Recent Therapeutic Gene Editing Applications to Genetic Disorders
Abstract
:1. Emergence of Targeted Gene Editing
1.1. Original Gene Editing Tools
1.2. The Missing Piece
2. Molecular Mechanisms of CRISPR
2.1. Harnessing Cas9 for Gene Editing
2.2. Beyond DSB
3. Development of Next-Generation CRISPR-Cas9
3.1. Base Editing
3.2. Prime Editing
3.3. RNA Editing
3.4. Epigenome Editing
4. Delivery Systems for Gene Editing Tools
4.1. Viral Vectors
4.2. Non-Viral Methods
5. Importance of Therapeutic Gene Editing in Medicine
6. Applications of Therapeutic Gene Editing
6.1. Blood Diseases
6.1.1. Sickle Cell Disease and Transfusion-Dependent Beta-Thalassemia
Disease | Target Gene | Editor | Delivery | Editing Efficiency | Significant Unintended Edits | Drug | Clinical Trials | Sponsor | Reference |
---|---|---|---|---|---|---|---|---|---|
Sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT) | BCL11A | SpCas9 nuclease | Electroporation in CD34+ human cells, ex vivo | 80% | None | CTX001 | NCT03655678, NCT03745287, NCT05356195, NCT05329649, NCT05951205, NCT05477563, NCT04208529 | Vertex Pharmaceuticals and CRISPR Therapeutics | [66] |
SCD/TDT | HBG1/2 | AsCas12a nuclease | CD34+ human cells, ex vivo | 80% | None | EDIT-301 | NCT05444894 and NCT04853576 | Editas Medicine | n/a |
SCD/TDT | HBG1/2 | ABE8s | Electroporation in CD34+ human cells, ex vivo | 60% | None | n/a | n/a | n/a | [67] |
SCD/TDT | HBB | ABE8e | Electroporation in CD34+ human cells, ex vivo | 68% | 2% bystander | n/a | n/a | n/a | [68] |
SCD/TDT | n/a | ABE | LNPs anti-CD117, in vivo | n/a | n/a | n/a | n/a | n/a | [69] |
SCD/TDT | HBB | PE3 | Microinjection in mouse IVS-II-654 zygotes, ex vivo | 14% | None in HEK293T cells | n/a | n/a | n/a | [70] |
SCD/TDT | HBB | PE5max | HDAd5/35++ in mouse CD46/Townes, in vivo | 40% | 1.5% on-target indels | n/a | n/a | n/a | [71] |
Severe combined immunodeficiency (SCID) | CD3D | ABE8e and ABEmax | Electroporation in CD34+ CD3D-humanized mouse cells, ex vivo | 88% | ABE8e 50% bystander; ABEmax 1.4% bystander | n/a | n/a | n/a | [72] |
Chronic Granulomatous Disease (CGD) | NCF1 | PE | Electroporation in CD34+ human cells, ex vivo | 75% | None | n/a | n/a | n/a | [73] |
Hemophilia | Serpinc1 | SpCas9 nuclease | LNP in mouse F8I22I and F9Mut, in vivo | 22–38% | None | n/a | n/a | n/a | [74] |
Hemophilia | Serpinc1 and F9 | SpCas9 nuclease | LNP and AAV8 in mouse F9Mut, in vivo | 20% indel; 3% knockin | None | n/a | n/a | n/a | [75] |
Hemophilia | Serpinc1 and F8 | SpCas9 nuclease | LNP and AAV8 in mouse F8I22I, in vivo | 30% indel; 0.13% knockin | n/a | n/a | n/a | n/a | [76] |
6.1.2. Severe Combined Immunodeficiency
6.1.3. Chronic Granulomatous Disease
6.1.4. Hemophilia
6.2. Neurological Disorders
6.2.1. Amyotrophic Lateral Sclerosis
Disease | Target Gene | Editor | Delivery | Editing Efficiency | Significant Unintended Edits | Drug | Clinical Trials | Sponsor | Reference |
---|---|---|---|---|---|---|---|---|---|
Amyotrophic lateral sclerosis (ALS) | SOD1 | SaCas9 nuclease | AAV9 in mouse SOD1G93A, in vivo | 0.4% | None | n/a | n/a | n/a | [79] |
ALS | SOD1 | SaCas9 nuclease | AAV9 in mouse SOD1G93A, in vivo | ~1.5% | None | n/a | n/a | n/a | [80] |
ALS | SOD1 | CBE | Split-intein dual-AAV9 in mouse SOD1G93A, in vivo | 1.2% | None; (Off-target RNA not looked) | n/a | n/a | n/a | [81] |
Alzheimer’s disease (AD) | APP | SpCas9 nuclease | AAV9 in mouse APPswe, in vivo | 2% | n/a | n/a | n/a | n/a | [82] |
AD | Bace1 | Cas9 nuclease | Amphiphilic nanocomplex in mouse 5XFAD, in vivo | 45% | None | n/a | n/a | n/a | [83] |
AD | MAPT | NG-ABE8e | Trans-splicing AAV9 in mouse PS19, in vivo | 5.7% | 0.35% bystander | n/a | n/a | n/a | [84] |
AD | APOE3 | v3em PE3 | Split-intein dual-AAV9 in mouse APOE3, in vivo | 14% | 5% on-target indels | n/a | n/a | n/a | [50] |
Huntington’s disease (HD) | HTT | SpCas9 nuclease | Dual-AAV2 in mouse BacHD, in vivo | n/a | None | n/a | n/a | n/a | [85] |
HD | HTT | Cas9 nuclease | Dual-AAV in mouse HD140Q-KI, in vivo | n/a | None | n/a | n/a | n/a | [86] |
HD | HTT | SaCas9 nuclease | AAV1 in mouse R6/2, in vivo | 6% | None | n/a | n/a | n/a | [87] |
HD | HTT | dCas9-KRAB | Lentivirus in mouse R6/2, in vivo | n/a | None | n/a | n/a | n/a | [88] |
Niemann-Pick disease type C (NPC) | Npc1 | CBE | Split-intein dual-AAV9 in mouse Npc1I1061T, in vivo | 48% | None; (Off-target RNA not looked) | n/a | n/a | n/a | [89] |
Leber congenital amaurosis (LCA) 2 | Rpe65 | NG-ABE | Split dual-AAV2 in mouse rd12, in vivo | 82% | 21% bystander | n/a | n/a | n/a | [90] |
LCA2 | Rpe65 | SpCas9-NG nuclease (HDR) | Trans-splicing AAV2 in mouse rd12, in vivo | 1% | 17% indels | n/a | n/a | n/a | [91] |
LCA2 | Rpe65 | SpCas9-NG-PE2 | Trans-splicing AAV2 in mouse rd12, in vivo | 28% | None | n/a | n/a | n/a | [91] |
LCA2 | Rpe65 | PE3 | Split dual-AAV8 in mouse rd12, in vivo | 16% | None | n/a | n/a | n/a | [92] |
LCA10 | CEP290 | SaCas9 nuclease | AAV5 in mouse and monkey CEP290, in vivo | Above therapeutic threshold | None | EDIT-101 | NCT03872479 | Editas Medicine | [93] |
Retinitis pigmentosa (RP) | Pde6b | PE-SpRY | Split Npu intein dual-AAV in mouse Pde6brd10, in vivo | 76% in transduced cells | None | n/a | n/a | n/a | [94] |
RP | Rho | Cas12f1 nuclease | AAV in mouse RhoP23H, in vivo | 70% in transduced cells | Minimal bystander | ZVS203e | NCT05805007 | Peking University Third Hospital | [95] |
Congenital hearing loss | OTOF | dCas13X | AAV9 in mouse OTOFQ829X, in vivo | 80% | None | HG205 | NCT06025032 | HuidaGene Therapeutics | [96] |
Congenital hearing loss | Htra2 | CasRx | AAV-PHP.eB in mouse model, in vivo | 82% knockdown | Low | n/a | n/a | n/a | [97] |
Congenital hearing loss | Myo6 | dCas13X.1-ABE (mxABE) | AAV-PHP.eB in mouse Myo6C442Y/+, in vivo | 4% | None | n/a | n/a | n/a | [98] |
6.2.2. Alzheimer’s Disease
6.2.3. Huntington’s Disease
6.2.4. Niemann-Pick Disease
6.3. Ophthalmic Disorders
6.3.1. Leber Congenital Amaurosis
6.3.2. Retinitis Pigmentosa
6.4. Auditory Disorders
6.5. Muscular Disorders
6.5.1. Duchenne Muscular Dystrophy
Disease | Target Gene | Editor | Delivery | Editing Efficiency | Significant Unintended Edits | Drug | Clinical Trials | Sponsor | Reference |
---|---|---|---|---|---|---|---|---|---|
Duchenne muscular dystrophy (DMD) | Dmd | Cas9 nuclease (HDR) | Injection into mouse mdx germ line cells, ex vivo | 2–100% | Low | n/a | n/a | n/a | [101] |
DMD | Dmd | SaCas9 nuclease | AAV8 in mouse mdx, in vivo | 2% | 3% on- and 1% off-target indels | n/a | n/a | n/a | [102] |
DMD | Dmd | SaCas9 nuclease | AAV9 | 39% | Minimal | n/a | n/a | n/a | [104] |
DMD | Dmd | SpCas9 nuclease | AAV9 | n/a | None | n/a | n/a | n/a | [105] |
DMD | Dmd | SpCas9 nuclease | AAV9 in dog deltaE50-MD, in vivo | 10% | None | n/a | n/a | n/a | [106] |
DMD | Dmd | ABE | Split dual trans-splicing AAV in mouse Dmd, in vivo | 3% | None | n/a | n/a | n/a | [107] |
DMD | Dmd | SaCas9 nuclease | myoAAV 1A in mouse mdx, in vivo | 25% | n/a | n/a | n/a | n/a | [108] |
DMD | Dmd | ABEmax | Split-intein dual-AAV9 in mouse ∆Ex51, in vivo | 35% | 11% bystander | n/a | n/a | n/a | [109] |
DMD | Dmd | PE3 | Nucleofection in iPSCs, ex vivo | 54% | n/a | n/a | n/a | n/a | [109] |
DMD | Dmd | twinPE | Transfection in HEK293 cells, ex vivo | 28% | 5% on-target indels | n/a | n/a | n/a | [51] |
DMD | Dmd | adRNAs | Dual-adRNA-AAV8 in mouse mdx, in vivo | 3.6% | High off-target edits in HEK293 cells | n/a | n/a | n/a | [110] |
DMD | DMD | dCas13X.1-ABE (mxABE) | AAV9 in mouse DMDE30mut, in vivo | 84% | Constant bystander edits | n/a | n/a | n/a | [111] |
Spinal muscular atrophy (SMA) | SMN1/2 | ABE8e | Split-intein dual-AAV9 in mouse Δ7SMA, in vivo | 87% | Low indels and bystander | n/a | n/a | n/a | [112] |
SMA | SMN1/2 | PE3 | Nucleofection in iPSCs, ex vivo | 29% | None | n/a | n/a | n/a | [113] |
Cardiomyopathy | RBM20 | VRQR-SpCas9-ABEmax | Nucleofection in iPSCs, ex vivo | 92% | None | n/a | n/a | n/a | [114] |
Cardiomyopathy | RBM20 | PE3b | Nucleofection in iPSCs, ex vivo | 40% | None | n/a | n/a | n/a | [114] |
Cardiomyopathy | Rbm20 | VRQR-SpCas9-ABEmax- | AAV9 in mouse Rbm20R636Q, in vivo | 66% | Low bystander and off-target DNA; no off-target RNA | n/a | n/a | n/a | [114] |
Cardiomyopathy | PLN | SaCas9 nuclease | AAV9 in mouse hPLN-R14del, in vivo | Reduction from 51% to 39% in mutant alleles | Low | n/a | n/a | n/a | [115] |
Cardiomyopathy | Myh6 | ABE8e | Split-intein dual-AAV9 in mouse 129SvEv, in vivo | 70% | 3.4% bystander in DNA, 5% bystander in RNA, no off-target RNA | n/a | n/a | n/a | [116] |
Cardiomyopathy | Myh6 | VRQR-SpCas9-ABEmax- | Split-intein dual-AAV9 in mouse Myh6h403/h403, in vivo | 35% | None | n/a | n/a | n/a | [117] |
RYR1 myopathies | RYR1 | PE3 | Electroporation in myoblasts, ex vivo | 59% | n/a | n/a | n/a | n/a | [118] |
6.5.2. Spinal Muscular Atrophy
6.5.3. Cardiomyopathy
6.6. Premature Aging Diseases
6.7. Metabolic Diseases
6.7.1. Hypercholesterolemia
6.7.2. Transthyretin Amyloidosis
6.7.3. Tyrosinemia
6.7.4. Alpha-1 Antitrypsin Deficiency
6.7.5. Phenylketonuria
6.7.6. Primary Hyperoxaluria Type 1
6.8. Immune Response Disorders
7. Safety Concerns, Ethical Considerations and Regulation
7.1. Off-Target Effects
7.2. Continuity of Expression
7.3. Ethical Considerations and Regulatory Frameworks
7.3.1. Germline Editing
7.3.2. Regulatory Frameworks
8. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smithies, O.; Gregg, R.G.; Boggs, S.S.; Koralewski, M.A.; Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 1985, 317, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Perrouault, L.; Asseline, U.; Rivalle, C.; Thuong, N.T.; Bisagni, E.; Giovannangeli, C.; Le Doan, T.; Helene, C. Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides. Nature 1990, 344, 358–360. [Google Scholar] [CrossRef]
- Rouet, P.; Smih, F.; Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 1994, 14, 8096–8106. [Google Scholar] [CrossRef]
- Smith, H.O.; Wilcox, K.W. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 1970, 51, 379–391. [Google Scholar] [CrossRef]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Bitinaite, J.; Wah, D.A.; Aggarwal, A.K.; Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 1998, 95, 10570–10575. [Google Scholar] [CrossRef]
- Urnov, F.D.; Miller, J.C.; Lee, Y.L.; Beausejour, C.M.; Rock, J.M.; Augustus, S.; Jamieson, A.C.; Porteus, M.H.; Gregory, P.D.; Holmes, M.C.; et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005, 435, 646–651. [Google Scholar] [CrossRef]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J. RNA-programmed genome editing in human cells. eLife 2013, 2, e00471. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef]
- Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. [Google Scholar] [CrossRef]
- Mojica, F.J.; Diez-Villasenor, C.; Garcia-Martinez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 2006, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Adler, B.A.; Trinidad, M.I.; Bellieny-Rabelo, D.; Zhang, E.; Karp, H.M.; Skopintsev, P.; Thornton, B.W.; Weissman, R.F.; Yoon, P.H.; Chen, L.; et al. CasPEDIA Database: A functional classification system for class 2 CRISPR-Cas enzymes. Nucleic Acids Res. 2024, 52, D590–D596. [Google Scholar] [CrossRef]
- Nishimasu, H.; Ran, F.A.; Hsu, P.D.; Konermann, S.; Shehata, S.I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949. [Google Scholar] [CrossRef]
- Lopes, R.; Prasad, M.K. Beyond the promise: Evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front. Bioeng. Biotechnol. 2023, 11, 1339189. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- Frischmeyer, P.A.; Dietz, H.C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 1999, 8, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Deneault, E.; Abdian, N.; You, Z.; Sirois, J.; Nicouleau, M.; Shlaifer, I.; Villegas, L.; Boivin, M.N.; Gaborieau, L.; et al. Generation of patient-derived pluripotent stem cell-lines and CRISPR modified isogenic controls with mutations in the Parkinson’s associated GBA gene. Stem Cell Res. 2022, 64, 102919. [Google Scholar] [CrossRef] [PubMed]
- Deneault, E.; Chaineau, M.; Nicouleau, M.; Castellanos Montiel, M.J.; Franco Flores, A.K.; Haghi, G.; Chen, C.X.; Abdian, N.; Shlaifer, I.; Beitel, L.K.; et al. A streamlined CRISPR workflow to introduce mutations and generate isogenic iPSCs for modeling amyotrophic lateral sclerosis. Methods 2022, 203, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Faheem, M.; Deneault, E.; Alexandrova, R.; Rodrigues, D.C.; Pellecchia, G.; Shum, C.; Zarrei, M.; Piekna, A.; Wei, W.; Howe, J.L.; et al. Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons. BMC Med. Genom. 2023, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Lepine, S.; Nauleau-Javaudin, A.; Deneault, E.; Chen, C.X.; Abdian, N.; Franco-Flores, A.K.; Haghi, G.; Castellanos-Montiel, M.J.; Maussion, G.; Chaineau, M.; et al. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons. iScience 2024, 27, 109166. [Google Scholar] [CrossRef]
- Maussion, G.; Rocha, C.; Abdian, N.; Yang, D.; Turk, J.; Carrillo Valenzuela, D.; Pimentel, L.; You, Z.; Morquette, B.; Nicouleau, M.; et al. Transcriptional Dysregulation and Impaired Neuronal Activity in FMR1 Knock-Out and Fragile X Patients’ iPSC-Derived Models. Int. J. Mol. Sci. 2023, 24, 14926. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.V.; Sirois, J.; Ramamurthy, J.; Mathur, M.; Lepine, P.; Deneault, E.; Maussion, G.; Nicouleau, M.; Chen, C.X.; Abdian, N.; et al. Midbrain organoids with an SNCA gene triplication model key features of synucleinopathy. Brain Commun. 2021, 3, fcab223. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380–1389. [Google Scholar] [CrossRef]
- Deneault, E.; Faheem, M.; White, S.H.; Rodrigues, D.C.; Sun, S.; Wei, W.; Piekna, A.; Thompson, T.; Howe, J.L.; Chalil, L.; et al. CNTN5(-)(/+)or EHMT2(-)(/+)human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. eLife 2019, 8, 40092. [Google Scholar] [CrossRef] [PubMed]
- Deneault, E.; White, S.H.; Rodrigues, D.C.; Ross, P.J.; Faheem, M.; Zaslavsky, K.; Wang, Z.; Alexandrova, R.; Pellecchia, G.; Wei, W.; et al. Complete Disruption of Autism-Susceptibility Genes by Gene Editing Predominantly Reduces Functional Connectivity of Isogenic Human Neurons. Stem Cell Rep. 2018, 11, 1211–1225. [Google Scholar] [CrossRef]
- Murtaza, N.; Cheng, A.A.; Brown, C.O.; Meka, D.P.; Hong, S.; Uy, J.A.; El-Hajjar, J.; Pipko, N.; Unda, B.K.; Schwanke, B.; et al. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep. 2022, 41, 111678. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.J.; Zhang, W.B.; Mok, R.S.F.; Zaslavsky, K.; Deneault, E.; D’Abate, L.; Rodrigues, D.C.; Yuen, R.K.C.; Faheem, M.; Mufteev, M.; et al. Synaptic Dysfunction in Human Neurons With Autism-Associated Deletions in PTCHD1-AS. Biol. Psychiatry 2020, 87, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Woodbury-Smith, M.; Deneault, E.; Yuen, R.K.C.; Walker, S.; Zarrei, M.; Pellecchia, G.; Howe, J.L.; Hoang, N.; Uddin, M.; Marshall, C.R.; et al. Mutations in RAB39B in individuals with intellectual disability, autism spectrum disorder, and macrocephaly. Mol. Autism 2017, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, K.; Zhang, W.B.; McCready, F.P.; Rodrigues, D.C.; Deneault, E.; Loo, C.; Zhao, M.; Ross, P.J.; El Hajjar, J.; Romm, A.; et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat. Neurosci. 2019, 22, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, B.; Chen, L.; Xie, L.; Yu, W.; Wang, Y.; Li, L.; Yin, S.; Yang, L.; Hu, H.; et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 2020, 38, 856–860. [Google Scholar] [CrossRef]
- Chen, L.; Hong, M.; Luan, C.; Gao, H.; Ru, G.; Guo, X.; Zhang, D.; Zhang, S.; Li, C.; Wu, J.; et al. Adenine transversion editors enable precise, efficient A*T-to-C*G base editing in mammalian cells and embryos. Nat. Biotechnol. 2024, 42, 638–650. [Google Scholar] [CrossRef]
- Chen, L.; Park, J.E.; Paa, P.; Rajakumar, P.D.; Prekop, H.T.; Chew, Y.T.; Manivannan, S.N.; Chew, W.L. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 2021, 12, 1384. [Google Scholar] [CrossRef] [PubMed]
- Koblan, L.W.; Arbab, M.; Shen, M.W.; Hussmann, J.A.; Anzalone, A.V.; Doman, J.L.; Newby, G.A.; Yang, D.; Mok, B.; Replogle, J.M.; et al. Efficient C*G-to-G*C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 2021, 39, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Kurt, I.C.; Zhou, R.; Iyer, S.; Garcia, S.P.; Miller, B.R.; Langner, L.M.; Grunewald, J.; Joung, J.K. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 2021, 39, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, J.; Li, S.; Xin, X.; Hu, M.; Price, M.A.; Rosser, S.J.; Bi, C.; Zhang, X. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 2021, 39, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, J.; Zhou, R.; Garcia, S.P.; Iyer, S.; Lareau, C.A.; Aryee, M.J.; Joung, J.K. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 2019, 569, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Sun, Y.; Yan, R.; Liu, Y.; Zuo, E.; Gu, C.; Han, L.; Wei, Y.; Hu, X.; Zeng, R.; et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 2019, 571, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.J.; Hussmann, J.A.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.F.; Chen, C.; Nelson, J.W.; Newby, G.A.; Sahin, M.; et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021, 184, 5635–5652.e29. [Google Scholar] [CrossRef] [PubMed]
- Doman, J.L.; Pandey, S.; Neugebauer, M.E.; An, M.; Davis, J.R.; Randolph, P.B.; McElroy, A.; Gao, X.D.; Raguram, A.; Richter, M.F.; et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 2023, 186, 3983–4002.e26. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.R.; Banskota, S.; Levy, J.M.; Newby, G.A.; Wang, X.; Anzalone, A.V.; Nelson, A.T.; Chen, P.J.; Hennes, A.D.; An, M.; et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. 2024, 42, 253–264. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Gao, X.D.; Podracky, C.J.; Nelson, A.T.; Koblan, L.W.; Raguram, A.; Levy, J.M.; Mercer, J.A.M.; Liu, D.R. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 2022, 40, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Yarnall, M.T.N.; Ioannidi, E.I.; Schmitt-Ulms, C.; Krajeski, R.N.; Lim, J.; Villiger, L.; Zhou, W.; Jiang, K.; Garushyants, S.K.; Roberts, N.; et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 2023, 41, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Lampe, G.D.; King, R.T.; Halpin-Healy, T.S.; Klompe, S.E.; Hogan, M.I.; Vo, P.L.H.; Tang, S.; Chavez, A.; Sternberg, S.H. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol. 2024, 42, 87–98. [Google Scholar] [CrossRef]
- Tou, C.J.; Orr, B.; Kleinstiver, B.P. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat. Biotechnol. 2023, 41, 968–979. [Google Scholar] [CrossRef]
- Wannier, T.M.; Ciaccia, P.N.; Ellington, A.D.; Filsinger, G.T.; Isaacs, F.J.; Javanmardi, K.; Jones, M.A.; Kunjapur, A.M.; Nyerges, A.; Pal, C.; et al. Recombineering and MAGE. Nat. Rev. Methods Primers 2021, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Villiger, L.; Joung, J.; Koblan, L.; Weissman, J.; Abudayyeh, O.O.; Gootenberg, J.S. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef]
- Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Zhou, J.; Xu, B.; Zhang, H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171. [Google Scholar] [CrossRef]
- Ran, F.A.; Cong, L.; Yan, W.X.; Scott, D.A.; Gootenberg, J.S.; Kriz, A.J.; Zetsche, B.; Shalem, O.; Wu, X.; Makarova, K.S.; et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520, 186–191. [Google Scholar] [CrossRef]
- Zufferey, R.; Dull, T.; Mandel, R.J.; Bukovsky, A.; Quiroz, D.; Naldini, L.; Trono, D. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 1998, 72, 9873–9880. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian Farsani, A.; Mokhtari, N.; Nooraei, S.; Bahrulolum, H.; Akbari, A.; Farsani, Z.M.; Khatami, S.; Ebadi, M.S.; Ahmadian, G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024, 10, e24606. [Google Scholar] [CrossRef] [PubMed]
- Bottger, R.; Pauli, G.; Chao, P.H.; Al Fayez, N.; Hohenwarter, L.; Li, S.D. Lipid-based nanoparticle technologies for liver targeting. Adv. Drug Deliv. Rev. 2020, 154–155, 79–101. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C. The world’s first CRISPR therapy is approved: Who will receive it? Nat. Biotechnol. 2024, 42, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Gaudelli, N.M.; Lam, D.K.; Rees, H.A.; Sola-Esteves, N.M.; Barrera, L.A.; Born, D.A.; Edwards, A.; Gehrke, J.M.; Lee, S.J.; Liquori, A.J.; et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 2020, 38, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Newby, G.A.; Yen, J.S.; Woodard, K.J.; Mayuranathan, T.; Lazzarotto, C.R.; Li, Y.; Sheppard-Tillman, H.; Porter, S.N.; Yao, Y.; Mayberry, K.; et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021, 595, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Breda, L.; Papp, T.E.; Triebwasser, M.P.; Yadegari, A.; Fedorky, M.T.; Tanaka, N.; Abdulmalik, O.; Pavani, G.; Wang, Y.; Grupp, S.A.; et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 2023, 381, 436–443. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, R.; Fei, J.; Chen, H.; Lu, D. Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing. Int. J. Mol. Sci. 2022, 23, 5948. [Google Scholar] [CrossRef]
- Li, C.; Georgakopoulou, A.; Newby, G.A.; Chen, P.J.; Everette, K.A.; Paschoudi, K.; Vlachaki, E.; Gil, S.; Anderson, A.K.; Koob, T.; et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 2023, 141, 2085–2099. [Google Scholar] [CrossRef] [PubMed]
- McAuley, G.E.; Yiu, G.; Chang, P.C.; Newby, G.A.; Campo-Fernandez, B.; Fitz-Gibbon, S.T.; Wu, X.; Kang, S.L.; Garibay, A.; Butler, J.; et al. Human T cell generation is restored in CD3delta severe combined immunodeficiency through adenine base editing. Cell 2023, 186, 1398–1416.e23. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.M.; Orenstein, J.S.; Tedeschi, J.G.; Ng, A.; Collier, M.D.; Kushakji, J.; Wilhelm, A.J.; Taylor, A.; Waterman, D.P.; De Ravin, S.S.; et al. Prime Editing Efficiently and Precisely Corrects Causative Mutation in Chronic Granulomatous Disease, Restoring Myeloid Function: Toward Development of a Prime Edited Autologous Hematopoietic Stem Cell Therapy. Blood 2023, 142, 7129. [Google Scholar] [CrossRef]
- Han, J.P.; Kim, M.; Choi, B.S.; Lee, J.H.; Lee, G.S.; Jeong, M.; Lee, Y.; Kim, E.A.; Oh, H.K.; Go, N.; et al. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 2022, 8, eabj6901. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Han, J.P.; Song, D.W.; Lee, G.S.; Choi, B.S.; Kim, M.; Lee, Y.; Kim, S.; Lee, H.; Yeom, S.C. In vivo genome editing for hemophilia B therapy by the combination of rebalancing and therapeutic gene knockin using a viral and non-viral vector. Mol. Ther. Nucleic Acids 2023, 32, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Han, J.P.; Lee, Y.; Lee, J.H.; Chung, H.Y.; Lee, G.S.; Nam, Y.R.; Choi, M.; Moon, K.S.; Lee, H.; Lee, H.; et al. In vivo genome editing using 244-cis LNPs and low-dose AAV achieves therapeutic threshold in hemophilia A mice. Mol. Ther. Nucleic Acids 2023, 34, 102050. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001, 344, 1688–1700. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Ojala, D.S.; Ekman, F.K.; Byrne, L.C.; Limsirichai, P.; Schaffer, D.V. In vivo genome editing improves motor function and extends survival in a mouse model of ALS. Sci. Adv. 2017, 3, eaar3952. [Google Scholar] [CrossRef]
- Duan, W.; Guo, M.; Yi, L.; Liu, Y.; Li, Z.; Ma, Y.; Zhang, G.; Liu, Y.; Bu, H.; Song, X.; et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020, 27, 157–169. [Google Scholar] [CrossRef]
- Lim, C.K.W.; Gapinske, M.; Brooks, A.K.; Woods, W.S.; Powell, J.E.; Zeballos, C.M.; Winter, J.; Perez-Pinera, P.; Gaj, T. Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol. Ther. 2020, 28, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Gyorgy, B.; Loov, C.; Zaborowski, M.P.; Takeda, S.; Kleinstiver, B.P.; Commins, C.; Kastanenka, K.; Mu, D.; Volak, A.; Giedraitis, V.; et al. CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer’s Disease. Mol. Ther. Nucleic Acids 2018, 11, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Oh, J.; Shim, G.; Cho, B.; Chang, Y.; Kim, S.; Baek, S.; Kim, H.; Shin, J.; Choi, H.; et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.S.; Kwon, E.; Song, M.H.; Jeon, S.H.; Kim, N.; Lee, J.K.; Koo, T. CRISPR base editing-mediated correction of a tau mutation rescues cognitive decline in a mouse model of tauopathy. Transl. Neurodegener. 2024, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Monteys, A.M.; Ebanks, S.A.; Keiser, M.S.; Davidson, B.L. CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo. Mol. Ther. 2017, 25, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chang, R.; Yang, H.; Zhao, T.; Hong, Y.; Kong, H.E.; Sun, X.; Qin, Z.; Jin, P.; Li, S.; et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Investig. 2017, 127, 2719–2724. [Google Scholar] [CrossRef]
- Ekman, F.K.; Ojala, D.S.; Adil, M.M.; Lopez, P.A.; Schaffer, D.V.; Gaj, T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington’s Disease Mouse Model. Mol. Ther. Nucleic Acids 2019, 17, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Shin, J.H.; Lee, J.; Kim, D.; Hwang, H.Y.; Nam, B.G.; Lee, J.; Kim, H.H.; Cho, S.R. DNA double-strand break-free CRISPR interference delays Huntington’s disease progression in mice. Commun. Biol. 2023, 6, 466. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.M.; Yeh, W.H.; Pendse, N.; Davis, J.R.; Hennessey, E.; Butcher, R.; Koblan, L.W.; Comander, J.; Liu, Q.; Liu, D.R. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 2020, 4, 97–110. [Google Scholar] [CrossRef]
- Choi, E.H.; Suh, S.; Foik, A.T.; Leinonen, H.; Newby, G.A.; Gao, X.D.; Banskota, S.; Hoang, T.; Du, S.W.; Dong, Z.; et al. In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nat. Commun. 2022, 13, 1830. [Google Scholar] [CrossRef]
- Jang, H.; Jo, D.H.; Cho, C.S.; Shin, J.H.; Seo, J.H.; Yu, G.; Gopalappa, R.; Kim, D.; Cho, S.R.; Kim, J.H.; et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat. Biomed. Eng. 2022, 6, 181–194. [Google Scholar] [CrossRef] [PubMed]
- She, K.; Liu, Y.; Zhao, Q.; Jin, X.; Yang, Y.; Su, J.; Li, R.; Song, L.; Xiao, J.; Yao, S.; et al. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct. Target. Ther. 2023, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Chao, H.; Ciulla, D.M.; DaSilva, J.A.; et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019, 25, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zhang, W.; Zhang, S.; Feng, Y.; Xu, W.; Qi, J.; Zhang, Q.; Xu, C.; Liu, S.; Zhang, J.; et al. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J. Exp. Med. 2023, 220, e20220776. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Cai, B.; Tian, Y.; Liu, X.; Liang, C.; Gao, Q.; Li, B.; Ding, Y.; Li, R.; Zhou, Q.; et al. Therapeutic In Vivo Gene Editing Achieved by a Hypercompact CRISPR-Cas12f1 System Delivered with All-in-One Adeno-Associated Virus. Adv. Sci. 2024, 2308095. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Tao, Y.; Wang, X.; Wang, X.; Shu, Y.; Liu, Y.; Kang, W.; Chen, S.; Cheng, Z.; Yan, B.; et al. RNA base editing therapy cures hearing loss induced by OTOF gene mutation. Mol. Ther. 2023, 31, 3520–3530. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Han, L.; Han, S.; Tang, H.; Wang, S.; Cui, C.; Chen, B.; Li, H.; Shu, Y. Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice. Mol. Ther. Nucleic Acids 2022, 28, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Xu, Z.; Xue, Y.; Xu, C.; Han, L.; Liu, Y.; Wang, F.; Zhang, R.; Han, S.; Wang, X.; et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor. Sci. Transl. Med. 2022, 14, eabn0449. [Google Scholar] [CrossRef] [PubMed]
- Mullan, M.; Crawford, F.; Axelman, K.; Houlden, H.; Lilius, L.; Winblad, B.; Lannfelt, L. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat. Genet. 1992, 1, 345–347. [Google Scholar] [CrossRef]
- MacDonald, M.E.; Christine, M.A.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Long, C.; McAnally, J.R.; Shelton, J.M.; Mireault, A.A.; Bassel-Duby, R.; Olson, E.N. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014, 345, 1184–1188. [Google Scholar] [CrossRef]
- Nelson, C.E.; Hakim, C.H.; Ousterout, D.G.; Thakore, P.I.; Moreb, E.A.; Castellanos Rivera, R.M.; Madhavan, S.; Pan, X.; Ran, F.A.; Yan, W.X.; et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016, 351, 403–407. [Google Scholar] [CrossRef] [PubMed]
- van Putten, M.; Hulsker, M.; Young, C.; Nadarajah, V.D.; Heemskerk, H.; van der Weerd, L.; t Hoen, P.A.; van Ommen, G.J.; Aartsma-Rus, A.M. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice. FASEB J. 2013, 27, 2484–2495. [Google Scholar] [CrossRef] [PubMed]
- Tabebordbar, M.; Zhu, K.; Cheng, J.K.W.; Chew, W.L.; Widrick, J.J.; Yan, W.X.; Maesner, C.; Wu, E.Y.; Xiao, R.; Ran, F.A.; et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016, 351, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Amoasii, L.; Mireault, A.A.; McAnally, J.R.; Li, H.; Sanchez-Ortiz, E.; Bhattacharyya, S.; Shelton, J.M.; Bassel-Duby, R.; Olson, E.N. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016, 351, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Amoasii, L.; Hildyard, J.C.W.; Li, H.; Sanchez-Ortiz, E.; Mireault, A.; Caballero, D.; Harron, R.; Stathopoulou, T.R.; Massey, C.; Shelton, J.M.; et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018, 362, 86–91. [Google Scholar] [CrossRef]
- Ryu, S.M.; Koo, T.; Kim, K.; Lim, K.; Baek, G.; Kim, S.T.; Kim, H.S.; Kim, D.E.; Lee, H.; Chung, E.; et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 2018, 36, 536–539. [Google Scholar] [CrossRef]
- Tabebordbar, M.; Lagerborg, K.A.; Stanton, A.; King, E.M.; Ye, S.; Tellez, L.; Krunnfusz, A.; Tavakoli, S.; Widrick, J.J.; Messemer, K.A.; et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021, 184, 4919–4938.e22. [Google Scholar] [CrossRef]
- Chemello, F.; Chai, A.C.; Li, H.; Rodriguez-Caycedo, C.; Sanchez-Ortiz, E.; Atmanli, A.; Mireault, A.A.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 2021, 7, eabg4910. [Google Scholar] [CrossRef]
- Katrekar, D.; Chen, G.; Meluzzi, D.; Ganesh, A.; Worlikar, A.; Shih, Y.R.; Varghese, S.; Mali, P. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 2019, 16, 239–242. [Google Scholar] [CrossRef]
- Li, G.; Jin, M.; Li, Z.; Xiao, Q.; Lin, J.; Yang, D.; Liu, Y.; Wang, X.; Xie, L.; Ying, W.; et al. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J. Clin. Investig. 2023, 133, e162809. [Google Scholar] [CrossRef] [PubMed]
- Arbab, M.; Matuszek, Z.; Kray, K.M.; Du, A.; Newby, G.A.; Blatnik, A.J.; Raguram, A.; Richter, M.F.; Zhao, K.T.; Levy, J.M.; et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023, 380, eadg6518. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Tang, S.; Duan, N.; Xie, M.; Li, Z.; Feng, M.; Wu, L.; Hu, Z.; Liang, D. Targeted-Deletion of a Tiny Sequence via Prime Editing to Restore SMN Expression. Int. J. Mol. Sci. 2022, 23, 7941. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Zhang, Y.; Cui, M.; Li, H.; Sanchez-Ortiz, E.; McAnally, J.R.; Tan, W.; Kim, J.; Chen, K.; Xu, L.; et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 2022, 14, eade1633. [Google Scholar] [CrossRef] [PubMed]
- Dave, J.; Raad, N.; Mittal, N.; Zhang, L.; Fargnoli, A.; Oh, J.G.; Savoia, M.E.; Hansen, J.; Fava, M.; Yin, X.; et al. Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: Modelling a European cardiomyopathy with global impact. Cardiovasc. Res. 2022, 118, 3140–3150. [Google Scholar] [CrossRef] [PubMed]
- Reichart, D.; Newby, G.A.; Wakimoto, H.; Lun, M.; Gorham, J.M.; Curran, J.J.; Raguram, A.; DeLaughter, D.M.; Conner, D.A.; Marsiglia, J.D.C.; et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 2023, 29, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Chai, A.C.; Cui, M.; Chemello, F.; Li, H.; Chen, K.; Tan, W.; Atmanli, A.; McAnally, J.R.; Zhang, Y.; Xu, L.; et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 2023, 29, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Godbout, K.; Rousseau, J.; Tremblay, J.P. Successful Correction by Prime Editing of a Mutation in the RYR1 Gene Responsible for a Myopathy. Cells 2023, 13, 31. [Google Scholar] [CrossRef]
- Weinmann, J.; Weis, S.; Sippel, J.; Tulalamba, W.; Remes, A.; El Andari, J.; Herrmann, A.K.; Pham, Q.H.; Borowski, C.; Hille, S.; et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 2020, 11, 5432. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yan, T.; Chen, H.; Wang, J.; Wang, Y.; Yang, Y.; Xiang, L.; Chi, Z.; Ren, K.; et al. Adenine base editor-mediated splicing remodeling activates noncanonical splice sites. J. Biol. Chem. 2023, 299, 105442. [Google Scholar] [CrossRef]
- Eriksson, M.; Brown, W.T.; Gordon, L.B.; Glynn, M.W.; Singer, J.; Scott, L.; Erdos, M.R.; Robbins, C.M.; Moses, T.Y.; Berglund, P.; et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003, 423, 293–298. [Google Scholar] [CrossRef]
- Koblan, L.W.; Erdos, M.R.; Wilson, C.; Cabral, W.A.; Levy, J.M.; Xiong, Z.M.; Tavarez, U.L.; Davison, L.M.; Gete, Y.G.; Mao, X.; et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021, 589, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Chadwick, A.C.; Mizoguchi, T.; Garcia, S.P.; DeNizio, J.E.; Reiss, C.W.; Wang, K.; Iyer, S.; Dutta, C.; Clendaniel, V.; et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021, 593, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Rothgangl, T.; Dennis, M.K.; Lin, P.J.C.; Oka, R.; Witzigmann, D.; Villiger, L.; Qi, W.; Hruzova, M.; Kissling, L.; Lenggenhager, D.; et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 2021, 39, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Cappelluti, M.A.; Mollica Poeta, V.; Valsoni, S.; Quarato, P.; Merlin, S.; Merelli, I.; Lombardo, A. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 2024, 627, 416–423. [Google Scholar] [CrossRef]
- Qiu, M.; Glass, Z.; Chen, J.; Haas, M.; Jin, X.; Zhao, X.; Rui, X.; Ye, Z.; Li, Y.; Zhang, F.; et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl. Acad. Sci. USA 2021, 118, e2020401118. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Q.; Jiang, T.; Richter, M.; Rhym, L.H.; Koblan, L.W.; Zafra, M.P.; Schatoff, E.M.; Doman, J.L.; Cao, Y.; Dow, L.E.; et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 2020, 4, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Dong, X.; Cheng, H.; Zheng, C.; Chen, Z.; Rodriguez, T.C.; Liang, S.Q.; Xue, W.; Sontheimer, E.J. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 2022, 40, 1388–1393. [Google Scholar] [CrossRef]
- Kim, Y.; Hong, S.A.; Yu, J.; Eom, J.; Jang, K.; Yoon, S.; Hong, D.H.; Seo, D.; Lee, S.N.; Woo, J.S.; et al. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell 2021, 28, 1614–1624.e5. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, X.O.; Weng, Z.; Xue, W. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 2022, 40, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Q.; Wang, D.; Jiang, T.; O’Connor, K.; Tang, Q.; Cai, L.; Li, X.; Weng, Z.; Yin, H.; Gao, G.; et al. In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency. Hum. Gene Ther. 2018, 29, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Sanchez, M.E.; Blomenkamp, K.; Corcoran, E.M.; Marco, E.; Yudkoff, C.J.; Jiang, H.; Teckman, J.H.; Bumcrot, D.; Albright, C.F. Amelioration of Alpha-1 Antitrypsin Deficiency Diseases with Genome Editing in Transgenic Mice. Hum. Gene Ther. 2018, 29, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.S.; Chowdhary, V.; Lung, G.; Cheng, L.I.; Aratyn-Schaus, Y.; Leboeuf, D.; Smith, S.; Shah, A.; Chen, D.; Zieger, M.; et al. Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency. Mol. Ther. 2022, 30, 1396–1406. [Google Scholar] [CrossRef]
- Liu, P.; Liang, S.Q.; Zheng, C.; Mintzer, E.; Zhao, Y.G.; Ponnienselvan, K.; Mir, A.; Sontheimer, E.J.; Gao, G.; Flotte, T.R.; et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 2021, 12, 2121. [Google Scholar] [CrossRef] [PubMed]
- Bock, D.; Rothgangl, T.; Villiger, L.; Schmidheini, L.; Matsushita, M.; Mathis, N.; Ioannidi, E.; Rimann, N.; Grisch-Chan, H.M.; Kreutzer, S.; et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 2022, 14, eabl9238. [Google Scholar] [CrossRef] [PubMed]
- Zabaleta, N.; Barberia, M.; Martin-Higueras, C.; Zapata-Linares, N.; Betancor, I.; Rodriguez, S.; Martinez-Turrillas, R.; Torella, L.; Vales, A.; Olague, C.; et al. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat. Commun. 2018, 9, 5454. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Manzaneda, S.; Ojeda-Perez, I.; Zabaleta, N.; Garcia-Torralba, A.; Alberquilla, O.; Torres, R.; Sanchez-Dominguez, R.; Torella, L.; Olivier, E.; Mountford, J.; et al. In Vitro and In Vivo Genetic Disease Modeling via NHEJ-Precise Deletions Using CRISPR-Cas9. Mol. Ther. Methods Clin. Dev. 2020, 19, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Torella, L.; Klermund, J.; Bilbao-Arribas, M.; Tamayo, I.; Andrieux, G.; Chmielewski, K.O.; Vales, A.; Olague, C.; Moreno-Luqui, D.; Raimondi, I.; et al. Efficient and safe therapeutic use of paired Cas9-nickases for primary hyperoxaluria type 1. EMBO Mol. Med. 2024, 16, 112–131. [Google Scholar] [CrossRef]
- Longhurst, H.J.; Lindsay, K.; Petersen, R.S.; Fijen, L.M.; Gurugama, P.; Maag, D.; Butler, J.S.; Shah, M.Y.; Golden, A.; Xu, Y.; et al. CRISPR-Cas9 In Vivo Gene Editing of KLKB1 for Hereditary Angioedema. N. Engl. J. Med. 2024, 390, 432–441. [Google Scholar] [CrossRef]
- Lee, R.G.; Mazzola, A.M.; Braun, M.C.; Platt, C.; Vafai, S.B.; Kathiresan, S.; Rohde, E.; Bellinger, A.M.; Khera, A.V. Efficacy and Safety of an Investigational Single-Course CRISPR Base-Editing Therapy Targeting PCSK9 in Nonhuman Primate and Mouse Models. Circulation 2023, 147, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Kasiewicz, L.N.; Biswas, S.; Beach, A.; Ren, H.; Dutta, C.; Mazzola, A.M.; Rohde, E.; Chadwick, A.; Cheng, C.; Garcia, S.P.; et al. GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 2023, 14, 2776. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; et al. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Rep. 2018, 22, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Fu, Z.C.; Li, X.; Wang, Y.; Wei, J.; Li, G.; Wang, L.; Wu, J.; Huang, X.; Yang, L.; et al. Genomic and Transcriptomic Analyses of Prime Editing Guide RNA-Independent Off-Target Effects by Prime Editors. CRISPR J. 2022, 5, 276–293. [Google Scholar] [CrossRef] [PubMed]
- Arezi, B.; Hogrefe, H.H. Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. Anal. Biochem. 2007, 360, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Klermund, J.; Rhiel, M.; Kocher, T.; Chmielewski, K.O.; Bischof, J.; Andrieux, G.; Gaz, M.E.; Hainzl, S.; Boerries, M.; Cornu, T.I.; et al. On- and off-target effects of paired CRISPR-Cas nickase in primary human cells. Mol. Ther. 2024. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.M.T.; Samson, C.A.; Rand, A.D.; Sheppard, H.M. Unintended CRISPR-Cas9 editing outcomes: A review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum. Genet. 2023, 142, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, C.T.; Deshpande, P.S.; Dever, D.P.; Camarena, J.; Lemgart, V.T.; Cromer, M.K.; Vakulskas, C.A.; Collingwood, M.A.; Zhang, L.; Bode, N.M.; et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 2019, 25, 249–254. [Google Scholar] [CrossRef]
- Wang, J.; Griffiths, E.; Tounekti, O.; Nemec, M.; Deneault, E.; Lavoie, J.R.; Ridgway, A. Canadian Regulatory Framework and Regulatory Requirements for Cell and Gene Therapy Products. Adv. Exp. Med. Biol. 2023, 1430, 91–116. [Google Scholar] [CrossRef]
- Tu, T.; Song, Z.; Liu, X.; Wang, S.; He, X.; Xi, H.; Wang, J.; Yan, T.; Chen, H.; Zhang, Z.; et al. A precise and efficient adenine base editor. Mol. Ther. 2022, 30, 2933–2941. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, B.; Ru, G.; Meng, H.; Yan, Y.; Hong, M.; Zhang, D.; Luan, C.; Zhang, S.; Wu, H.; et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 2023, 41, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.J.; Geilenkeuser, J.; Wendel, S.V.; Wilming, J.C.H.; Armbrust, N.; Binder, E.M.H.; Santl, T.H.; Siebenhaar, A.; Gruber, C.; Phlairaharn, T.; et al. Exonuclease-enhanced prime editors. Nat. Methods 2024, 21, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Oyler-Castrillo, P.; Ravisankar, P.; Ward, C.C.; Levesque, S.; Jing, Y.; Simpson, D.; Zhao, A.; Li, H.; Yan, W.; et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 2024, 628, 639–647. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.F.; Tou, C.J.; King, E.M.; Eller, M.L.; Ma, L.; Rufino-Ramos, D.; Kleinstiver, B.P. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. bioRxiv 2023. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.; Ramu Krishnan, N. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1335901. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Choi, S.; Kim, S.; Song, M.; Seo, J.H.; Min, S.; Park, J.; Cho, S.R.; Kim, H.H. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 2024, 42, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Mathis, N.; Allam, A.; Kissling, L.; Marquart, K.F.; Schmidheini, L.; Solari, C.; Balazs, Z.; Krauthammer, M.; Schwank, G. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 2023, 41, 1151–1159. [Google Scholar] [CrossRef]
- Fiflis, D.N.; Rey, N.A.; Venugopal-Lavanya, H.; Sewell, B.; Mitchell-Dick, A.; Clements, K.N.; Milo, S.; Benkert, A.R.; Rosales, A.; Fergione, S.; et al. Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing. Nat. Commun. 2024, 15, 2325. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, H.; Liu, J.; Chen, J.; Cui, Y.; Wang, S.; Zhang, X.; Yang, Z. Extracellular Vesicles: A New Star for Gene Drug Delivery. Int. J. Nanomed. 2024, 19, 2241–2264. [Google Scholar] [CrossRef]
- Watanabe, K.; Gee, P.; Hotta, A. Preparation of NanoMEDIC Extracellular Vesicles to Deliver CRISPR-Cas9 Ribonucleoproteins for Genomic Exon Skipping. Methods Mol. Biol. 2023, 2587, 427–453. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, L.; Lu, T.; Zhu, T.; Feng, C.; Gao, N.; Liu, F.; Yu, J.; Chen, K.; Zhong, J.; et al. Engineered Extracellular Vesicle-Delivered CRISPR/CasRx as a Novel RNA Editing Tool. Adv. Sci. 2023, 10, e2206517. [Google Scholar] [CrossRef] [PubMed]
Disease | Target Gene | Editor | Delivery | Editing Efficiency | Significant Unintended Edits | Drug | Clinical Trials | Sponsor | Reference |
---|---|---|---|---|---|---|---|---|---|
Progeria | LMNA | ABEmax | Split-intein dual-AAV9 in mouse LMNA, in vivo | 30–55% | 15% bystander | n/a | n/a | n/a | [122] |
Hypercholesterolemia | Pcsk9 | ABE8.8 | LNP in monkey, in vivo | 66% | Low | VERVE-101, VERVE-102 | NCT05398029, NCT06164730 | Verve Therapeutics | [123] |
Hypercholesterolemia | Pcsk9 | ABEmax | LNP in monkey, in vivo | 34% | Low | n/a | n/a | n/a | [124] |
Hypercholesterolemia | Pcsk9 | v3em PE3 | Split-intein dual-AAV9 in mouse, in vivo | 39% | Low on-target indels, no off-target | n/a | n/a | n/a | [50] |
Hypercholesterolemia | Pcsk9 | ZFP-EvoETR, dCas9-EvoETR | LNP in mouse, in vivo | 75% reduction | Limited off-target repression | n/a | n/a | n/a | [125] |
Hypercholesterolemia | Angptl3 | SpCas9 nuclease | LNP in mouse C57BL/6, in vivo | 39% | None | n/a | n/a | n/a | [126] |
Transthyretin amyloidosis | Ttr | SpCas9 nuclease | LNP in mouse and rat Ttr, in vivo | 70% | None | NTLA-2001 | NCT04601051, NCT05697861 | Intellia Therapeutics | [127] |
Tyrosinemia | Fah | ABE6.3 | Hydrodynamic injection in mouse Fahmut/mut, in vivo | 10% | 2% bystander, no off-target | n/a | n/a | n/a | [128] |
Tyrosinemia | Fah | PE2 | Hydrodynamic injection in mouse Fahmut/mut, in vivo | 7% | None | n/a | n/a | n/a | [91] |
Tyrosinemia | Fah | split PE (sPE) | Dual-AAV8 in mouse Fahmut/mut, in vivo | 1.3% | n/a | n/a | n/a | n/a | [129] |
Tyrosinemia | Fah | ABEmax and ABE8e | Electroporation in mouse HT1 CdHs, ex vivo | 2.4% and 9.2% | 29% and 11% bystander, no off-target | n/a | n/a | n/a | [130] |
Tyrosinemia | Fah | PE3b | Electroporation in mouse HT1 CdHs, ex vivo | 2.3% | None | n/a | n/a | n/a | [130] |
Tyrosinemia | Fah | PE-Cas9-based deletion and repair (PEDAR) | Hydrodynamic injection in mouse FahΔExon5, in vivo | 0.8% | 9.6% and 0.1% on-target indels | n/a | n/a | n/a | [131] |
Alpha-1 antitrypsin deficiency (AATD) | SERPINA1 | Cas9 nuclease (HDR) | AAV8 and AAV9 in mouse PiZ, in vivo | 2% | 22% on-target indels, no off-target | n/a | n/a | n/a | [132] |
AATD | SERPINA1 | Cas9 nuclease (+/−HDR) | AAV8 in mouse PiZ, in vivo | 98% reduction in mutant AAT | n/a | n/a | n/a | n/a | [133] |
AATD | SERPINA1 | CBE and ABE | LNP in mouse PiZ, in vivo | 27% and 36% | 2% bystander, no off-target DNA, off-target RNA not looked | n/a | n/a | n/a | [134] |
AATD | AATD | PE2 and PE* | Hydrodynamic injection in mouse PiZ, in vivo | 10–15% | n/a | n/a | n/a | n/a | [135] |
AATD | AATD | PE2 | Split-intein AAV8 in mouse PiZ, in vivo | 3% | n/a | n/a | n/a | n/a | [135] |
Phenylketonuria (PKU) | Pah | PE2ΔRnH | AdV in mouse Pahenu2, in vivo | 11% | None | n/a | n/a | n/a | [136] |
Primary hyperoxaluria type 1 (PH1) | Agxt/Hao1 | SaCas9 nuclease | AAV8 in mouse Agxt1−/−, in vivo | 80% | None | n/a | n/a | n/a | [137] |
PH1 | Agxt/Hao1 | SaCas9 nuclease | Dual AAV8 in mouse Agxt1−/−, in vivo | 55% | n/a | n/a | n/a | n/a | [138] |
PH1 | Agxt/Hao1 | D10ASaCas9n | Dual AAV8 in mouse Agxt1−/−, in vivo | 57% | None | n/a | n/a | n/a | [139] |
Hereditary angioedema (HAE) | KLKB1 | Cas9 nuclease | LNP in mouse huKLKB1 and monkey, in vivo | 70% | n/a | NTLA-2002 | NCT05120830 | Intellia Therapeutics | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deneault, E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr. Issues Mol. Biol. 2024, 46, 4147-4185. https://doi.org/10.3390/cimb46050255
Deneault E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Current Issues in Molecular Biology. 2024; 46(5):4147-4185. https://doi.org/10.3390/cimb46050255
Chicago/Turabian StyleDeneault, Eric. 2024. "Recent Therapeutic Gene Editing Applications to Genetic Disorders" Current Issues in Molecular Biology 46, no. 5: 4147-4185. https://doi.org/10.3390/cimb46050255
APA StyleDeneault, E. (2024). Recent Therapeutic Gene Editing Applications to Genetic Disorders. Current Issues in Molecular Biology, 46(5), 4147-4185. https://doi.org/10.3390/cimb46050255