Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis
Abstract
:1. Introduction
2. Methods and Materials
2.1. Operation
2.2. MetaXplore Sections
2.2.1. Data Import and Overview
2.2.2. Alpha Diversity
2.2.3. Beta Diversity
2.2.4. Relative Abundance
2.2.5. Differential Abundance
2.2.6. Core Microbiome
2.2.7. Biomarker Discovery
3. Results
3.1. Dataset
3.2. Alpha Diversity Changes in Response to Diet
3.3. Dynamic in Bacterial Diversity among Diets and Gender
3.4. Taxonomic Composition in Relation to Rearing Diet
3.5. Core Microbiome among Treated and Untreated Samples
3.6. Discriminant Taxa between Treated and Untreated Samples
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konopka, A.; Lindemann, S.; Fredrickson, J. Dynamics in Microbial Communities: Unraveling Mechanisms to Identify Principles. ISME J. 2015, 9, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.; Osman, O.A.; Bertilsson, S.; Eiler, A. Microbial Community Composition and Diversity via 16S rRNA Gene Amplicons: Evaluating the Illumina Platform. PLoS ONE 2015, 10, e0116955. [Google Scholar] [CrossRef]
- Matsuo, Y.; Komiya, S.; Yasumizu, Y.; Yasuoka, Y.; Mizushima, K.; Takagi, T.; Kryukov, K.; Fukuda, A.; Morimoto, Y.; Naito, Y.; et al. Full-Length 16S rRNA Gene Amplicon Analysis of Human Gut Microbiota Using MinIONTM Nanopore Sequencing Confers Species-Level Resolution. BMC Microbiol. 2021, 21, 35. [Google Scholar] [CrossRef]
- Kracmarova, M.; Karpiskova, J.; Uhlik, O.; Strejcek, M.; Szakova, J.; Balik, J.; Demnerova, K.; Stiborova, H. Microbial Communities in Soils and Endosphere of Solanum tuberosum L. and Their Response to Long-Term Fertilization. Microorganisms 2020, 8, 1377. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Edgar, R. Usearch; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2010.
- Chen, J.; Zhang, X.; Zhou, H. GUniFrac: Generalized UniFrac Istances, Distance-Based Multivariate Methods and Feature-Based Univariate Methods for Microbiome Data Analysis. 2023. Available online: https://CRAN.R-project.org/package=GUniFrac (accessed on 12 May 2024).
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R Language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P. VEGAN, A Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Whittaker, R.H. Evolution and Measurement of Species Diversity. TAXON 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Bunge, J.; Willis, A.; Walsh, F. Estimating the Number of Species in Microbial Diversity Studies. Annu. Rev. Stat. Its Appl. 2014, 1, 427–445. [Google Scholar] [CrossRef]
- Magurran, A.E.; McGill, B.J.; Magurran, A.E.; McGill, B.J. (Eds.) Biological Diversity: Frontiers in Measurement and Assessment; Oxford University Press: Oxford, NY, USA, 2010; ISBN 978-0-19-958067-5. [Google Scholar]
- Herrmann, B.; Cerbule, K.; Brčić, J.; Grimaldo, E.; Geoffroy, M.; Daase, M.; Berge, J. Accounting for Uncertainties in Biodiversity Estimations: A New Methodology and Its Application to the Mesopelagic Sound Scattering Layer of the High Arctic. Front. Ecol. Evol. 2022, 10, 775759. [Google Scholar] [CrossRef]
- Hurlbert, S.H. The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology 1971, 52, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Markin, A.; Anderson, T.K.; Eulenstein, O. Phylogenetic Diversity Statistics for All Clades in a Phylogeny. Bioinformatics 2023, 39, i177–i184. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.T.; Jolley-Rogers, G.; Mishler, B.D.; Thornhill, A.H. Phylogenetic Diversity Is a Better Measure of Biodiversity than Taxon Counting. J. Syst. Evol. 2018, 56, 663–667. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Knight, R. Species Divergence and the Measurement of Microbial Diversity. FEMS Microbiol. Rev. 2008, 32, 557. [Google Scholar] [CrossRef]
- Su, X. Elucidating the Beta-Diversity of the Microbiome: From Global Alignment to Local Alignment. mSystems 2021, 6, e00363-21. [Google Scholar] [CrossRef]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.-I.; McDonald, D.; et al. Best Practices for Analysing Microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar] [CrossRef]
- Hamady, M.; Lozupone, C.; Knight, R. Fast UniFrac: Facilitating High-Throughput Phylogenetic Analyses of Microbial Communities Including Analysis of Pyrosequencing and PhyloChip Data. ISME J. 2010, 4, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel Test in the Face of Heterogeneous Dispersions: What Null Hypothesis Are You Testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome Differential Abundance Methods Produce Different Results across 38 Datasets. Nat. Commun. 2022, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef] [PubMed]
- Bourgon, R.; Gentleman, R.; Huber, W. Independent Filtering Increases Detection Power for High-Throughput Experiments. Proc. Natl. Acad. Sci. USA 2010, 107, 9546–9551. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Sun, X.; Smirnova, E. Effects of Rare Microbiome Taxa Filtering on Statistical Analysis. Front. Microbiol. 2021, 11, 607325. [Google Scholar] [CrossRef] [PubMed]
- Custer, G.F.; Gans, M.; van Diepen, L.T.A.; Dini-Andreote, F.; Buerkle, C.A. Comparative Analysis of Core Microbiome Assignments: Implications for Ecological Synthesis. mSystems 2023, 8, e01066-22. [Google Scholar] [CrossRef] [PubMed]
- Leis, M.L.; Costa, M.O. Initial Description of the Core Ocular Surface Microbiome in Dogs: Bacterial Community Diversity and Composition in a Defined Canine Population. Vet. Ophthalmol. 2019, 22, 337–344. [Google Scholar] [CrossRef]
- Neu, A.T.; Allen, E.E.; Roy, K. Defining and Quantifying the Core Microbiome: Challenges and Prospects. Proc. Natl. Acad. Sci. USA 2021, 118, e2104429118. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhan, L.; Tang, W.; Wang, Q.; Dai, Z.; Zhou, L.; Feng, T.; Chen, M.; Wu, T.; Hu, E.; et al. MicrobiotaProcess: A Comprehensive R Package for Deep Mining Microbiome. The Innovation 2023, 4, 100388. [Google Scholar] [CrossRef] [PubMed]
- Bel Mokhtar, N.; Catalá-Oltra, M.; Stathopoulou, P.; Asimakis, E.; Remmal, I.; Remmas, N.; Maurady, A.; Britel, M.R.; García de Oteyza, J.; Tsiamis, G.; et al. Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, Ceratitis Capitata. Front. Microbiol. 2022, 13, 919760. [Google Scholar] [CrossRef]
- Augustinos, A.A.; Santos-Garcia, D.; Dionyssopoulou, E.; Moreira, M.; Papapanagiotou, A.; Scarvelakis, M.; Doudoumis, V.; Ramos, S.; Aguiar, A.F.; Borges, P.A.V.; et al. Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled? PLoS ONE 2011, 6, e28695. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Doudoumis, V.; Blow, F.; Saridaki, A.; Augustinos, A.; Dyer, N.A.; Goodhead, I.; Solano, P.; Rayaisse, J.-B.; Takac, P.; Mekonnen, S.; et al. Challenging the Wigglesworthia, Sodalis, Wolbachia Symbiosis Dogma in Tsetse Flies: Spiroplasma Is Present in Both Laboratory and Natural Populations. Sci. Rep. 2017, 7, 4699. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B.L.; Rio, R.V.M.; Aksoy, S. Microbe Profile: Wigglesworthia Glossinidia: The Tsetse Fly’s Significant Other. Microbiology 2022, 168, 001242. [Google Scholar] [CrossRef]
- Doudoumis, V.; Augustinos, A.; Saridaki, A.; Parker, A.; Abd-Alla, A.M.M.; Bourtzis, K.; Tsiamis, G. Different Laboratory Populations Similar Bacterial Profile? The Case of Glossina Palpalis Gambiensis. BMC Microbiol. 2018, 18, 148. [Google Scholar] [CrossRef]
OTUs | Phylum | Class | Genus | T/BVit | T/Van | T/Yeast | Untreated |
---|---|---|---|---|---|---|---|
Otu1 | p:Proteobacteria | c:Gammaproteobacteria | g:Sodalis | 1 | 1 | 1 | 1 |
Otu2 | p:Bacteroidota | c:Bacteroidia | g:Empedobacter | 1 | 1 | 1 | 1 |
Otu6 | p:Proteobacteria | c:Alphaproteobacteria | g:Wolbachia | 1 | 1 | 1 | 1 |
Otu7 | p:Proteobacteria | c:Gammaproteobacteria | g:Comamonas | 1 | 1 | 1 | 0 |
Otu11 | p:Proteobacteria | c:Gammaproteobacteria | g:Acinetobacter | 1 | 0 | 1 | 0 |
Otu15 | p:Firmicutes | c:Bacilli | g:Bacillus | 1 | 0 | 1 | 0 |
Otu3 | p:Proteobacteria | c:Alphaproteobacteria | g:Brevundimonas | 1 | 0 | 1 | 0 |
Otu4 | p:Proteobacteria | c:Gammaproteobacteria | g:Legionella | 0 | 1 | 1 | 0 |
Otu19 | p:Actinobacteriota | c:Actinobacteria | g:Microbacterium | 0 | 0 | 1 | 0 |
Otu22 | p:Proteobacteria | c:Alphaproteobacteria | g:Sphingomonas | 0 | 0 | 1 | 0 |
Otu23 | p:Proteobacteria | c:Gammaproteobacteria | g:Acidovorax | 0 | 0 | 1 | 0 |
Otu26 | p:Proteobacteria | c:Gammaproteobacteria | g:Cupriavidus | 0 | 0 | 1 | 0 |
Otu27 | p:Deinococcota | c:Deinococci | g:Meiothermus | 0 | 0 | 1 | 0 |
Otu991 | p:Proteobacteria | c:Gammaproteobacteria | g:Acinetobacter | 0 | 0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bel Mokhtar, N.; Asimakis, E.; Galiatsatos, I.; Maurady, A.; Stathopoulou, P.; Tsiamis, G. Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis. Curr. Issues Mol. Biol. 2024, 46, 4803-4814. https://doi.org/10.3390/cimb46050289
Bel Mokhtar N, Asimakis E, Galiatsatos I, Maurady A, Stathopoulou P, Tsiamis G. Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis. Current Issues in Molecular Biology. 2024; 46(5):4803-4814. https://doi.org/10.3390/cimb46050289
Chicago/Turabian StyleBel Mokhtar, Naima, Elias Asimakis, Ioannis Galiatsatos, Amal Maurady, Panagiota Stathopoulou, and George Tsiamis. 2024. "Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis" Current Issues in Molecular Biology 46, no. 5: 4803-4814. https://doi.org/10.3390/cimb46050289
APA StyleBel Mokhtar, N., Asimakis, E., Galiatsatos, I., Maurady, A., Stathopoulou, P., & Tsiamis, G. (2024). Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis. Current Issues in Molecular Biology, 46(5), 4803-4814. https://doi.org/10.3390/cimb46050289