guérin-Charbonnel, C.; Juin, P.P.; Campone, M.; et al. Development of an absolute assignment predictor for triple-negative breast cancer subtyping using machine learning approaches. Comput. Biol. Med. 2021, 129, 104171. [Google Scholar]
- Jiao, W.; Atwal, G.; Polak, P.; Karlic, R.; Cuppen, E.; Danyi, A.; de Ridder, J.; van Herpen, C.; Lolkema, M.P.; Steeghs, N. A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat. Commun. 2020, 11, 728. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, S.; Ma, K.; Liu, W.; Yue, Y.; Hu, G.; Lu, H.; Chen, W. Identification of 12 cancer types through genome deep learning. Sci. Rep. 2019, 9, 17256. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.; Liu, Z.; Dai, Z.; Wu, W.; Zhou, R.; Li, S.; Wang, Z.; Liang, X.; Wen, J.; et al. An artificial intelligence network-guided signature for predicting outcome and immunotherapy response in lung adenocarcinoma patients based on 26 machine learning algorithms. Cell Prolif. 2023, 56, e13409. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Kamal, M.; Trédan, O.; Delord, J.P.; Campone, M.; Goncalves, A.; Isambert, N.; Conroy, T.; Gentien, D.; Vincent-Salomon, A.; et al. Designs and challenges for personalized medicine studies in oncology: Focus on the SHIVA trial. Target. Oncol. 2012, 7, 253–265. [Google Scholar] [CrossRef]
- Ulahannan, D.; Kovac, M.B.; Mulholland, P.J.; Cazier, J.B.; Tomlinson, I. Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br. J. Cancer 2013, 109, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.C.; Hsu, C.H.; Hsu, C.; Cheng, A.L. Tumor heterogeneity in hepatocellular carcinoma: Facing the challenges. Liver Cancer 2016, 5, 128–138. [Google Scholar] [CrossRef]
- de Leng, W.W.J.; Hooijdonk, C.G.G.-V.; Barendregt-Smouter, F.A.S.; Koudijs, M.J.; Nijman, I.; Hinrichs, J.W.J.; Cuppen, E.; van Lieshout, S.; Loberg, R.D.; de Jonge, M.; et al. Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLoS ONE 2016, 11, e0149405. [Google Scholar] [CrossRef]
- Froyen, G.; Broekmans, A.; Hillen, F.; Pat, K.; Achten, R.; Mebis, J.; Rummens, J.-L.; Willemse, J.; Maes, B. Validation and application of a custom-designed targeted next-generation sequencing panel for the diagnostic mutational profiling of solid tumors. PLoS ONE 2016, 11, e0154038. [Google Scholar] [CrossRef] [PubMed]
- D’Haene, N.; Le Mercier, M.; De Nève, N.; Blanchard, O.; Delaunoy, M.; El Housni, H.; Dessars, B.; Heimann, P.; Remmelink, M.; Demetter, P.; et al. Clinical validation of targeted next generation sequencing for colon and lung cancers. PLoS ONE 2015, 10, e0138245. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.D.; Tang, L.F.; Zerbe, B.; Kvale, M.N.; Kwok, P.-Y.; Schaefer, C.; Risch, N. Estimating genotype error rates from high-coverage next-generation sequence data. Genome Res. 2014, 24, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Al-Kateb, H.; Nguyen, T.T.; Steger-May, K.; Pfeifer, J.D. Identification of major factors associated with failed clinical molecular oncology testing performed by next generation sequencing (NGS). Mol. Oncol. 2015, 9, 1737–1743. [Google Scholar] [CrossRef]
- Zhang, T.-H.; Wu, N.C.; Sun, R. A benchmark study on error-correction by read-pairing and tag-clustering in amplicon-based deep sequencing. BMC Genom. 2016, 17, 108. [Google Scholar] [CrossRef]
- Kinde, I.; Wu, J.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA 2011, 108, 9530–9535. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Q.; Wang, Q.; Jia, P.; Zhao, Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinform. 2013, 14, S1. [Google Scholar] [CrossRef]
- Yang, R.; Nelson, A.C.; Henzler, C.; Thyagarajan, B.; Silverstein, K.A.T. ScanIndel: A hybrid framework for indel detection via gapped alignment, split reads and de novo assembly. Genome Med. 2015, 7, 127. [Google Scholar] [CrossRef]
- Pinto, D.; Darvishi, K.; Shi, X.; Rajan, D.; Rigler, D.; Fitzgerald, T.; Lionel, A.C.; Thiruvahindrapuram, B.; MacDonald, J.R.; Mills, R.; et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 2011, 29, 512–520. [Google Scholar] [CrossRef]
- Morash, M.; Mitchell, H.; Beltran, H.; Elemento, O.; Pathak, J. The role of next-generation sequencing in precision medicine: A review of outcomes in oncology. J. Pers. Med. 2018, 8, 30. [Google Scholar] [CrossRef]
- Yohe, S.L.; Carter, A.B.; Pfeifer, J.D.; Crawford, J.M.; Cushman-Vokoun, A.; Caughron, S.; Leonard, D.G.B. Standards for clinical grade genomic databases. Arch. Pathol. Lab. Med. 2015, 139, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.L.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V.; et al. Sequence variant classification and reporting: Recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 2008, 29, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Viale, G.; Trapani, D.; Duso, B.A.; Curigliano, G. Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit. Rev. Oncol./Hematol. 2019, 133, 171–182. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: Results of the MOSCATO 01 trial. Cancer Discov. 2017, 7, 586–595. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Sample Size | Mutation Frequency | Gene Alteration Pathway | Mutational Signatures | Predictive Biomarker | References |
---|---|---|---|---|---|---|
Parathyroid carcinoma | 23 | CDC73 (39.1%) | PI3K/AKT/mTOR (78.3%) | CDC73 mutant group: signatures 1, 2, 3, 9, and 13; wild-type CDC73: 1, 3, 5, 9, 16, 28, and 30 | [14] | |
Triple-negative breast cancers (TNBCs) | 254 | BRCA1, BRCA2, PALB2, RAD51C (67%) | PIK3CA/AKT1 pathway abnormalities (4.7%) | Mutational signatures of a PALB2 biallelic altered TNBC; RAD51C hypermethylated TNBC | [15] | |
Gastric cancer | 100 | RHOA (14.3%) diffuse-type tumors | Adherens junction pathway, focal adhesions pathways | [16] | ||
Lung adenocarcinoma | 230 | RIT1-activating mutations, loss-of-function MGA mutations, EGFR mutations (in female), RBM10 (in males), F1, MET, ERBB2, and RIT1 occurred in 13% | MAPK and PI(3)K pathway | [17] | ||
Metastatic colorectal cancer | 429 | LINC00672 mutations and 10 kb–1 Mb deletions. FBXW7 (11.9%) TP53 (73.9%); KRAS (47.3%), APC (78.3%); PIK3CA (15.9%); ZFP36L2 (9.8%) | - | SBS1, 8 and 41, as well as DBS2, 4, and 6, SBS9/39/41, polymerase Pol η (associated with therapy resistance). | FBXW7 mutations as a predictive biomarker for poor response to EGFR-targeted treatment | [18] |
Pancreatic cancer | 100 | TP53 (74%), SMAD4 (31%), CDKN2A(35%), ARID1A, and ROBO2. KDM6A (18%) and PREX2 (10%), RNF43 (10%), | BRCA pathway | Top quintile of the BRCA signature | Mutations in BRCA pathway component genes and surrogate measures of defects in DNA maintenance (genomic instability and the BRCA mutational signature) | [19] |
Ovarian clear cell carcinoma | 15 | PIK3CA (40%), ARID1A (40%), and KRAS (20%). Copy number gains in NTRK1 (33%), MYC (40%), and GNAS (47%) and copy number losses in TET2 (73%), TSC1 (67%), BRCA2 (60%), and SMAD4 (47%) | PI3K/AKT, TP53, and ERBB2 pathways in 87%. Chromatin remodeling in 47% of OCCCs | ATR inhibitors | [20] | |
Bladder cancer | 65 | Mutated protein-coding genes: ZFP36L1 (12.3%), ELF3 (9.2%); noncoding mutations: ERT, ADGRG6, PLEKHS1, WDR74, and LEPROTL1 (63%). | HRAS/KRAS, PI3K, FGFR1/FGFR3, FAK, MTOR, and PKCB/PKCG were altered in 23%, 22%, 17%, 8%, 7%, and 7% of the tumors, respectively | Signature D (8, 4, and 31), which was enriched C>A and T>A substitutions | Mutation in ADGRG6 enhancer | [21] |
Cervical cancer | 102 | PIK3CA (16.7%), FBXW7 (12.8%), MLL3 (7.8%), CASP8 (3.9%), and FADD (3.9%); FAT1 (8.8%), MLL2 (5.9%), and EP300 (5.9%). | RTK/RAS/PI(3)K, cell cycle, and apoptosis pathways were altered in 88%, 74%, and 73% of cases, respectively | APOBEC family member APOBEC3H was expressed at higher levels in CC | The combination of HPV integration and DNA testing had a trend towards higher AUC value than HPV DNA, suggesting a better biomarker for cervical cancer screening. | [22] |
Papillary renal cell carcinoma | 169 | In patients with primary tumor tissue MET (33%), TERT (30%), CDKN2A/B (13%), and EGFR (8%). In patients with metastatic tissue CDKN2A/B (18%), TERT (18%), NF2 (13%), and FH (13%); MET (7%). | SWI/SNF complexes (26%), chromatin modification (24%), and cell cycle regulation (22%). RAS/RAF pathway (7%), PI3K/mTOR pathway (8%), and DNA damage pathway (8%) | - | MET, CKDN2A/B, and SWI/SNF pathway | [23] |
Liver Cancer | 300 | Protein-altering mutations: TP53, CTNNB1, ARID2, ARID1A, RB1, AXIN1, RPS6KA3, SETDB1, NFE2L2, BAP1, and HNF4A; loss-of-function mutations: ARID2, ARID1A, AXIN1, TP53, BRD7, RPS6KA3, RB1, and HNF4A; mutations in the noncoding region NEAT1 (22%) and MALAT1 (6%) | Signature W1 (age-dependent); signature 4 (presence of TP53 mutations, smoking status, co-occurrence of the liver cancer with bladder or ureter cancer); signature W5 (alcohol intake); signature W2 (mutations in ARID family members); signatures W3 and W5 (presence of TERT promoter mutations); signatures W4, W6, and W7 (strong correlations with dinucleotide substitution); W4 and W6 (CC>AA substitutions). | [24] | ||
Hepatocellular carcinoma (HCC) | 254 | RB1 (11%), ARID1A (10%), AXIN1 (9%), ARID2 (8%), TERT (47.24%) | Signature 1 (19.29%, SBS22 associated with the plant-derived carcinogen aristolochic acid (AA) with a predominance of A:T-to-T:A transversions at T/CAG tri-nucleotide motifs. Signature 2 SBS5 with unknown etiology. Signature 3 SBS9 and associated with polymerase eta. | CNAs, SVs, expression levels, alternative transcripts, and fusion transcripts | [25] | |
AML | 305 | RAS/RTK Pathway Mutations: (63%) KIT (27%), NRAS (14.8%), FLT3 (16.9%; 10% of all patients harbored an FLT3-ITD), KRAS (5.7%), and CBL (5%) epigenetic regulation (45%): ASXL2 (15.7%), ASXL1 (12.4%), TET2 (7.9%), EZH2 (5.7%), and KDM6A (4.2%) | RAS/RTK signaling pathways | - | JAK2 mutations FLT3-ITD high, KIT mutations Therapeutic targets Midostaurin, Dasatinib, and other RTK inhibitors | [26] |
Cancer | Sample Size | Mutation Frequency | Gene Alteration Pathway | Mutational Signatures | Predictive Biomarker/Therapeutic | References |
---|---|---|---|---|---|---|
Melanoma | 8 | BRAF, NRAS, and NF1. Heterogeneous somatic mutations 3–38%. | MAPK pathway | UVB-induced C>T transitions | ITH may be a prognostic biomarker | [30] |
Ovarian clear cell carcinoma (OCCC) | 15 | PIK3CA (40%), ARID1A (40%), and KRAS (20%); NTRK1 (33%), MYC (40%), and GNAS (47%); TET2 (73%), TSC1 (67%), BRCA2 (60%), and SMAD4 (47%). | PI3K/AKT, TP53, and ERBB2 pathways | - | - | [20] |
Low grade serous ovarian carcinoma (LGOS) | 63 | Canonical MAPK mutant (cMAPKm: 52%, KRAS/BRAF/NRAS), MAPK-associated gene mutation (MAPK-assoc: 27%), and MAPK wild-type (MAPKwt: 21%). | NOTCH pathway | COSMIC signature SBS1, which is associated with aging and signature SBS10b, associated with elevated TMB. | Signature SBS10b, a potential biomarker | [31] |
Breast Cancer | 16 | KMT2C (42%) followed by HECTD1, LAMA3, FLG2, UGT2B4, STK33, BRCA2, ACP4, PIK3CA, and DNAH8 (33%). | PI3K/AKT/mTOR pathway, hyperactivation of the IL-6 pathway | C>T transitions; mix of C>G and C>T transitions | - | [32] |
Pancreatic Cancer | 21 | KRAS (100%), TP53 (74%), CDKN2A (16%), and SMAD4 (10%). | KRAS signaling, TGF-β signaling, chromatin remodeling, Wnt signaling, DNA damage repair, cell cycle, and RNA processing | - | Presence of RNF43 mutations | [33] |
Inflammatory Bowel Disease−Associated Colorectal Cancers | 31 | TP53 (63%), APC (13%), and KRAS (20%). | WNT pathway | C:G>T:A at CpG | - | [34] |
AML with abn(7) | 60 | TP53 (33%), NF1 (20%), RUNX1 (20%), and DNMT3A (18.3%), DNMT3A (18.3%), ASXL1 (11.7%), TET2 (11.7%), IDH2 (10%), KMT2C (10%), EZH2 (8.3%), and IDH1 (8.3%). | Sig-A, with high cosine similarities to SBS1/SBS5 in COSMIC (0.939) and SBS1/SBSblood in normal blood cells (0.945) | [35] |
Computational Tools/Web Servers/Databases | Description | References |
---|---|---|
FastQc | To assess the quality of sequencing runs | [28,84,86,87,88,89] |
Alfred and Qualimap | To assess the mapping quality | |
Bwa-mem; Bowtie2 | Alignment of raw reads to reference genome | |
STAR and HISAT | Aligners for RNA sequencing data | |
minimap2 | Aligner for mapping long-read sequencing | |
SAMtools (v. 1.3.1), mpileup, and platypus | Manipulation in the SAM/BAM/CRAM format | |
MuTect, VarScan2, SomaticSniper, Strelka, and FreeBayes, SigMA, CHORD, PathAI, AcornHRD, VarDict, qSNP, MuSE, Platypus, and CaVEMan. | Variant calling for single-nucleotide variants (SNVs) and short insertions/deletions (indels) | |
Pindel, DELLY, Meerkat, and LUMPY | Detection of structural variants | |
CNVnator, CNV-Seq, CoNIFER, ExomeCNV, Cnvkit, EXCAVATOR, HMZDelFinder, CLAMMS, WISExome, saasCNV, GSA, QDNAseq, and NxClinical | Detection of copy number variants (CNVs) | |
COSMIC, dbSNP, gnomAD ClinVar VEP ANNOVAR, SnpEff, and Funcotator. | Annotation of variants (SNVs, indels, CNVs) | |
ContEst, ART-DeCO, and Conpair | To assess cross-individual contamination by estimating the probability of contamination based on the allele fraction of homozygous polymorphisms | |
DeTiN | To avoid erroneous filtering of true SNVs | |
High-performance computing cluster, consisting of 5 nodes running the SLURM workload manager | Accelerates analyses by distributing jobs across nodes and ensuring reproducibility by storing sequencing data, genome references, aligner indexes, annotations, genomic databases, and analysis tools in a central location | |
VCFtools NGS-pipe, VariantTools, vcfr, myVCF, SMuRF, Cake, and NeoMutate | Integrated tools filter the false-positive hits and provide a platform for customized variant calling pipelines for research objectives | |
Mutalisk and SigMA | Mutational signatures | |
MutSig2CV, dNdScv, and MutPanning | Identification of cancer driver mutations | |
BRACAnalysisCDx | Detection of germline mutations of the BRCA genes to identify homologous recombination deficiency (HRD) | |
HRDetect | Identifies the presence of homologous recombination repair mechanism mutations | |
GATK-Mutect2, which is based on MuTect and GATK-HaplotypeCaller | To determine the tumor mutational burden (TMB) | |
MANTIS, MSIseq, MSISensor, Msings, and MOSAIC | Microsatellite instability (MSI) | |
CloneFinder, MACHINA, Treeomics, and LICHeE | Tumor heterogeneity | |
Galaxy | Open-source web platform with several analysis tools | |
LOGpc, GENT2, PROGgeneV2, SurvExpress, PRECOG, and Oncomine. | Web servers based on mRNA data for survival analyses | [85] |
cBioPortal and MethSurv | Web servers based on DNA data for prognosis analyses | |
TRGAted and TCPAv3.0 | Web servers based on protein data for survival analyses | |
Catalogue of Somatic Mutations in Cancer (COSMIC), Genomics of Drug Sensitivity in Cancer, The Cancer Genome Atlas (TCGA) data portal, DNA-Mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT), My Cancer Genome Atlas Genetics Oncology, and cBio Cancer Genomics Portal | Cancer-specific databases for clinical interpretation of tumor variants | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vashisht, V.; Vashisht, A.; Mondal, A.K.; Woodall, J.; Kolhe, R. From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology. Curr. Issues Mol. Biol. 2024, 46, 12527-12549. https://doi.org/10.3390/cimb46110744
Vashisht V, Vashisht A, Mondal AK, Woodall J, Kolhe R. From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology. Current Issues in Molecular Biology. 2024; 46(11):12527-12549. https://doi.org/10.3390/cimb46110744
Chicago/Turabian StyleVashisht, Vishakha, Ashutosh Vashisht, Ashis K. Mondal, Jana Woodall, and Ravindra Kolhe. 2024. "From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology" Current Issues in Molecular Biology 46, no. 11: 12527-12549. https://doi.org/10.3390/cimb46110744
APA StyleVashisht, V., Vashisht, A., Mondal, A. K., Woodall, J., & Kolhe, R. (2024). From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology. Current Issues in Molecular Biology, 46(11), 12527-12549. https://doi.org/10.3390/cimb46110744