Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. The Construction of Recombinant Plasmids and Mutants
2.3. Culture Conditions
2.4. RT-qPCR
2.5. PHA Extraction, Characterization, and Quantification
2.6. Optimization of Fermentation Conditions
2.7. Statistical Analysis
3. Results
3.1. The Interdicting of the Competing Branch Pathway in Glucose Metabolism
3.2. The Inactive of Transcriptional Negative Regulatory Factors in Glucose Metabolism
3.3. The Enhancement of Transcriptional Positive Regulatory Factors in Glucose Metabolism
3.4. Modification of P. putida KT2440 PHA Synthesis Pathway
3.5. PHA Structural Analysis
3.6. Optimization of Fermentation Condition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Symeonides, C.; Brunner, M.; Mulders, Y.; Toshniwal, P.; Cantrell, M.; Mofflin, L.; Dunlop, S. Buy-now-pay-later: Hazards to human and planetary health from plastics production, use and waste. J. Paediatr. Child Health 2021, 57, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, V.; Chatterjee, S. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment—A review. Sci. Total Environ. 2023, 875, 162627. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Choi, S.Y.; Cho, I.J.; Lee, Y.; Kim, Y.-J.; Kim, K.-J.; Lee, S.Y. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. Adv. Mater. 2020, 32, 1907138. [Google Scholar] [CrossRef]
- Li, R.; Chen, Q.; Wang, P.G.; Qi, Q. A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl. Microbiol. Biotechnol. 2007, 75, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ai, M.; Jia, X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front. Bioeng. Biotechnol. 2021, 9, 794331. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Das, D.; Kim, S.C.; Cho, B.-K.; Kalia, V.C.; Lee, J.-K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Tan, D.; Wang, Y.; Tong, Y.; Chen, G.Q. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol. 2021, 39, 953–963. [Google Scholar] [CrossRef]
- Feijoo, P.; Mohanty, A.K.; Rodriguez-Uribe, A.; Gámez-Pérez, J.; Cabedo, L.; Misra, M. Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: Study of the effect of chain extender on the thermal, mechanical and morphological properties. Int. J. Biol. Macromol. 2023, 225, 1291–1305. [Google Scholar] [CrossRef]
- Zytner, P.; Kumar, D.; Elsayed, A.; Mohanty, A.; Ramarao, B.V.; Misra, M. A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass. RSC Sustain. 2023, 1, 2120–2134. [Google Scholar] [CrossRef]
- Li, Z.; Loh, X.J. Water soluble polyhydroxyalkanoates: Future materials for therapeutic applications. Chem. Soc. Rev. 2015, 44, 2865–2879. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.C.; Tan, I.K.P.; Annuar, M.S.M.; Gan, S.N. Thermal behaviour and thermodegradation kinetics of poly(vinyl chloride) plasticized with polymeric and oligomeric medium-chain-length poly(3-hydroxyalkanoates). Polym. Degrad. Stab. 2012, 97, 2118–2127. [Google Scholar] [CrossRef]
- Butt, F.I.; Muhammad, N.; Hamid, A.; Moniruzzaman, M.; Sharif, F. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications—Review. Int. J. Biol. Macromol. 2018, 120, 1294–1305. [Google Scholar] [CrossRef]
- Pavic, A.; Stojanovic, Z.; Pekmezovic, M.; Veljović, Đ.; O’Connor, K.; Malagurski, I.; Nikodinovic-Runic, J. Polyenes in Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Biopolymer Microspheres with Reduced Toxicity and Improved Therapeutic Effect against Candida Infection in Zebrafish Model. Pharmaceutics 2022, 14, 696. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, C.; Zhang, J.; Jin, X.; Sun, S.; Mei, L.; Huang, L. Intracellular Trafficking Network and Autophagy of PHBHHx Nanoparticles and their Implications for Drug Delivery. Sci. Rep. 2019, 9, 9585. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, G.; Zhou, X.R.; Chen, G.-Q. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab. Eng. 2011, 13, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, H.; Liu, Y.; Huo, K.; Wang, S.; Liu, R.; Yang, C. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Int. J. Biol. Macromol. 2021, 191, 608–617. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, X.; Kong, A.; Zhao, Y.; Fan, X.; Ma, T.; Gao, W.; Wang, S.; Yang, C. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Sci. Rep. 2019, 9, 1798. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Zhang, Y.; Zhao, W.; Guo, H.; Wang, S.; Xia, W.; Wang, S.; Liu, R.; Yang, C. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Int. J. Biol. Macromol. 2022, 209, 117–124. [Google Scholar] [CrossRef]
- Poblete-Castro, I.; Binger, D.; Rodrigues, A.; Becker, J.; Martins dos Santos, V.A.P.; Wittmann, C. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab. Eng. 2013, 15, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Borrero-de Acuña, J.M.; Bielecka, A.; Häussler, S.; Schobert, M.; Jahn, M.; Wittmann, C.; Jahn, D.; Poblete-Castro, I. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb. Cell Factories 2014, 13, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Gong, T.; Liu, X.; Fan, X.; Huang, R.; Ma, T.; Wang, S.; Gao, W.; Yang, C. Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Appl. Microbiol. Biotechnol. 2019, 103, 1713–1724. [Google Scholar] [CrossRef]
- Raho, S.; Carofiglio, V.E.; Montemurro, M.; Miceli, V.; Centrone, D.; Stufano, P.; Schioppa, M.; Pontonio, E.; Rizzello, C.G. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Haloferax mediterranei Fermentation. Foods 2020, 9, 1459. [Google Scholar] [CrossRef]
- Mezzina, M.P.; Manoli, M.T.; Prieto, M.A.; Nikel, P.I. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol. J. 2021, 16, e2000165. [Google Scholar] [CrossRef]
- del Castillo, T.; Duque, E.; Ramos, J.L. A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J. Bacteriol. 2008, 190, 2331–2339. [Google Scholar] [CrossRef]
- Braga, R.; Hecquet, L.; Blonski, C. Slow-binding inhibition of 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase. Bioorg. Med. Chem. 2004, 12, 2965–2972. [Google Scholar] [CrossRef]
- Udaondo, Z.; Ramos, J.L.; Segura, A.; Krell, T.; Daddaoua, A. Regulation of carbohydrate degradation pathways in Pseudomonas involves a versatile set of transcriptional regulators. Microb. Biotechnol. 2018, 11, 442–454. [Google Scholar] [CrossRef]
- Choi, K.R.; Lee, S.Y. Protocols for RecET-based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Microb. Biotechnol. 2020, 13, 199–209. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Q.; Jiang, Y.; Wen, Z.; Yang, L.; Wu, J.; Yang, S. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb. Cell Fact. 2018, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- de Eugenio, L.I.; Galán, B.; Escapa, I.F.; Maestro, B.; Sanz, J.M.; García, J.L.; Prieto, M.A. The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. Environ. Microbiol. 2010, 12, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, I. Global Plastic Production 1950–2019. Statistia [Internet] (2021). Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 2 June 2021).
- Gardiner, B. The Plastics Pipeline: A Surge of New Production Is on the Way. Yale Environment 360 [Internet] (2019). Available online: https://e360.yale.edu/features/the-plastics-pipeline-a-surge-of-new-production-is-on-the-way (accessed on 13 May 2020).
- Zytner, P.; Pal, A.K.; Wu, F.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. Morphology and Performance Relationship Studies on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(butylene adipate-co-terephthalate)-Based Biodegradable Blends. ACS Omega 2023, 8, 1946–1956. [Google Scholar] [CrossRef] [PubMed]
- Laird, K. Bioplastics: Promising But Pricey. Plastics News [Internet]. 2019. Available online: https://www.plasticsnews.com/article/20190205/NEWS/190209956/bioplastics-promising-but-pricey (accessed on 27 May 2020).
- Hahn, T.; Alzate, M.O.; Leonhardt, S.; Tamang, P.; Zibek, S. Current trends in medium-chain-length polyhydroxyalkanoates: Microbial production, purification, and characterization. Eng. Life Sci. 2024, 24, 2300211. [Google Scholar] [CrossRef]
- Choonut, A.; Prasertsan, P.; Klomklao, S.; Sangkharak, K. Study on mcl-PHA Production by Novel Thermotolerant Gram-Positive Isolate. J. Polym. Environ. 2020, 28, 2410–2421. [Google Scholar] [CrossRef]
- Allen, A.D.; Daley, P.; Ayorinde, F.O.; Gugssa, A.; Anderson, W.A.; Eribo, B.E. Characterization of medium chain length (R)-3-hydroxycarboxylic acids produced by Streptomyces sp. JM3 and the evaluation of their antimicrobial properties. World J. Microbiol. Biotechnol. 2012, 28, 2791–2800. [Google Scholar] [CrossRef]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Sangkharak, K.; Paichid, N.; Yunu, T.; Klomklao, S.; Prasertsan, P. Utilisation of tuna condensate waste from the canning industry as a novel substrate for polyhydroxyalkanoate production. Biomass Convers. Biorefinery 2021, 11, 2053–2064. [Google Scholar] [CrossRef]
- Tufail, S.; Munir, S.; Jamil, N. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz. J. Microbiol. 2017, 48, 629–636. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wong, H.H.; Choi, J.; Lee, S.H.; Lee, S.C.; Han, C.S. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 2000, 68, 466–470. [Google Scholar] [CrossRef]
- Sun, Z.; Ramsay, J.A.; Guay, M.; Ramsay, B.A. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 2007, 74, 69–77. [Google Scholar] [CrossRef]
- Mohapatra, S.; Mohanta, P.R.; Sarkar, B.; Daware, A.; Kumar, C.; Samantaray, D.P. Production of Polyhydroxyalkanoates (PHAs) by Bacillus Strain Isolated from Waste Water and Its Biochemical Characterization. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 87, 459–466. [Google Scholar] [CrossRef]
- Pereira, J.R.; Araújo, D.; Marques, A.C.; Neves, L.A.; Grandfils, C.; Sevrin, C.; Alves, V.D.; Fortunato, E.; Reis, M.A.M.; Freitas, F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int. J. Biol. Macromol. 2019, 122, 1144–1151. [Google Scholar] [CrossRef]
- Nikel, P.I.; Chavarría, M.; Fuhrer, T.; Sauer, U.; de Lorenzo, V. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. J. Biol. Chem. 2015, 290, 25920–25932. [Google Scholar] [CrossRef]
- del Castillo, T.; Ramos, J.L.; Rodríguez-Herva, J.J.; Fuhrer, T.; Sauer, U.; Duque, E. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: Genomic and flux analysis. J. Bacteriol. 2007, 189, 5142–5152. [Google Scholar] [CrossRef]
- Biran, N.; Sr, Y.; Maeda, T.; Zakaria, M.R.; Yee, L.-N.; Hassan, M. Triple knockout of frdC gltA and pta genes enhanced PHA production in escherichia coli. Asia-Pac. J. Mol. Biol. Biotechnol. 2018, 26, 11–18. [Google Scholar] [CrossRef]
- Daddaoua, A.; Corral-Lugo, A.; Ramos, J.L.; Krell, T. Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ. Microbiol. 2017, 19, 3721–3733. [Google Scholar] [CrossRef]
- Daddaoua, A.; Krell, T.; Ramos, J.L. Regulation of glucose metabolism in Pseudomonas: The phosphorylative branch and entner-doudoroff enzymes are regulated by a repressor containing a sugar isomerase domain. J. Biol. Chem. 2009, 284, 21360–21368. [Google Scholar] [CrossRef]
- Yu, S.; Plan, M.R.; Winter, G.; Krömer, J.O. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para-Hydroxy Benzoic Acid. Front. Bioeng. Biotechnol. 2016, 4, 90. [Google Scholar] [CrossRef] [PubMed]
- Sudarsan, S.; Dethlefsen, S.; Blank, L.M.; Siemann-Herzberg, M.; Schmid, A. The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Appl. Environ. Microbiol. 2014, 80, 5292–5303. [Google Scholar] [CrossRef] [PubMed]
- Piepenbreier, H.; Fritz, G.; Gebhard, S. Transporters as information processors in bacterial signalling pathways. Mol. Microbiol. 2017, 104, 1–15. [Google Scholar] [CrossRef]
- Xu, C.; Cao, Q.; Lan, L. Glucose-Binding of Periplasmic Protein GltB Activates GtrS-GltR Two-Component System in Pseudomonas aeruginosa. Microorganisms 2021, 9, 447. [Google Scholar] [CrossRef]
- Maclean, H.; Sun, Z.; Ramsay, J.; Ramsay, B. Decaying exponential feeding of nonanoic acid for the production of medium-chain-length poly (3-hydroxyalkanoates) by Pseudomonas putida KT2440. Can. J. Chem. 2011, 86, 564–569. [Google Scholar] [CrossRef]
Strains | Description | References |
---|---|---|
E. coli | ||
DH5α | supE44, ΔlacU169 (φ80 lacZΔM15), hsdR17 (rk-mk+), recA1, endA1, thi1, gyrA, relA | Tiangen |
S17-1 | RP4-2(Km::Tn7,Tc::Mu-1), pro-82, LAMpir, recA1, endA1, thiE1, hsdR17, creC510 | Tiangen |
P. putida | ||
QSRZ6 | KT2440∆hsdR-∆phaZ | Lab stock |
QSRZ601 | QSRZ6∆gcd | This study |
QSRZ602 | QSRZ6∆gltA | This study |
QSRZ603 | QSRZ6∆gcd-∆gltA | This study |
QSRZ604 | QSRZ6∆hexR | This study |
QSRZ605 | QSRZ6∆gcd-∆hexR | This study |
QSRZ606 | QSRZ6∆gltA-∆hexR | This study |
QSRZ607 | QSRZ6 ∆gcd-∆gltA-∆hexR | This study |
QSRZ608 | QSRZ605::P17-gltB | This study |
QSRZ609 | QSRZ605::P33-gltB | This study |
QSRZ610 | QSRZ605::P33-gltB::P33-phaD | This study |
Plasmids | ||
pK18mobsacB | Mobilizable vector, KmR, sacB | Lab stock |
pK18-∆gcd | A derivative of pK18mobsacB, harboring homology arms of gcd | This study |
pK18-∆gltA | A derivative of pK18mobsacB, harboring homology arms of gltA | This study |
pK18-∆hexR | A derivative of pK18mobsacB, harboring homology arms of hexR | This study |
pK18-P17-gltB | A derivative of pK18mobsacB, harboring P17-gltB fragment and homology arms | This study |
pK18-P33-gltB | A derivative of pK18mobsacB, harboring P33-gltB fragment and homology arms | This study |
pK18-P33-phaD-∆hexR | A derivative of pK18mobsacB, harboring P33-gltB fragment and homology arms of hexR | This study |
Strains | 3HHx (%) | 3HO (%) | 3HD (%) | 3HDD (%) | 3HTD (%) |
---|---|---|---|---|---|
QSRZ6 | 0.4 ± 0.1 | 11.4 ± 0.0 | 73.0 ± 0.7 | 7.3 ± 0.4 | 7.9 ± 0.4 |
QSRZ601 | 0.2 ± 0.4 | 10.0 ± 0.2 | 74.7 ± 1.2 | 7.4 ± 0.2 | 7.7 ± 0.5 |
QSRZ602 | 0.1 ± 0.1 | 9.6 ± 0.4 | 73.1 ± 0.1 | 9.0 ± 0.1 | 8.2 ± 0.3 |
QSRZ603 | 0.6 ± 0.1 | 12.8 ± 0.1 | 66.3 ± 0.7 | 10.1 ± 0.4 | 10.2 ± 0.1 |
QSRZ604 | 0.5 ± 0.4 | 11.9 ± 2.4 | 70.0 ± 6.8 | 8.5 ± 2.0 | 9.2 ± 2.2 |
QSRZ605 | 0.7 ± 0.2 | 13.3 ± 0.9 | 71.1 ± 3.4 | 7.6 ± 1.3 | 7.2 ± 1.1 |
QSRZ606 | 0.9 ± 0.3 | 13.2 ± 1.5 | 71.4 ± 4.8 | 7.0 ± 1.4 | 7.6 ± 1.6 |
QSRZ607 | 0.6 ± 0.3 | 13.3 ± 1.3 | 70.1 ± 4.8 | 8.1 ± 1.7 | 8.0 ± 1.5 |
QSRZ608 | NA | 14.5 ± 0.2 | 71.4 ± 0.3 | 6.7 ± 0.2 | 7.5 ± 0.1 |
QSRZ609 | 0.5 ± 0.4 | 14.8 ± 0.2 | 70.7 ± 0.3 | 6.6 ± 0.2 | 7.4 ± 0.1 |
QSRZ610 | NA | 10.4 ± 0.3 | 72.9 ± 0.5 | 9.0 ± 0.2 | 7.7 ± 0.2 |
QSRZ611 | NA | 14.2 ± 0.2 | 71.5 ± 0.5 | 7.6 ± 0.2 | 6.8 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Zhai, K.; Li, Y.; Lv, Z.; Zhao, M.; Gan, T.; Ma, Y. Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida. Curr. Issues Mol. Biol. 2024, 46, 12784-12799. https://doi.org/10.3390/cimb46110761
Dong Y, Zhai K, Li Y, Lv Z, Zhao M, Gan T, Ma Y. Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida. Current Issues in Molecular Biology. 2024; 46(11):12784-12799. https://doi.org/10.3390/cimb46110761
Chicago/Turabian StyleDong, Yue, Keyao Zhai, Yatao Li, Zhen Lv, Mengyao Zhao, Tian Gan, and Yuchao Ma. 2024. "Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida" Current Issues in Molecular Biology 46, no. 11: 12784-12799. https://doi.org/10.3390/cimb46110761
APA StyleDong, Y., Zhai, K., Li, Y., Lv, Z., Zhao, M., Gan, T., & Ma, Y. (2024). Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida. Current Issues in Molecular Biology, 46(11), 12784-12799. https://doi.org/10.3390/cimb46110761