Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Mining of Human Isolates and Sequence Alignment
2.2. Conserved Domain Analysis
2.3. Protein Structural Modeling and Stability Analysis
2.4. Data Visualization and Statistical Analysis
3. Results
3.1. Global Variation in nsp7 and nsp8 Protein Sequences
3.2. Predicted Protein Stability of the Most Frequently Occurring Protein Variants
3.3. Mutation Effects on Critical Amino Acid Positions of nsp7 and nsp8
3.4. Comparison of Bio-Chemoinformatic Calculations and Predictions with Wet Lab Experimental Results
3.5. Individual Amino Acid Residue Contributions to Protein Complex Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell Entry Mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Academy of Hirudotherapy St.-Petersburg Russia; Ai, K. Pandemic “COVID-19—Postcovid Syndrome”: A System Method of Leeching Is a New and Effective Treatment. J. Virol. Res. Rep. 2023, 4, 1–12. [Google Scholar] [CrossRef]
- Bisen, A.C.; Agrawal, S.; Sanap, S.N.; Ravi Kumar, H.G.; Kumar, N.; Gupta, R.; Bhatta, R.S. COVID-19 Retreats and World Recovers: A Silver Lining in the Dark Cloud. Health Care Sci. 2023, 2, 264–285. [Google Scholar] [CrossRef]
- Pollard, C.A.; Morran, M.P.; Nestor-Kalinoski, A.L. The COVID-19 Pandemic: A Global Health Crisis. Physiol. Genom. 2020, 52, 549–557. [Google Scholar] [CrossRef]
- Veljanoska, F.; Mazahrih, B. The Impact of COVID-19 on FDI. Int. J. Bus. Perform. Manag. 2023, 24, 315–343. [Google Scholar] [CrossRef]
- Schotte, S.; Zizzamia, R. The Livelihood Impacts of COVID-19 in Urban South Africa: A View from below. Soc. Indic. Res. 2023, 165, 1–30. [Google Scholar] [CrossRef]
- Peng, Q.; Peng, R.; Yuan, B.; Zhao, J.; Wang, M.; Wang, X.; Wang, Q.; Sun, Y.; Fan, Z.; Qi, J.; et al. Structural and Biochemical Characterization of the Nsp12-Nsp7-Nsp8 Core Polymerase Complex from SARS-CoV-2. Cell Rep. 2020, 31, 107774. [Google Scholar] [CrossRef]
- Faisal, H.M.N.; Katti, K.S.; Katti, D.R. Differences in Interactions Within Viral Replication Complexes of SARS-CoV-2 (COVID-19) and SARS-CoV Coronaviruses Control RNA Replication Ability. JOM 2021, 73, 1684–1695. [Google Scholar] [CrossRef]
- Reshamwala, S.M.S.; Likhite, V.; Degani, M.S.; Deb, S.S.; Noronha, S.B. Mutations in SARS-CoV-2 Nsp7 and Nsp8 Proteins and Their Predicted Impact on Replication/Transcription Complex Structure. J. Med. Virol. 2021, 93, 4616–4619. [Google Scholar] [CrossRef] [PubMed]
- Biswal, M.; Diggs, S.; Xu, D.; Khudaverdyan, N.; Lu, J.; Fang, J.; Blaha, G.; Hai, R.; Song, J. Two Conserved Oligomer Interfaces of NSP7 and NSP8 Underpin the Dynamic Assembly of SARS-CoV-2 RdRP. Nucleic Acids Res. 2021, 49, 5956–5966. [Google Scholar] [CrossRef] [PubMed]
- Sarma, H.; Jamir, E.; Sastry, G.N. Protein-Protein Interaction of RdRp with Its Co-Factor NSP8 and NSP7 to Decipher the Interface Hotspot Residues for Drug Targeting: A Comparison between SARS-CoV-2 and SARS-CoV. J. Mol. Struct. 2022, 1257, 132602. [Google Scholar] [CrossRef] [PubMed]
- Te Velthuis, A.J.W.; Arnold, J.J.; Cameron, C.E.; Van Den Worm, S.H.E.; Snijder, E.J. The RNA Polymerase Activity of SARS-Coronavirus Nsp12 Is Primer Dependent. Nucleic Acids Res. 2010, 38, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-Dependent RNA Polymerase from COVID-19 Virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.P.K.; Dangerfield, T.L.; Taylor, D.W.; Johnson, K.A. Remdesivir Is a Delayed Translocation Inhibitor of SARS-CoV-2 Replication. Mol. Cell 2021, 81, 1548–1552.e4. [Google Scholar] [CrossRef] [PubMed]
- Machitani, M.; Takei, J.; Kaneko, M.K.; Ueki, S.; Ohashi, H.; Watashi, K.; Kato, Y.; Masutomi, K. Development of Novel Monoclonal Antibodies against Nsp12 of SARS-CoV-2. Virol. J. 2022, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Hartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The Molecular Virology of Coronaviruses. J. Biol. Chem. 2020, 295, 12910–12934. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, F.K. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2 or n-COV-19), the Cause of COVID-19. Protein J. 2020, 39, 198–216. [Google Scholar] [CrossRef]
- Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV Nsp12 Polymerase Bound to Nsp7 and Nsp8 Co-Factors. Nat. Commun. 2019, 10, 2342. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; He, J.; Chen, C.; Su, D. Nonstructural Protein 7 and 8 Complexes of SARS-CoV-2. Protein Sci. 2021, 30, 873–881. [Google Scholar] [CrossRef]
- Anderson, T.K.; Hoferle, P.J.; Chojnacki, K.J.; Lee, K.W.; Coon, J.J.; Kirchdoerfer, R.N. An Alphacoronavirus Polymerase Structure Reveals Conserved Replication Factor Functions. Nucleic Acids Res. 2024, gkae153. [Google Scholar] [CrossRef]
- Subissi, L.; Posthuma, C.C.; Collet, A.; Zevenhoven-Dobbe, J.C.; Gorbalenya, A.E.; Decroly, E.; Snijder, E.J.; Canard, B.; Imbert, I. One Severe Acute Respiratory Syndrome Coronavirus Protein Complex Integrates Processive RNA Polymerase and Exonuclease Activities. Proc. Natl. Acad. Sci. USA 2014, 111, E3900–E3909. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.H.R.; Saher, S.; Parveen, R.; Khan, W.; Khan, I.A.; Ahmad, S. Role of Gut Microbiota Metabolism and Biotransformation on Dietary Natural Products to Human Health Implications with Special Reference to Biochemoinformatics Approach. J. Tradit. Complement. Med. 2023, 13, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Orton, R.J.; Gu, Q.; Hughes, J.; Maabar, M.; Modha, S.; Vattipally, S.B.; Wilkie, G.S. Bioinformatics Tools for Analysing Viral Genomic Data: -EN- -FR- Des Outils Bio-Informatiques Pour l’analyse Des Données de Génomique Virale -ES- Herramientas de Bioinformática Para Analizar Datos de Genómica Vírica. Rev. Sci. Tech. OIE 2016, 35, 271–285. [Google Scholar] [CrossRef]
- Murillo, J.; Villegas, L.M.; Ulloa-Murillo, L.M.; Rodríguez, A.R. Recent Trends on Omics and Bioinformatics Approaches to Study SARS-CoV-2: A Bibliometric Analysis and Mini-Review. Comput. Biol. Med. 2021, 128, 104162. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine Learning in Chemoinformatics and Drug Discovery. Drug Discov. Today 2018, 23, 1538–1546. [Google Scholar] [CrossRef]
- Raslan, M.A.; Raslan, S.A.; Shehata, E.M.; Mahmoud, A.S.; Sabri, N.A. Advances in the Applications of Bioinformatics and Chemoinformatics. Pharmaceuticals 2023, 16, 1050. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Song, Y.; DiMaio, F.; Wang, R.Y.-R.; Kim, D.; Miles, C.; Brunette, T.; Thompson, J.; Baker, D. High-Resolution Comparative Modeling with RosettaCM. Structure 2013, 21, 1735–1742. [Google Scholar] [CrossRef]
- Yan, L.; Huang, Y.; Ge, J.; Liu, Z.; Lu, P.; Huang, B.; Gao, S.; Wang, J.; Tan, L.; Ye, S.; et al. A Mechanism for SARS-CoV-2 RNA Capping and Its Inhibition by Nucleotide Analog Inhibitors. Cell 2022, 185, 4347–4360.e17. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for Structure Building and Analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Pan, Q.; Pires, D.E.V.; Rodrigues, C.H.M.; Ascher, D.B. DDMut: Predicting Effects of Mutations on Protein Stability Using Deep Learning. Nucleic Acids Res. 2023, 51, W122–W128. [Google Scholar] [CrossRef]
- Edmund, E.; Kamuzora, M.; Muhogora, W.; Ngoya, P.; Muhulo, A.; Amirali, A.; Makoba, A.; Ngoye, W.; Ngaile, J.; Majatta, S.; et al. Radiation Dose to Breast during Digital Mammography in Tanzania. Radiat. Prot. Dosimetry 2024, ncad316. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, Y.; Li, M.; Zhao, L.; Wang, D.; Tian, J.; Bai, X.; Ci, Y.; Wu, S.; Wang, F.; et al. Evolution and Extensive Reassortment of H5 Influenza Viruses Isolated from Wild Birds in China over the Past Decade. Emerg. Microbes Infect. 2020, 9, 1793–1803. [Google Scholar] [CrossRef]
- Neumann-Haefelin, C. HLA-B27-Mediated Protection in HIV and Hepatitis C Virus Infection and Pathogenesis in Spondyloarthritis: Two Sides of the Same Coin? Curr. Opin. Rheumatol. 2013, 25, 426–433. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Li, Y.; Zeng, Y.; Wang, F.; Cheng, Z.; Duan, H.; Pan, G.; Yang, S.; Chen, Y.; et al. IDH1 Mutation Impairs Antiviral Response and Potentiates Oncolytic Virotherapy in Glioma. Nat. Commun. 2023, 14, 6781. [Google Scholar] [CrossRef]
- Bailey, A.C.; Fisher, M. Current Use of Antiretroviral Treatment. Br. Med. Bull. 2008, 87, 175–192. [Google Scholar] [CrossRef]
- Abbasian, M.H.; Mahmanzar, M.; Rahimian, K.; Mahdavi, B.; Tokhanbigli, S.; Moradi, B.; Sisakht, M.M.; Deng, Y. Global Landscape of SARS-CoV-2 Mutations and Conserved Regions. J. Transl. Med. 2023, 21, 152. [Google Scholar] [CrossRef]
- Singer, J.; Thomson, E.; Hughes, J.; Aranday-Cortes, E.; McLauchlan, J.; Da Silva Filipe, A.; Tong, L.; Manso, C.; Gifford, R.; Robertson, D.; et al. Interpreting Viral Deep Sequencing Data with GLUE. Viruses 2019, 11, 323. [Google Scholar] [CrossRef]
- Tian, L.; Shen, X.; Murphy, R.W.; Shen, Y. The Adaptation of Codon Usage of +ssRNA Viruses to Their Hosts. Infect. Genet. Evol. 2018, 63, 175–179. [Google Scholar] [CrossRef]
- Cristina, J.; Fajardo, A.; Soñora, M.; Moratorio, G.; Musto, H. A Detailed Comparative Analysis of Codon Usage Bias in Zika Virus. Virus Res. 2016, 223, 147–152. [Google Scholar] [CrossRef]
- Aksamentov, I.; Roemer, C.; Hodcroft, E.; Neher, R. Nextclade: Clade Assignment, Mutation Calling and Quality Control for Viral Genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Park, D.; Hahn, Y. Rapid Protein Sequence Evolution via Compensatory Frameshift Is Widespread in RNA Virus Genomes. BMC Bioinformatics 2021, 22, 251. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, S.V.; Chan, Y.H.; Nobrega, R.P.; Özen, A.; Matthews, C.R. Clusters of Isoleucine, Leucine, and Valine Side Chains Define Cores of Stability in High-energy States of Globular Proteins: Sequence Determinants of Structure and Stability. Protein Sci. 2016, 25, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Holder, J.B.; Bennett, A.F.; Chen, J.; Spencer, D.S.; Byrne, M.P.; Stites, W.E. Energetics of Side Chain Packing in Staphylococcal Nuclease Assessed by Exchange of Valines, Isoleucines, and Leucines. Biochemistry 2001, 40, 13998–14003. [Google Scholar] [CrossRef] [PubMed]
- Cano-Muñoz, M.; Cesaro, S.; Morel, B.; Lucas, J.; Moog, C.; Conejero-Lara, F. Extremely Thermostabilizing Core Mutations in Coiled-Coil Mimetic Proteins of HIV-1 Gp41 Produce Diverse Effects on Target Binding but Do Not Affect Their Inhibitory Activity. Biomolecules 2021, 11, 566. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Shirley, B.A.; Hendricks, M.M.; Iimura, S.; Gajiwala, K.; Scholtz, J.M.; et al. Contribution of Hydrophobic Interactions to Protein Stability. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.Y.; Boone, L.R.; Koh, C.K.; Tennant, R.W.; Yang, W.K. Nucleotide Sequences of Gag-Pol Regions That Determine the Fv-1 Host Range Property of BALB/c N-Tropic and B-Tropic Murine Leukemia Viruses. J. Virol. 1983, 48, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Urbanowski, M.D.; Ilkow, C.S.; Hobman, T.C. Modulation of Signaling Pathways by RNA Virus Capsid Proteins. Cell. Signal. 2008, 20, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, E.; Pietschmann, T. Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy. Viruses 2010, 2, 2078–2095. [Google Scholar] [CrossRef]
- Ueda, M.T.; Kurosaki, Y.; Izumi, T.; Nakano, Y.; Oloniniyi, O.K.; Yasuda, J.; Koyanagi, Y.; Sato, K.; Nakagawa, S. Functional Mutations in Spike Glycoprotein of Zaire Ebolavirus Associated with an Increase in Infection Efficiency. Genes Cells 2017, 22, 148–159. [Google Scholar] [CrossRef]
- Cimarelli, A.; Luban, J. Context-Dependent Phenotype of a Human Immunodeficiency Virus Type 1 Nucleocapsid Mutation. J. Virol. 2001, 75, 7193–7197. [Google Scholar] [CrossRef]
- Snijder, E.J.; Decroly, E.; Ziebuhr, J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 96, pp. 59–126. ISBN 978-0-12-804736-1. [Google Scholar]
- Yang, J.; Jing, X.; Yi, W.; Li, X.-D.; Yao, C.; Zhang, B.; Zheng, Z.; Wang, H.; Gong, P. Crystal Structure of a Tick-Borne Flavivirus RNA-Dependent RNA Polymerase Suggests a Host Adaptation Hotspot in RNA Viruses. Nucleic Acids Res. 2021, 49, 1567–1580. [Google Scholar] [CrossRef]
- Nishikiori, M.; Dohi, K.; Mori, M.; Meshi, T.; Naito, S.; Ishikawa, M. Membrane-Bound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound. J. Virol. 2006, 80, 8459–8468. [Google Scholar] [CrossRef] [PubMed]
- Uppal, T.; Tuffo, K.; Khaiboullina, S.; Reganti, S.; Pandori, M.; Verma, S.C. Screening of SARS-CoV-2 Antivirals through a Cell-Based RNA-Dependent RNA Polymerase (RdRp) Reporter Assay. Cell Insight 2022, 1, 100046. [Google Scholar] [CrossRef] [PubMed]
- Tuncbag, N.; Keskin, O.; Gursoy, A. HotPoint: Hot Spot Prediction Server for Protein Interfaces. Nucleic Acids Res. 2010, 38, W402–W406. [Google Scholar] [CrossRef]
- Tang, Q.; Alontaga, A.Y.; Holyoak, T.; Fenton, A.W. Exploring the Limits of the Usefulness of Mutagenesis in Studies of Allosteric Mechanisms. Hum. Mutat. 2017, 38, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Computational Alanine Scanning Mutagenesis—An Improved Methodological Approach. J. Comput. Chem. 2007, 28, 644–654. [Google Scholar] [CrossRef]
- Moreira, I.S.; Fernandes, P.A.; Ramos, M.J. Hot Spots—A Review of the Protein–Protein Interface Determinant Amino-acid Residues. Proteins Struct. Funct. Bioinforma. 2007, 68, 803–812. [Google Scholar] [CrossRef]
- Ye, X.; Lee, Y.-C.; Gates, Z.P.; Ling, Y.; Mortensen, J.C.; Yang, F.-S.; Lin, Y.-S.; Pentelute, B.L. Binary Combinatorial Scanning Reveals Potent Poly-Alanine-Substituted Inhibitors of Protein-Protein Interactions. Commun. Chem. 2022, 5, 128. [Google Scholar] [CrossRef]
- Keskin, O.; Ma, B.; Nussinov, R. Hot Regions in Protein–Protein Interactions: The Organization and Contribution of Structurally Conserved Hot Spot Residues. J. Mol. Biol. 2005, 345, 1281–1294. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Magazine, N.; Zhang, T.; Wu, Y.; McGee, M.C.; Veggiani, G.; Huang, W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses 2022, 14, 640. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Senior, A.M.; Di Giallonardo, F.; Holmes, E.C. Virological Factors That Increase the Transmissibility of Emerging Human Viruses. Proc. Natl. Acad. Sci. USA 2016, 113, 4170–4175. [Google Scholar] [CrossRef] [PubMed]
- Kumberger, P.; Frey, F.; Schwarz, U.S.; Graw, F. Multiscale Modeling of Virus Replication and Spread. FEBS Lett. 2016, 590, 1972–1986. [Google Scholar] [CrossRef] [PubMed]
- Laha, S.; Chakraborty, J.; Das, S.; Manna, S.K.; Biswas, S.; Chatterjee, R. Characterizations of SARS-CoV-2 Mutational Profile, Spike Protein Stability and Viral Transmission. Infect. Genet. Evol. 2020, 85, 104445. [Google Scholar] [CrossRef] [PubMed]
Mutation | Chain | ΔΔGStability Prediction (kcal/mol) | Effect |
---|---|---|---|
L56F | C | −1.16 | Destabilizing |
L71F | C | −1.13 | Destabilizing |
S25L | C | −0.68 | Destabilizing |
M3I | C | −0.54 | Destabilizing |
D77N | C | −0.38 | Destabilizing |
V33I | C | −0.24 | Destabilizing |
T81I | C | −0.01 | Destabilizing |
Q63R | C | 0.05 | Stabilizing |
M75I | C | 0.35 | Stabilizing |
S26F | C | 0.39 | Stabilizing |
Mutation | Chain | Individual ΔΔGStability Prediction (kcal/mol) B; D Chains | ΔΔG Over-All Stability Prediction (kcal/mol) | Effect |
---|---|---|---|---|
P133S | B, D | −1.22; −0.62 | −3.34 | Destabilizing |
Q24H | B, D | −0.02; −0.03 | 0.17 | Stabilizing |
T89I | B, D | 0.07; 0.11 | 0.89 | Stabilizing |
T141M | B, D | −0.13; 0.6 | 1.02 | Stabilizing |
T145I | B, D | 0.07; 0.08 | 1.18 | Stabilizing |
Q24R | B, D | −0.04; −0.12 | 1.19 | Stabilizing |
T123I | B, D | 0.05; 0.0 | 1.27 | Stabilizing |
N118S | B, D | −0.8; −0.46 | 1.96 | Stabilizing |
T148I | B, D | 0.18; 0.14 | 2.23 | Stabilizing |
T187I | B, D | 0.54; 0.12 | 3.64 | Stabilizing |
Mutation | Chain | Individual ΔΔGStability Prediction (kcal/mol) B; D Chains | ΔΔG Over-All Stability Prediction (kcal/mol) | Effect |
---|---|---|---|---|
S76P | B, D | −1.83; −1.79 | −1.39 | Destabilizing |
S76G | B, D | −1.21; −1.27 | −0.66 | Destabilizing |
S76N | B, D | −0.59; −0.57 | −0.23 | Destabilizing |
S76D | B, D | −1.45; −1.01 | −0.14 | Destabilizing |
S76M | B, D | 0.06; 0.63 | 0 | Neutral |
S76Q | B, D | −0.3; −0.05 | 0.11 | Stabilizing |
S76K | B, D | −0.32; −0.03 | 0.16 | Stabilizing |
S76H | B, D | −0.6; −0.02 | 0.23 | Stabilizing |
S76T | B, D | −0.5; −0.09 | 0.32 | Stabilizing |
S76V | B, D | −0.06; 0.64 | 0.33 | Stabilizing |
S76E | B, D | −0.08; 0.19 | 0.37 | Stabilizing |
S76L | B, D | −0.02; 0.5 | 0.43 | Stabilizing |
S76F | B, D | −0.02; 0.22 | 0.44 | Stabilizing |
S76A | B, D | −0.39; −0.01 | 0.48 | Stabilizing |
S76W | B, D | −0.13; −0.04 | 0.55 | Stabilizing |
S76R | B, D | −0.54; 0.55 | 0.87 | Stabilizing |
S76I | B, D | 0.09; 1.15 | 0.99 | Stabilizing |
S76C | B, D | 0.04; 1.0 | 1.68 | Stabilizing |
S76Y | B, D | 0.64; 1.03 | 2.27 | Stabilizing |
Mutation | Chain | Individual ΔΔGStability Prediction (kcal/mol) B; D Chains | ΔΔG Over-All Stability Prediction (kcal/mol) | Effect |
---|---|---|---|---|
L122G | B, D | −3.0; −2.09 | −2.42 | Destabilizing |
L122H | B, D | −1.58; −0.74 | −1.56 | Destabilizing |
L122D | B, D | −2.35; −1.35 | −1.41 | Destabilizing |
L122A | B, D | −2.42; −1.58 | −1.25 | Destabilizing |
L122E | B, D | −1.78; −1.08 | −1.14 | Destabilizing |
L122N | B, D | −1.66; −0.97 | −0.89 | Destabilizing |
L122C | B, D | −1.82; −1.32 | −0.69 | Destabilizing |
L122T | B, D | −1.52; −1.36 | −0.66 | Destabilizing |
L122P | B, D | −2.42; −1.34 | −0.64 | Destabilizing |
L122S | B, D | −1.59; −1.08 | −0.63 | Destabilizing |
L122K | B, D | 1.11; −0.32 | −0.14 | Destabilizing |
L122V | B, D | −0.02; 0.5 | 0.06 | Stabilizing |
L122M | B, D | −0.45; −0.17 | 0.14 | Stabilizing |
L122II | B, D | −0.53; −0.27 | 0.2 | Stabilizing |
L122Q | B, D | −0.87; −0.41 | 0.32 | Stabilizing |
L122F | B, D | −0.33; −0.19 | 0.66 | Stabilizing |
L122R | B, D | −0.58; −0.04 | 0.73 | Stabilizing |
L122Y | B, D | 0.15; 0.18 | 0.92 | Stabilizing |
L122W | B, D | −0.35; 0.11 | 0.95 | Destabilizing |
Mutation | Chain | Individual ΔΔGStability Prediction (kcal/mol) B; D Chains | ΔΔG Over-All Stability Prediction (kcal/mol) | Effect |
---|---|---|---|---|
P121G;L122G | B, D | −2.99; −2.09; −2.75; −0.72 | −4.04 | Destabilizing |
P121D;L122G | B, D | −3.0; −2.16; −2.7; −0.92 | −3.98 | Destabilizing |
P121T;L122G | B, D | −2.99; −2.18; −2.26; −0.7 | −3.91 | Destabilizing |
P121S;L122G | B, D | −2.99; −2.18; −1.66; −0.4 | −3.82 | Destabilizing |
P121N;L122G | B, D | −2.99; −2.16; −2.39; −0.71 | −3.69 | Destabilizing |
P121R | B, D | −1.35; 0.39 | 1.03 | Stabilizing |
P121C | B, D | −1.58; 0.1 | 1.08 | Stabilizing |
P121E;L122F | B, D | −0.39; 0.89; −1.73; 1.02 | 1.19 | Stabilizing |
P121Q | B, D | −1.53; 1.24 | 1.52 | Stabilizing |
P121E | B, D | −1.73; 1.18 | 1.65 | Stabilizing |
Mutation | Chain | ΔΔGStability Prediction (kcal/mol) | Effect (This Study) | Wet Lab Results Based on Literature [10] |
---|---|---|---|---|
F49A | C | −2.99 | Destabilizing | Decreased RdRp efficiency |
M52A | C | −2.12 | Destabilizing | Decreased RdRp efficiency |
L56A | C | −3.09 | Destabilizing | Decreased RdRp efficiency |
F49A, M52A, L56A | C | −3.46 | Destabilizing | Greater decreased RdRp efficiency |
C8G | C | −1.97 | Destabilizing | Decreased RdRp efficiency |
V11A | C | −2.12 | Destabilizing | Decreased RdRp efficiency |
N37V * | A | 0.13 | Stabilizing | Not applicable |
N37V ** | A, C | 0.22 | Stabilizing | No detrimental effect to nsp7–nsp8 complex |
N37V *** | C | −0.15 | Destabilizing | Decreased RdRp efficiency |
Mutation | Chain | Individual ΔΔGStability Prediction (kcal/mol) B; D Chains | ΔΔG Over-All Stability Prediction (kcal/mol) | Effect (This Study) | Wet Lab Results Based on Literature [10] |
---|---|---|---|---|---|
F92A | B, D | −2.14, −3.09 | −3.06 | Destabilizing | Decreased RdRp efficiency |
M90A | B, D | −1.92, −2.48 | −1.39 | Destabilizing | Decreased RdRp efficiency |
M94A | B, D | −1.18, −2.84 | −1.94 | Destabilizing | Decreased RdRp efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subong, B.J.J.; Ozawa, T. Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability. Curr. Issues Mol. Biol. 2024, 46, 2598-2619. https://doi.org/10.3390/cimb46030165
Subong BJJ, Ozawa T. Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability. Current Issues in Molecular Biology. 2024; 46(3):2598-2619. https://doi.org/10.3390/cimb46030165
Chicago/Turabian StyleSubong, Bryan John J., and Takeaki Ozawa. 2024. "Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability" Current Issues in Molecular Biology 46, no. 3: 2598-2619. https://doi.org/10.3390/cimb46030165
APA StyleSubong, B. J. J., & Ozawa, T. (2024). Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability. Current Issues in Molecular Biology, 46(3), 2598-2619. https://doi.org/10.3390/cimb46030165