Impact of Sleeve Gastrectomy on Body Weight and Food Intake Regulation in Diet-Induced Obese Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Obesity Induction
2.3. Sleeve Gastrectomy and Sham Operations
2.4. Glycemia, Insulin, and Leptin Evaluation
2.5. Food Intake
2.6. mRNA Extraction and Real-Time Quantitative PCR (qRT-PCR)
2.7. StatisticalAnalysis
3. Results
3.1. SG Reduces Body Weight, Fasting Glycemia, Insulinemia, and Leptinemia in Diet-Induced Obese Mice
3.2. SG Reduces Food Intake with No Alterations in Hypothalamic Anorexigenic and Orexigenic Genes in Diet-Induced Obese Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Sonnefeld, L.; Rohmann, N.; Geisler, C.; Laudes, M. Is human obesity an inflammatory disease of the hypothalamus? Eur. J. Endocrinol. 2023, 188, R37–R45. [Google Scholar] [CrossRef] [PubMed]
- Timper, K.; Brüning, J.C. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity. Dis. Models Mech. 2017, 10, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Baskin, D.G.; Breininger, J.F.; Schwartz, M.W. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 1999, 48, 828–833. [Google Scholar] [CrossRef]
- Cheung, C.C.; Clifton, D.K.; Steiner, R.A. Proopiomelanocortin Neurons Are Direct Targets for Leptin in the Hypothalamus. Endocrinology 1997, 138, 4489–4492. [Google Scholar] [CrossRef]
- Baskin, D.G.; Wilcox, B.J.; Figlewicz, D.P.; Dorsa, D.M. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 1988, 11, 107–111. [Google Scholar] [CrossRef]
- Morton, G.J.; Cummings, D.E.; Baskin, D.G.; Barsh, G.S.; Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 2006, 443, 289–295. [Google Scholar] [CrossRef]
- Schwartz, M.W.; Woods, S.C.; Porte, D., Jr.; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature 2000, 404, 661–671. [Google Scholar] [CrossRef]
- Thon, M.; Hosoi, T.; Ozawa, K. Possible Integrative Actions of Leptin and Insulin Signaling in the Hypothalamus Targeting Energy Homeostasis. Front. Endocrinol. 2016, 7, 138. [Google Scholar] [CrossRef]
- Roth, A.E.; Thornley, C.J.; Blackstone, R.P. Outcomes in Bariatric and Metabolic Surgery: An Updated 5-Year Review. Curr. Obes. Rep. 2020, 9, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Lee, H.; Kaura, S.; Yip, J.; Sun, H.; Guan, L.; Han, W.; Ding, Y. Effect of Bariatric Surgery on Metabolic Diseases and Underlying Mechanisms. Biomolecules 2021, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, N.; Olatunji, G.; Kokori, E.; Olaniyi, P.; Isarinade, T.; Yusuf, I.A. Recent advances in bariatric surgery: A narrative review of weight loss procedures. Ann. Med. Surg. 2023, 85, 6091–6104. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, H. The evolution of metabolic/bariatric surgery. Obes. Surg. 2014, 24, 1126–1135. [Google Scholar] [CrossRef]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; De Luca, M.; Faria, S.L.; Goodpaster, K.P.S.; Haddad, A.; et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 1345–1356. [Google Scholar] [CrossRef]
- Barkholt, P.; Pedersen, P.J.; Hay-Schmidt, A.; Jelsing, J.; Hansen, H.H.; Vrang, N. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass. Mol. Metab. 2016, 5, 296–304. [Google Scholar] [CrossRef]
- Soares, G.M.; Balbo, S.L.; Bronczek, G.A.; Vettorazzi, J.F.; Marmentini, C.; Zangerolamo, L.; Velloso, L.A.; Carneiro, E.M. Vertical sleeve gastrectomy improves glucose-insulin homeostasis by enhancing β-cell function and survival via FGF15/19. Am. J. Physiol. Endocrinol. Metab. 2024, 326, E134–E147. [Google Scholar] [CrossRef]
- Soares, G.M.; Zangerolamo, L.; Costa-Júnior, J.M.; Vettorazzi, J.F.; Carneiro, E.M.; Saad, S.T.; Boschero, A.C.; Barbosa-Sampaio, H.C. Whole-Body ARHGAP21-Deficiency Improves Energetic Homeostasis in Lean and Obese Mice. Front. Endocrinol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Desmet, L.; Thijs, T.; Mas, R.; Verbeke, K.; Depoortere, I. Time-Restricted Feeding in Mice Prevents the Disruption of the Peripheral Circadian Clocks and Its Metabolic Impact during Chronic Jetlag. Nutrients 2021, 13, 3846. [Google Scholar] [CrossRef]
- Kohsaka, A.; Laposky, A.D.; Ramsey, K.M.; Estrada, C.; Joshu, C.; Kobayashi, Y.; Turek, F.W.; Bass, J. High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice. Cell Metab. 2007, 6, 414–421. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F.A.J.L. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Delgado, R.; Angeles-Castellanos, M.; Saderi, N.; Buijs, R.M.; Escobar, C. Food Intake during the Normal Activity Phase Prevents Obesity and Circadian Desynchrony in a Rat Model of Night Work. Endocrinology 2010, 151, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Nazarians-Armavil, A.; Menchella, J.A.; Belsham, D.D. Cellular Insulin Resistance Disrupts Leptin-Mediated Control of Neuronal Signaling and Transcription. Mol. Endocrinol. 2013, 27, 990–1003. [Google Scholar] [CrossRef]
- Thon, M.; Hosoi, T.; Ozawa, K. Insulin enhanced leptin-induced STAT3 signaling by inducing GRP78. Sci. Rep. 2016, 6, 34312. [Google Scholar] [CrossRef]
- Guthrie, G.; Vonderohe, C.; Burrin, D. Fibroblast growth factor 15/19 expression, regulation, and function: An overview. Mol. Cell. Endocrinol. 2022, 548, 111617. [Google Scholar] [CrossRef]
- Nemati, R.; Lu, J.; Dokpuang, D.; Booth, M.; Plank, L.D.; Murphy, R. Increased Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Correlate with Improvement in Type 2 Diabetes in a Randomized Trial. Obes. Surg. 2018, 28, 2672–2686. [Google Scholar] [CrossRef]
- Bozadjieva-Kramer, N.; Shin, J.H.; Shao, Y.; Gutierrez-Aguilar, R.; Li, Z.; Heppner, K.M.; Chiang, S.; Vargo, S.G.; Granger, K.; Sandoval, D.A.; et al. Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nat. Commun. 2021, 12, 4768. [Google Scholar] [CrossRef]
- Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C.L.; Mcdonald, J.G.; Luo, G.; Jones, S.A.; Goodwin, B.; Richardson, J.A.; et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005, 2, 217–225. [Google Scholar] [CrossRef]
- Zhou, M.; Luo, J.; Chen, M.; Yang, H.; Learned, R.M.; Depaoli, A.M.; Tian, H.; Ling, L. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J. Hepatol. 2017, 66, 1182–1192. [Google Scholar] [CrossRef]
- Matthew, P.J.; Boney-Montoya, J.; Choi, M.; He, T.; Sunny, N.E.; Satapati, S.; Suino-Powell, K.; Xu, H.E.; Gerard, R.D.; Finck, B.N.; et al. FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metab. 2011, 13, 729–738. [Google Scholar] [CrossRef]
- Kir, S.; Beddow, S.A.; Samuel, V.T.; Miller, P.; Previs, S.F.; Suino-Powell, K.; Xu, H.E.; Shulman, G.I.; Kliewer, S.A.; Mangelsdorf, D.J. FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science 2011, 331, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.H.; Choi, E.H.; Lee, H.; Lee, W.; Kim, J.I.; Cho, Y.M. Vertical sleeve gastrectomy induces distinctive transcriptomic responses in liver, fat and muscle. Sci. Rep. 2021, 11, 2310. [Google Scholar] [CrossRef]
- Stefanidis, A.; Lee, C.M.C.; Greaves, E.; Montgomery, M.K.; Arnold, M.; Newn, S.; Budin, A.J.; Lemus, M.B.; Foldi, C.J.; Burton, P.R.; et al. Mechanisms underlying the efficacy of a rodent model of vertical sleeve gastrectomy—A focus on energy expenditure. Mol. Metab. 2023, 73, 101739. [Google Scholar] [CrossRef]
- Marcelin, G.; Jo, Y.H.; Li, X.; Schwartz, G.J.; Zhang, Y.; Dun, N.J.; Lyu, R.M.; Blouet, C.; Chang, J.K.; Chua, S., Jr. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 2013, 3, 19–28. [Google Scholar] [CrossRef]
- Ryan, K.K.; Kohli, R.; Gutierrez-Aguilar, R.; Gaitonde, S.G.; Woods, S.C.; Seeley, R.J. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 2013, 154, 9–15. [Google Scholar] [CrossRef]
- Aponte, Y.; Atasoy, D.; Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 2011, 14, 351–355. [Google Scholar] [CrossRef]
- Krashes, M.J.; Koda, S.; Ye, C.; Rogan, S.C.; Adams, A.C.; Cusher, D.S.; Maratos-Flier, E.; Roth, B.L.; Lowell, B.B. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 2011, 121, 1424–1428. [Google Scholar] [CrossRef]
- Luquet, S.; Perez, F.A.; Hnasko, T.S.; Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005, 310, 683–685. [Google Scholar] [CrossRef]
- Huang, A.; Maier, M.T.; Vagena, E.; Xu, A.W. Modulation of foraging-like behaviors by cholesterol-FGF19 axis. Cell Biosci. 2023, 13, 20. [Google Scholar] [CrossRef]
- Becetti, I.; Singhal, V.; Nimmala, S.; Lee, H.; Lawson, E.A.; Bredella, M.A.; Misra, M. Serum Oxytocin Levels Decrease 12 Months Following Sleeve Gastrectomy and Are Associated with Decreases in Lean Mass. Int. J. Mol. Sci. 2023, 24, 10144. [Google Scholar] [CrossRef]
Gene | Assay | Ref Seq |
---|---|---|
Agrp | Mm.PT.58.31030782.g | NM_007427(2) |
Npy | Mm.PT.58.29444574 | NM_023456(1) |
Pomc | Mm.PT.58.29397398 | NM_008895(1) |
Gapdh | Mm99999915_g1 | NM_008084.2 |
HFD | HFD-SHAM | HFD-SG | |
---|---|---|---|
Body weight (g) | 44.19 ± 0.47 a | 43.51 ± 0.71 a | 38.22 ± 1.31 b |
Fasting glycemia (mg/dL) | 115.0 ± 4.60 a | 122.4 ± 3.48 a | 93.43 ± 4.67 b |
Fasting insulinemia (ng/mL) | 1.77 ± 0.15 a | 1.92 ± 0.27 a | 0.93 ± 0.05 b |
Fasting leptinemia (ng/mL) | 5.86 ± 1.38 a | 6.44 ± 1.51 a | 1.43 ± 0.35 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbo, S.L.; Soares, G.M.; Morari, J.; Felisberto, A.M., Jr.; Vettorazzi, J.F.; Bronczek, G.A.; Bonfleur, M.L.; Carneiro, E.M.; Boschero, A.C.; Velloso, L.A. Impact of Sleeve Gastrectomy on Body Weight and Food Intake Regulation in Diet-Induced Obese Mice. Curr. Issues Mol. Biol. 2024, 46, 12633-12640. https://doi.org/10.3390/cimb46110749
Balbo SL, Soares GM, Morari J, Felisberto AM Jr., Vettorazzi JF, Bronczek GA, Bonfleur ML, Carneiro EM, Boschero AC, Velloso LA. Impact of Sleeve Gastrectomy on Body Weight and Food Intake Regulation in Diet-Induced Obese Mice. Current Issues in Molecular Biology. 2024; 46(11):12633-12640. https://doi.org/10.3390/cimb46110749
Chicago/Turabian StyleBalbo, Sandra Lucinei, Gabriela Moreira Soares, Joseane Morari, Antonio Machado Felisberto, Jr., Jean Franciesco Vettorazzi, Gabriela Alves Bronczek, Maria Lúcia Bonfleur, Everardo Magalhães Carneiro, Antonio Carlos Boschero, and Lício Augusto Velloso. 2024. "Impact of Sleeve Gastrectomy on Body Weight and Food Intake Regulation in Diet-Induced Obese Mice" Current Issues in Molecular Biology 46, no. 11: 12633-12640. https://doi.org/10.3390/cimb46110749
APA StyleBalbo, S. L., Soares, G. M., Morari, J., Felisberto, A. M., Jr., Vettorazzi, J. F., Bronczek, G. A., Bonfleur, M. L., Carneiro, E. M., Boschero, A. C., & Velloso, L. A. (2024). Impact of Sleeve Gastrectomy on Body Weight and Food Intake Regulation in Diet-Induced Obese Mice. Current Issues in Molecular Biology, 46(11), 12633-12640. https://doi.org/10.3390/cimb46110749