Clinical-Genomic Analysis of 1261 Patients with Ehlers–Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Evaluations
2.2. DNA Testing
2.3. Patient and DNA Databases
2.4. Classification of Gene Products, Impacts on Tissue Elements and Processes
2.5. Emendation of Finding Frequency Data from Differently Ascertained Patient Groups
2.6. Statistics
3. Results
3.1. Different Implications of DNA Variants in EDS and Developmental Disability Patients
3.2. Defining the Genetic Basis of EDS Requires Clinical Qualification of Its DNA Variation
3.3. EDS/Developmental Disability Differences in DNA Testing Results
3.4. Comparison of Altered Genes in EDS and DD Patients
3.5. Differences in Variant Origin
3.6. An EDS Gene Network Spread over Multiple Chromosomes Including That of Mitochondria
3.7. Holistic Evaluation and Quantification of EDS Findings Allows Comparison of Patients with Different Gene Changes
3.8. Comparison of Quantified Tissue Laxity/Neuro-Autonomic Findings in EDS Patient Groups
3.9. An EDS Gene Network—Recurring Gene Variants Produce Congruent Clinical Profiles
- Genes associated with impact on joints, bone, and skin produce similar EDS profiles
- Genes associated with impact on heart and vessels
- Nuclear/mitochondrial genes associated with neuromuscular diseases produce similar EDS profiles
3.10. Correlation of Gene Action with Finding Profiles
4. Discussion
4.1. Envisioning an EDS–Dysautonomia (Articulo-Autonomic Dysplasia) Gene Network or Entome
4.2. Relating Genes to Pathogenic Mechanism Can Guide Clinical-Genetic and Evolutionary Correlation
4.3. Holistic Recognition and Relating Findings to Mechanism Can Improve EDS Recognition and Management
5. Conclusions
- A systematic evaluation of 1261 patients discriminated EDS from less symptomatic hypermobility and showed that autonomic and neurologic findings are integral parts of this disease spectrum.
- Changes in 317 genes were found by whole exome sequencing analyses of 906 EDS patients and qualified using a novel protocol [14] that emphasizes their relation to finding patterns and clinical mechanisms, rather than to single signs or symptoms.
- Relevance to EDS of these DNA sequence variants was supported by the presence of 53 mutations in the long-associated collagen type V gene [6], differences from results in 82 developmental disability patients, and previously underemphasized connective tissue laxity symptoms in the diseases associated with these genes (see Table S2).
- Similar tissue laxity, dysautonomia, and neuromuscular finding profiles were found in 30 EDS groups that averaged 17 patients with changes in the same or related genes; the congruence was interpreted to outline a gene network or entome that can be iteratively disrupted to produce connective tissue dysplasia.
- The outlined holistic approach for EDS clinical–DNA documentation could shorten diagnostic delays averaging 14 years and promote a sequential correlation of DNA-clinical findings that would fit well with large language artificial intelligence models [79].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tinkle, B.T.; Levy, H.P. Symptomatic joint hypermobility: The hypermobile type of Ehlers-Danlos syndrome and the hypermobility spectrum disorders. Med. Clin. N. Am. 2019, 103, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Bamshad, M.J.; Ng, S.B.; Bigham, A.W.; Tabor, H.K.; Emond, M.J.; Nickerson, D.A.; Shendure, J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 2011, 12, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Muzny, D.M.; Reid, J.G.; Bainbridge, M.N.; Willis, A.; Ward, P.A.; Braxton, A.; Beuten, J.; Xia, F.; Niu, Z.; et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 2013, 369, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 international classification of the Ehlers–Danlos Syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef]
- McKusick, V.A. Heritable disorders of connective tissue. I. The clinical behavior of hereditary syndromes. J. Chronic. Dis. 1955, 2, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.M.; Sobey, G.J.; Burrows, N.P.; Colombi, M.; Lavallee, M.E.; Malfait, F.; Francomano, C.A. Ehlers-Danlos syndrome, classical type. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Byers, P.H.; Belmont, J.; Black, J.; De Backer, J.; Frank, M.; Jeunemaitre, X.; Johnson, D.; Pepin, M.; Robert, L.; Sanders, L.; et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, E.M.; Rohrbach, M.; Bürer, C.; Kraenzlin, M.; El-Tayeby, H.; Elbelbesy, M.F.; Nabil, A.; Giunta, C. Kyphoscoliotic type of Ehlers-Danlos Syndrome (EDS VIA) in six Egyptian patients presenting with a homogeneous clinical phenotype. Eur. J. Pediatr. 2015, 174, 105–112. [Google Scholar] [CrossRef]
- Beighton Maneuvers Illustrated. The Ehlers-Danlos Society. Available online: https://www.ehlers-danlos.com/assessing-joint-hypermobility/ (accessed on 1 February 2024).
- Weerakkody, R.A.; Vandrovcova, J.; Kanonidou, C.; Mueller, M.; Gampawar, P.; Ibrahim, Y.; Norsworthy, P.; Biggs, J.; Abdullah, A.; Ross, D.; et al. Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome. Genet. Med. 2016, 18, 1119–1127. [Google Scholar] [CrossRef]
- Wilson, G.N. Genomic analysis of 727 patients with Ehlers-Danlos syndrome I: Clinical perspective relates 23 genes to a maternally influenced arthritis-adrenaline disorder. J. Biosci. Med. 2019, 7, 181–204. [Google Scholar] [CrossRef]
- Junkiert-Czarnecka, A.; Pilarska-Deltow, M.; Bąk, A.; Heise, M.; Latos-Bieleńska, A.; Zaremba, J.; Bartoszewska-Kubiak, A.; Haus, O. Next-generation sequencing of connective tissue genes in patients with classical Ehlers-Danlos syndrome. Curr. Issues Mol. Biol. 2022, 44, 1472–1478. [Google Scholar] [CrossRef]
- Vandersteen, A.M.; Weerakkody, R.A.; Parry, D.A.; Kanonidou, C.; Toddie-Moore, D.J.; Vandrovcova, J.; Darlay, R.; Santoyo-Lopez, J.; Meynert, A.; NIHR BioResource; et al. Genetic complexity of diagnostically unresolved Ehlers-Danlos syndrome. J. Med. Genet. 2024, 61, 232–238. [Google Scholar] [CrossRef]
- Wilson, G.N. A clinical qualification protocol highlights overlapping genomic influences and neuro-autonomic mechanisms in Ehlers–Danlos and long COVID-19 syndromes. Curr. Issues Mol. Biol. 2023, 45, 6003–6023. [Google Scholar] [CrossRef] [PubMed]
- Sebé-Pedrós, A.; Degnan, B.M.; Ruiz-Trillo, I. The origin of Metazoa: A unicellular perspective. Nat. Rev. Genet. 2017, 18, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Larue, A.C.; Watson, P.M.; Watson, D.K. Hematopoietic stem cell origin of mesenchymal cells: Opportunity for novel therapeutic approaches. Int. J. Hematol. 2010, 91, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Begun, D.R. Phyletic diversity and locomotion in primitive European hominids. Am. J. Phys. Anthropol. 1992, 87, 311–340. [Google Scholar] [CrossRef] [PubMed]
- Weis, M.A.; Hudson, D.M.; Kim, L.; Scott, M.; Wu, J.J.; Eyre, D.R. Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly. J. Biol. Chem. 2010, 285, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Madhurapantula, R.S.; Kalyanasundaram, A.; Sabharwal, T.; Antipova, O.; Bishnoi, S.W.; Orgel, J.P.R.O. Ultrastructural location and interactions of the immunoglobulin receptor binding sequence within fibrillar type I collagen. Int. J. Mol. Sci. 2020, 21, 4166. [Google Scholar] [CrossRef]
- Al Hasan, M.; Martin, P.E.; Shu, X.; Patterson, S.; Bartholomew, C. Type III collagen is required for adipogenesis and actin stress fibre formation in 3T3-L1 preadipocytes. Biomolecules 2021, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Chiquet, M.; Birk, D.E.; Bönnemann, C.G.; Koch, M. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 2014, 53, 51–54. [Google Scholar] [CrossRef]
- Lisman, T.; Raynal, N.; Groeneveld, D.; Maddox, B.; Peachey, A.R.; Huizinga, E.G.; de Groot, P.G.; Farndale, R.W. A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-helical peptides. Blood 2006, 108, 3753–3756. [Google Scholar] [CrossRef]
- Amiri, P.; Mohebbi, A.; Kearney, R. Experimental methods to study human postural control. J. Vis. Exp. 2019, 151, e60078. [Google Scholar] [CrossRef]
- Nair, S.; Sagar, M.; Sollers, J., 3rd; Consedine, N.; Broadbent, E. Do slumped and upright postures affect stress responses? A randomized trial. Health Psychol. 2015, 34, 632–641. [Google Scholar] [CrossRef]
- Gazit, Y.; Nahir, A.M.; Grahame, R.; Jacob, G. Dysautonomia in the joint hypermobility syndrome. Am. J. Med. 2003, 115, 33–40. [Google Scholar] [CrossRef]
- De Wandele, I.; Rombaut, L.; Leybaert, L.; Van de Borne, P.; De Backer, T.; Malfait, F.; De Paepe, A.; Calders, P. Dysautonomia and its underlying mechanisms in the hypermobility type of Ehlers-Danlos syndrome. Semin. Arthritis Rheum. 2014, 44, 93–100. [Google Scholar] [CrossRef]
- Wilson, G.N. Clinical analysis supports articulo-autonomic dysplasia as a unifying pathogenic mechanism in Ehlers-Danlos Syndrome and related conditions. J. Biosci. Med. 2019, 7, 149–168. [Google Scholar] [CrossRef]
- Microarray analysis performed by a variety of commercial laboratories for patients with developmental disability and autism, including the authors associated laboratory at Texas Tech University that used standard methods and interpretation as outlined. In Chromosome Structure and Variation: Heteromorphism, Polymorphism, and Pathogenesis; Wyandt, H.E.; Wilson, G.N.; Tonk, V.S. (Eds.) Springer Nature: New York, NY, USA, 2017; Chapters 9–10. [Google Scholar]
- Retterer, K.; Scuffins, J.; Schmidt, D.; Lewis, R.; Pineda-Alvarez, D.; Stafford, A.; Schmidt, L.; Warren, S.; Gibellini, F.; Kondakova, A.; et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet. Med. 2015, 17, 623–629. [Google Scholar] [CrossRef]
- MedCalc Software Ltd. Available online: https://www.medcalc.org/calc (accessed on 1 January 2024).
- Tam, B.; Sinha, S.; Wang, S.M. Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Comput. Struct. Biotechnol. J. 2020, 18, 4033–4039. [Google Scholar] [CrossRef]
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 1 January 2023).
- MITOMAP: A Human Mitochondrial Genome Database. 2019. Available online: http://www.mitomap.org (accessed on 1 January 2023).
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- MacArthur, D.G.; Manolio, T.A.; Dimmock, D.P.; Rehm, H.L.; Shendure, J.; Abecasis, G.R. Guidelines for investigating causality of sequence variants in human disease. Nature 2014, 24, 469–476. [Google Scholar] [CrossRef]
- Ng, P.C.; Levy, S.; Huang, J.; Stockwell, T.B.; Walenz, B.P.; Li, K.; Axelrod, N.; Busam, D.A.; Strausberg, R.L.; Venter, J.C. Genetic variation in an individual human exome. PLoS Genet. 2008, 4, e1000160. [Google Scholar] [CrossRef]
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Coban Akdemir, Z.H.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef]
- Rahman, S.; Copeland, W.C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 2019, 15, 40–52. [Google Scholar] [CrossRef]
- Gaudó, P.; Emperador, S.; Garrido-Pérez, N.; Ruiz-Pesini, E.; Yubero, D.; García-Cazorla, A.; Artuch, R.; Montoya, J.; Bayona-Bafaluy, M.P. Infectious stress triggers a POLG-related mitochondrial disease. Neurogenetics 2020, 21, 19–27. [Google Scholar] [CrossRef]
- Zhang, P.; An, Z.; Sun, C.; Xu, Y.; Zhang, Z. FLG gene mutation up-regulates the abnormal tumor immune response and promotes the progression of prostate cancer. Curr. Pharm. Biotechnol. 2022, 23, 1658–1670. [Google Scholar] [CrossRef]
- Lee, S.; Rudd, S.; Gratten, J.; Visscher, P.M.; Prins, J.B.; Dawson, P.A. Gene networks associated with non-syndromic intellectual disability. J. Neurogenet. 2018, 32, 6–14. [Google Scholar] [CrossRef]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef]
- Wenstrup, R.J.; Florer, J.B.; Brunskill, E.W.; Bell, S.M.; Chervoneva, I.; Birk, D.E. Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 2004, 279, 53331–53337. [Google Scholar] [CrossRef]
- Vockley, J.; Rinaldo, P.; Bennett, M.J.; Matern, D.; Vladutiu, G.D. Synergistic heterozygosity: Disease resulting from multiple partial defects in one or more metabolic pathways. Mol. Genet. Metab. 2000, 71, 10–18. [Google Scholar] [CrossRef]
- Wilson, G.N.; Tonk, V.S. Demon genes may deform common syndromes: Collagen VI gene change in Down syndrome unifies the medical and molecular approach to hypermobility disorders. J. Biosci. Med. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Ehlers-Danlos Society. Criteria for EDS Types from 2017 and References {2,7] as Shown to the Right of S1 Table, Now Simplified, hEDS Guidelines Being Revised When Accessed. Available online: https://www.ehlers-danlos.com/2017-eds-international-classification/ (accessed on 30 January 2024).
- Vernino, S.; Bourne, K.M.; Stiles, L.E.; Grubb, B.P.; Fedorowski, A.; Stewart, J.M.; Arnold, A.C.; Pace, L.A.; Axelsson, J.; Boris, J.R.; et al. Postural orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019 National Institutes of Health Expert Consensus Meeting—Part 1. Auton. Neurosci. 2021, 235, 102828. [Google Scholar] [CrossRef]
- Benarroch, E.E. Postural tachycardia syndrome: A heterogeneous and multifactorial disorder. Mayo Clin. Proc. 2012, 87, 1214–1225. [Google Scholar] [CrossRef]
- Wang, E.; Ganti, T.; Vaou, E.; Hohler, A. The relationship between mast cell activation syndrome, postural tachycardia syndrome, and Ehlers-Danlos syndrome. Allergy Asthma Proc. 2021, 42, 243–246. [Google Scholar] [CrossRef]
- Monaco, A.; Choi, D.; Uzun, S.; Maitland, A.; Riley, B. Association of mast-cell-related conditions with hypermobile syndromes: A review of the literature. Immunol. Res. 2022, 70, 419–431. [Google Scholar] [CrossRef]
- Thwaites, P.A.; Gibson, P.R.; Burgell, R.E. Hypermobile Ehlers-Danlos syndrome and disorders of the gastrointestinal tract: What the gastroenterologist needs to know. J. Gastroenterol. Hepatol. 2022, 37, 1693–1709. [Google Scholar] [CrossRef]
- Henderson, F.C., Sr.; Austin, C.; Benzel, E.; Bolognese, P.; Ellenbogen, R.; Francomano, C.A.; Ireton, C.; Klinge, P.; Koby, M.; Long, D.; et al. Neurological and spinal manifestations of the Ehlers-Danlos syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 195–211. [Google Scholar] [CrossRef]
- Cazzato, D.; Castori, M.; Lombardi, R.; Caravello, F.; Bella, E.D.; Petrucci, A. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology 2016, 87, 155–159. [Google Scholar] [CrossRef]
- D’Agnelli, S.; Arendt-Nielsen, L.; Gerra, M.C.; Zatorri, K.; Boggiani, L.; Baciarello, M.; Bignami, E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol. Pain 2019, 15, 1744806918819944. [Google Scholar] [CrossRef]
- Jang, J.Y.; Blum, A.; Liu, J.; Finkel, T. The role of mitochondria in aging. J. Clin. Investig. 2018, 128, 3662–3670. [Google Scholar] [CrossRef]
- Collins, M.; Posthumus, M. Type V collagen genotype and exercise-related phenotype relationships: A novel hypothesis. Exerc. Sport Sci. Rev. 2011, 39, 191–198. [Google Scholar] [CrossRef]
- Colombi, M.; Dordoni, C.; Venturini, M.; Zanca, A.; Calzavara-Pinton, P.; Ritelli, M. Delineation of Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: Report on a three-generation family without cardiovascular events, and literature review. Am. J. Med. Genet. A 2017, 173, 524–530. [Google Scholar] [CrossRef]
- Wallace, J.M.; Erickson, B.; Les, C.M.; Orr, B.G.; Banaszak Holl, M.M. Distribution of type I collagen morphologies in bone: Relation to estrogen depletion. Bone 2010, 46, 1349–1354. [Google Scholar] [CrossRef]
- Freitas, S.D.S.; Rezende, S.M.; de Oliveira, L.C.; Prezotti, A.N.L.; Renni, M.S.; Corsini, C.A.; Amorim, M.V.A.; Matosinho, C.G.R.; Carvalho, M.R.S.; Chaves, D.G. Genetic variants of VWF gene in type 2 von Willebrand disease. Haemophilia 2019, 25, e78–e85. [Google Scholar] [CrossRef]
- Wegener, H.; Leineweber, S.; Seeger, K. The vWFA2 domain of type VII collagen is responsible for collagen binding. Biochem. Biophys. Res. Commun. 2013, 430, 449–453. [Google Scholar] [CrossRef]
- Craven, N.M.; Watson, R.E.; Jones, C.J.; Shuttleworth, C.A.; Kielty, C.M.; Griffiths, C.E. Clinical features of photodamaged human skin are associated with a reduction in collagen VII. Br. J. Dermatol. 1997, 137, 344–350. [Google Scholar] [CrossRef]
- Woźniak, E.; Owczarczyk-Saczonek, A.; Lange, M.; Czarny, J.; Wygonowska, E.; Placek, W.; Nedoszytko, B. The role of mast cells in the induction and maintenance of inflammation in selected skin diseases. Int. J. Mol. Sci. 2023, 24, 7021. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019, 707, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Radke, R.M.; Baumgartner, H. Diagnosis and treatment of Marfan syndrome: An update. Heart 2014, 100, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.; Oronsky, B.; Carter, C.A.; Oronsky, A.; Knox, S.J.; Sher, D.; Reid, T.R. TGF-beta: A master immune regulator. Expert. Opin. Ther. Targets 2020, 24, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Z.; Wang, Q.Q.; Yang, Q.Q.; Gu, H.Y.; Yin, Y.Q.; Li, Y.D.; Hou, J.C.; Chen, R.; Sun, Q.Q.; Sun, Y.F.; et al. NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis. BMC Med. 2019, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, M.K.; Otero-Vinas, M.; Falanga, V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016, 24, 215–222. [Google Scholar] [CrossRef]
- Ziegler, S.G.; MacCarrick, G.; Dietz, H.C. Toward precision medicine in vascular connective tissue disorders. Am. J. Med. Genet. A 2021, 185, 3340–3349. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, C.R.; Shadel, G.S.; Manor, U. Impaired mitochondrial mobility in Charcot-Marie-Tooth disease. Front. Cell Dev. Biol. 2021, 9, 624823. [Google Scholar] [CrossRef]
- Ng, Y.S.; Turnbull, D.M. Mitochondrial disease: Genetics and management. J. Neurol. 2016, 263, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, M.; Yan, S.F.; Yan, N. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 2017, 8, 401–438. [Google Scholar] [CrossRef]
- Stendel, C.; Neuhofer, C.; Floride, E.; Yuqing, S.; Ganetzky, R.D.; Park, J.; Freisinger, P.; Kornblum, C.; Kleinle, S.; Schöls, L.; et al. ATP6 Study Group. Delineating MT-ATP6-associated disease: From isolated neuropathy to early onset neurodegeneration. Neurol. Genet. 2020, 6, e393. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.N.; Tonk, V.S. Mitochondrial dysfunction contributes to Ehlers-Danlos syndrome—A patient presentation. J. Biol. Lab. Sci. 2020, 11, 190–202. [Google Scholar] [CrossRef]
- Clark, K.M.; Taylor, R.W.; Johnson, M.A.; Chinnery, P.F.; Chrzanowska-Lightowlers, Z.M.; Nelson, I.P.; Wood, N.W.; Lamont, P.J.; Hanna, M.G.; Lightowlers, R.N.; et al. An mtDNA mutation in the initiation codon of the cytochrome C oxidase subunit II gene results in lower levels of the protein and a mitochondrial encephalomyopathy. Am. J. Hum. Genet. 1999, 64, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Lamandé, S.R.; Bateman, J.F. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond. Matrix Biol. 2018, 71–72, 348–367. [Google Scholar] [CrossRef]
- Zou, Y.; Zwolanek, D.; Izu, Y.; Gandhy, S.; Schreiber, G.; Brockmann, B.; Devoto, M.; Tian, Z.; Hu, Y.; Veit, G.; et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum. Mol. Genet. 2014, 23, 2339–2352. [Google Scholar] [CrossRef]
- Voermans, N.C.; Bonnemann, C.G.; Hamel, B.C.; Jungbluth, H.; van Engelen, B.G. Joint hypermobility as a distinctive feature in the differential diagnosis of myopathies. J. Neurol. 2009, 256, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Barlow, C.E. Review of the role of exercise in improving quality of life in healthy individuals and in those with chronic diseases. Curr. Sports Med. Rep. 2011, 10, 211–216. [Google Scholar] [CrossRef]
- Shah, N.H.; Entwistle, D.; Pfeffer, M.A. Creation and adoption of large language models in medicine. JAMA 2023, 330, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Legrand, A.; Cornez, L.; Samkari, W.; Mazzella, J.-M.; Venisse, A.; Boccio, V.; Auribault, K.; Keren, B.; Benistan, K.; Germain, D.P.; et al. Mutation spectrum in the ABCC6 gene and genotype-phenotype correlations in a French cohort with pseudoxanthoma elasticum. Genet. Med. 2017, 19, 909–917. [Google Scholar] [CrossRef]
- Dhooge, T.; Van Damme, T.; Syx, D.; Mosquera, L.M.; Nampoothiri, S.; Radhakrishnan, A.; Simsek-Kiper, P.O.; Utine, G.E.; Bonduelle, M.; Migeotte, I.; et al. More than meets the eye: Expanding and reviewing the clinical and mutational spectrum of brittle cornea syndrome. Hum. Mutat. 2021, 42, 711–730. [Google Scholar] [CrossRef] [PubMed]
- Bekhouche, M.; Colige, A. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol. 2015, 44, 46–53. [Google Scholar] [CrossRef]
- Sheen, V.L.; Jansen, A.; Chen, M.H.; Parrini, E.; Morgan, T.; Ravenscroft, R.; Ganesh, V.; Underwood, T.; Wiley, J.; Leventer, R.; et al. Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 2005, 64, 254–262. [Google Scholar] [CrossRef]
- Benkusky, N.A.; Farrell, E.F.; Valdivia, H.H. Ryanodine receptor channelopathies. Biochem. Biophys. Res. Commun. 2004, 322, 1280–1285. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Peltonen, L.; Kivirikko, K.I. Type IX Ehlers-Danlos syndrome and Menkes syndrome: The decrease in lysyl oxidase activity is associated with a corresponding deficiency in the enzyme protein. Am. J. Hum. Genet. 1985, 37, 798–808. [Google Scholar]
- Karmouch, J.; Dobbertin, A.; Sigoillot, S.; Legay, C. Developmental consequences of the ColQ/MuSK interactions. Chem. Biol. Interact. 2013, 203, 287–291. [Google Scholar] [CrossRef]
- de Villiers, J.N.; Hillermann, R.; Loubser, L.; Kotze, M.J. Spectrum of mutations in the HFE gene implicated in haemochromatosis and porphyria. Hum. Mol. Genet. 1999, 8, 1517–1522. [Google Scholar] [CrossRef]
- Platnich, J.M.; Muruve, D.A. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch. Biochem. Biophys. 2019, 670, 4–14. [Google Scholar] [CrossRef]
- Xie, J.H.; Li, Y.Y.; Jin, J. The essential functions of mitochondrial dynamics in immune cells. Cell Mol. Immunol. 2020, 17, 712–721. [Google Scholar] [CrossRef]
- Yonko, E.A.; LoTurco, H.M.; Carter, E.M.; Raggio, C.L. Orthopedic considerations and surgical outcomes in Ehlers-Danlos syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 2021, 187, 458–465. [Google Scholar] [CrossRef]
- Hugon-Rodin, J.; Lebègue, G.; Becourt, S.; Hamonet, C.; Gompel, A. Gynecologic symptoms and the influence on reproductive life in 386 women with hypermobility type ehlers-danlos syndrome: A cohort study. Orphanet. J. Rare Dis. 2016, 11, 124. [Google Scholar] [CrossRef]
- Labuda, R.; Nwotchouang, B.S.T.; Ibrahimy, A.; Allen, P.A.; Oshinski, J.N.; Klinge, P.; Loth, F. A new hypothesis for the pathophysiology of symptomatic adult Chiari malformation Type I. Med. Hypotheses 2022, 158, 110740. [Google Scholar] [CrossRef] [PubMed]
- Lorton, D.; Bellinger, D.L. Molecular mechanisms underlying β-adrenergic receptor-mediated crosstalk between sympathetic neurons and immune cells. Int. J. Mol. Sci. 2015, 16, 5635–5665. [Google Scholar] [CrossRef] [PubMed]
- Karalis, K.P.; Kontopoulos, E.; Muglia, L.J.; Majzoub, J.A. Corticotropin-releasing hormone deficiency unmasks the proinflammatory effect of epinephrine. Proc. Natl. Acad. Sci. USA 1999, 96, 7093–8097. [Google Scholar] [CrossRef] [PubMed]
- Sinibaldi, L.; Ursini, G.; Castori, M. Psychopathological manifestations of joint hypermobility and joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type: The link between connective tissue and psychological distress revised. Am. J. Med. Genet. C Semin. Med. Genet. 2015, 169C, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Castori, M.; Morlino, S.; Celletti, C.; Ghibellini, G.; Bruschini, M.; Grammatico, P.; Blundo, C.; Camerota, F. Re-writing the natural history of pain and related symptoms in the joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type. Am. J. Med. Genet. A 2013, 161A, 2989–3004. [Google Scholar] [CrossRef] [PubMed]
- Whalen, K.C.; Crone, W. Multidisciplinary approach to treating chronic pain in patients with Ehlers-Danlos syndrome: Critically appraised topic. J Pain Res. 2022, 15, 2893–2904. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Lin, K.C.; Yeh, S.H.; Wang, C.H.; Pan, A.W.; Chen, H.L.; Chen, C.J. Associations among quality of life, activities, and participation in elderly residents with joint contractures in long-term care facilities: A cross-sectional study. BMC Geriatr. 2022, 22, 197. [Google Scholar] [CrossRef] [PubMed]
- Topham, L.; Gregoire, S.; Kang, H.; Salmon-Divon, M.; Lax, E.; Millecamps, M.; Szyf, M.; Stone, L.S. The transition from acute to chronic pain: Dynamic epigenetic reprogramming of the mouse prefrontal cortex up to 1 year after nerve injury. Pain 2020, 161, 2394–2409. [Google Scholar] [CrossRef] [PubMed]
Patients having DNA testing | ||||||
Patients | EDS (systematic evaluations) | Developmental disability (DD) | ||||
Number | 1261 | 735 a | ||||
DNA testing (% of patients) | 967 (51) | 461 (63) * | ||||
WES testing (% of patients) | 906 (48) | 112 (15) * | ||||
Significant DNA variant by WES (% of those having WES) | 536 (59) | 76 (68) | ||||
Significant DNA sequence variant (% of DNA sequence tests) | 568 (59) b | 82 (65) b | ||||
Variant qualified as likely pathogenic or pathogenic by lab | 20 (3.5) | 48 (59) * | ||||
Qualification and parental origin of relevant DNA variants | ||||||
Categories of DNA variants | EDS All | EDS Primary | EDS Additional | DD All | DD Primary | DD Additional |
Total DNA variants | 893 c | 566 c | 327 c | 150 d | 82 d | 68 d |
VEDU or VEDUS/O (%) | 384 (43) * | 355 (63) | 29 (8.9) | 53 (35) * | 49 (60) | 4 (5.9) |
VSDU or VSDUS/O (%) | 324 (36) * | 174 (31) | 150 (46) | 90 (60) * | 31 (38) | 59 (87) |
VMDU or VMDUS/O (%) | 170 (19) | 36 (6.4) | 134 (41) | 7 (4.7) | 2 (2.4) | 5 (7.4) |
VUDU or VUDUS/O (%) | 15 (1.7) | 1 (0.18) | 14 (4.3) | 0 | 0 | 0 |
Nuclear variants | 735 (82) e | 473 (84) | 262 (80) | 140 (93) | 80 (98) | 60 (88) |
maternal origin (%) | 246 (33) * | 164(35) | 82 (31) | 29 (21) * | 14 (18) | 15 (25) |
paternal origin (%) | 193 (26) | 122(26) | 71 (27) | 41 (29) | 15 (19) | 26 (43) |
De novo (%) | 31 (4.2) * | 18(3.8) | 13 (5.0) | 49 (35) * | 38 (48) | 11 (18) |
Unknown (%) | 271 (37) | 172(36) | 99 (38) | 21 (15) | 13 (16) | 8 (13) |
Mitochondrial variants | 158 (18) e | 93 (16) | 65 (20) | 10 | 2 (2.4) | 8 (12) |
maternal origin (%) | 102 (65) | 58 (62) | 44 (68) | 6 (60) | 1 (50) | 5 (63) |
paternal origin (%) | 0 | 0 | 0 | 0 | 0 | 0 |
De novo (%) | 4 (2.5) | 4 (4.3) | 0 | 0 | 0 | 0 |
Undetermined (%) | 52 (33) | 31 (33) | 21 (32) | 4 (40) | 1(50) | 3 (38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, G.N.; Tonk, V.S. Clinical-Genomic Analysis of 1261 Patients with Ehlers–Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Curr. Issues Mol. Biol. 2024, 46, 2620-2643. https://doi.org/10.3390/cimb46030166
Wilson GN, Tonk VS. Clinical-Genomic Analysis of 1261 Patients with Ehlers–Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Current Issues in Molecular Biology. 2024; 46(3):2620-2643. https://doi.org/10.3390/cimb46030166
Chicago/Turabian StyleWilson, Golder N., and Vijay S. Tonk. 2024. "Clinical-Genomic Analysis of 1261 Patients with Ehlers–Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome)" Current Issues in Molecular Biology 46, no. 3: 2620-2643. https://doi.org/10.3390/cimb46030166
APA StyleWilson, G. N., & Tonk, V. S. (2024). Clinical-Genomic Analysis of 1261 Patients with Ehlers–Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Current Issues in Molecular Biology, 46(3), 2620-2643. https://doi.org/10.3390/cimb46030166