Molecular Basis of Yeasts Antimicrobial Activity—Developing Innovative Strategies for Biomedicine and Biocontrol
Abstract
:1. Introduction
2. Killer Yeasts
2.1. Yeast Species with Killer Potential Determined by dsRNA Molecules
2.2. Yeast Species with Killer Character Determined by dsDNA Plasmids
2.3. Yeast Species with Killer Toxins Encoded by Chromosomal Genes
3. Red Yeasts
3.1. Antimicrobial Compounds
3.1.1. Carotenoids Biosynthesis in Yeast Cells
Role of Carotenoids in the Yeast Cell
3.1.2. Main Classes of Carotenoids and Their Role in the Biomedical Field
- β-carotene is an isoprenoid compound comprising two β-ionone rings connected by a polyene chain with nine conjugated double bonds. This compound exhibits highest absorbance at 450 nm and is currently being investigated due to its potential for biomedicine being the main source of vitamin A in the human diet [81]. Moreover, due to the presence of the ionone rings, the β-carotene exhibits high antioxidant activity and can be used as a lipid scavenger with numerous applications in cardiovascular disease, macular degeneration and immune response stimulation [82,83,84]. Furthermore, this pigment is soluble in edible oil providing yellow to red colors, therefore being currently used in the food additives industry as natural food colorant [85,86,87,88]. Among yeast species, Phaffia rhodozyma is well known as being able to produce and accumulate β-carotene due to its ability to express enzymes involved in the metabolic pathway of carotenoids’ synthesis such as isopentenyl pyrophosphate isomerase (IDI), geranylgeranyl diphospate synthase (CRTE), phytoene synthase (CRTB), pythoene desaturase (CRTI) and lycopene cyclase (CRTY) [85].
- Astaxanthin is another type of carotenoid described for yeasts species. Chemically, it belongs to the group of xanthophylls and presents two polar β-ionone rings with one hydroxyl and ketone group, connected by a non-polar chain. Its high antioxidant properties are determined by the presence of 13 double bonds, and its polar character is determined by the presence of hydroxyl and ketone groups attached to the β-ionone rings. Apart from its antioxidant properties, the astaxanthin is currently being investigated for its anti-inflammatory and anti-apoptotic functions with high potential for preventing cardiovascular diseases [89], for improving the neurologic functions after brain injuries [90], as renoprotective agents after exposure to lithium [91] and even for reversing the cigarette smoking-induced oxidative stress and inflammation [92]. The current assessments regarding the evolution of astaxanthin market showed that was expected to reach over USD 3500 million by 2023 [93]. Although highly valuable for mankind, the astaxanthin is in present produced mainly throughout chemical synthesis, and the price per kilo exceeds USD 2000 [94,95]. In case of yeasts, P. rhodozyma (Xanthophyllomyces dendrorhous) is known for its ability to produce 3R-3R′ enantiomer in a free form, with the main disadvantage of a low yield of accumulation (about 300 µg/g), which is far from being cost-effective [94]. The production of astaxanthin in the P. rhodozyma cells requires two additional reactions involved in the transformation of β-carotene into several intermediates first by incorporating two 4-keto groups through a reaction catalyzed by a ketolase following by the addition of two 30 hydroxy groups, a reaction mediated by a hydroxylase. For P. rhodozyma, both reactions are mediated by an astaxanthin synthetase, CrtS encoded by the crtS gene [96]. Even so, the activity of this enzyme is influenced by the presence of another enzyme, a cytochrome P450 reductase encoded by the crtR gene, which is responsible with providing the necessary electrons for the oxygenation reactions [97]. The main strategies approached to increase astaxanthin production yield in yeasts consist in exposure to non-specific mutagenesis processes using N-Methyl-N′-nitro-N-nitrosoguanidine, UV light or low-dose gamma irradiation [98,99]. Even so, random mutagenesis is associated with the decrease in biomass yields and growth rates, thus being thus hard to determine the positive impact on the cost-effective production of astaxanthin [100]. Nevertheless, P. rhodozyma remains one of the most important microorganism to be studied for the production of this type of carotenoid [95].
- Torulene and torularhodin are composed of one β-ionone ring with a polyene chain with 12 conjugated double bonds [65], but in the case of the latest, an additional carboxyl group at the end of the polyene chain is described, thus bearing a higher oxidation state [101]. Although intensively studied during the last decade, the impact of these carotenoids on human body is not well understood due to their absence in food. At present, there are some studies concerning their impact on rats lungs, liver and kidney function when administrated as food additives and no significant effect was observed [102,103]. Also, these carotenoids showed protective properties against neoplastic liver changes induced by dimethyl nitrosamine in the case of mice and inhibited the development of prostate cancer [104,105]. The production of torulene and torularhodin was determined in various cultivation condition of different strains belonging to the R. glutinis, R. mucilaginosa (R. rubra), R. graminis, S. salmonicolor, S. pararoseus, S. johnsonii and S. ruberrimus species [68]. High amounts of torulene and torularhodin were obtained in the case of S. ruberrimus cultivated in the presence of raw glycerin as carbon source (70 mg/L respectively, 350 mg/L) [106]; S. salmonicolor cultivated in the presence of saccharose (273.7 μg/g dry biomass respectively, 458.3 μg/g dry biomass) [107]; and R. glutinis cultivated with white-light irradiation (32.2 mg/100 g cells dry weight, respectively, 14.2 mg/100 g cells dry weight) [108]. Although the general biosynthesis pathway of torulene and torularhodin is presented above, there are some species, such as S. pararoseus or Neuraspora crassa, in which these compounds can also be produced from 3,4-dehydrolycopene, an intermediate compound formed from lycopene under the enzymatic action of a phytoene desaturase. Subsequently, the intermediate is transformed into torulene through a reaction catalyzed by phytoene synthase/lycopene cyclase AL-2 [109].
3.1.3. Antimicrobial Activity of Carotenoids
3.2. Competition for the Nutritive Substrate
4. Biosurfactants
4.1. Genes and Regulation
4.2. Sophorolipids
4.3. Mannosylerytrithol Lipids
4.3.1. Biosurfactants for Biocontrol
Sophorolipids as Biocontrol Agents
Mannosylerytrithol Lipids as Biocontrol Agents
4.3.2. Biosurfactants in Biomedicine
Sophorolipids for Biomedical Use
4.3.3. Mannosylerytrithol Lipids for Biomedical Use
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Okaiyeto, S.A.; Sutar, P.P.; Chen, C.; Ni, J.-B.; Wang, J.; Mujumdar, A.S.; Zhang, J.-S.; Xu, M.-Q.; Fang, X.-M.; Zhang, C.; et al. Antibiotic Resistant Bacteria in Food Systems: Current Status, Resistance Mechanisms, and Mitigation Strategies. Agric. Commun. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Stanley, D.; Batacan, R.; Bajagai, Y.S. Rapid Growth of Antimicrobial Resistance: The Role of Agriculture in the Problem and the Solutions|Applied Microbiology and Biotechnology. Available online: https://link.springer.com/article/10.1007/s00253-022-12193-6 (accessed on 28 March 2024).
- Khan, S.A.; Imtiaz, M.A.; Sayeed, A.; Shaikat, A.H.; Hassan, M.M. Antimicrobial Resistance Pattern in Domestic Animal-Wildlife-Environmental Niche via the Food Chain to Humans with a Bangladesh Perspective; A Systematic Review. BMC Vet. Res. 2020, 16, 302. [Google Scholar] [CrossRef] [PubMed]
- Amaning Danquah, C.; Minkah, P.A.B.; Osei Duah Junior, I.; Amankwah, K.B.; Somuah, S.O. Antimicrobial Compounds from Microorganisms. Antibiotics 2022, 11, 285. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-X.; Chi, Z.; Peng, Y.; Wang, X.-H.; Ru, S.-G.; Chi, Z.-M. Purification, Characterization and Gene Cloning of the Killer Toxin Produced by the Marine-Derived Yeast Williopsis saturnus WC91-2. Microbiol. Res. 2012, 167, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Magliani, W.; Conti, S.; Travassos, L.R.; Polonelli, L. From Yeast Killer Toxins to Antibiobodies and Beyond. FEMS Microbiol. Lett. 2008, 288, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of Microbial Antagonists for the Control of Postharvest Diseases of Fruits: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef]
- Guruge, K.S.; Tamamura, Y.A.; Goswami, P.; Tanoue, R.; Jinadasa, K.B.S.N.; Nomiyama, K.; Ohura, T.; Kunisue, T.; Tanabe, S.; Akiba, M. The Association between Antimicrobials and the Antimicrobial-Resistant Phenotypes and Resistance Genes of Escherichia coli Isolated from Hospital Wastewaters and Adjacent Surface Waters in Sri Lanka. Chemosphere 2021, 279, 130591. [Google Scholar] [CrossRef]
- Miguel, G.A.; Carlsen, S.; Arneborg, N.; Saerens, S.M.G.; Laulund, S.; Knudsen, G.M. Non-Saccharomyces Yeasts for Beer Production: Insights into Safety Aspects and Considerations. Int. J. Food Microbiol. 2022, 383, 109951. [Google Scholar] [CrossRef]
- Sundh, I.; Melin, P. Safety and Regulation of Yeasts Used for Biocontrol or Biopreservation in the Food or Feed Chain. Antonie Van Leeuwenhoek 2011, 99, 113–119. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Roshandel, G.; Roudbarmohammadi, S.; Roudbary, M.; Sohanaki, H.; Ghiasian, S.A.; Aghasi, M. Fumonisin B1 Contamination of Cereals and Risk of Esophageal Cancer in a High Risk Area in Northeastern Iran. Asian Pac. J. Cancer Prev. 2012, 13, 2625–2628. [Google Scholar] [CrossRef]
- Borbély, M.; Sipos, P.; Pelles, F.; Győri, Z. Mycotoxin Contamination in Cereals. J. Agroaliment. Process. Technol. 2010, 16, 96–98. [Google Scholar]
- The Food Poisoning Toxins of Bacillus cereus—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911051/ (accessed on 28 March 2024).
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Mannazzu, I.; Domizio, P.; Carboni, G.; Zara, S.; Zara, G.; Comitini, F.; Budroni, M.; Ciani, M. Yeast Killer Toxins: From Ecological Significance to Application. Crit. Rev. Biotechnol. 2019, 39, 603–617. [Google Scholar] [CrossRef] [PubMed]
- da Silva Portes, C.; de Oliveira, A.V.; Simer, P.; Lunkes, A.M.; Coelho, A.R. Role of Killer Factors in the Inhibitory Activity of Bio-Control Yeasts against Penicillium expansum and Aspergillus ochraceus. Braz. Arch. Biol. Technol. 2013, 56, 619–627. [Google Scholar] [CrossRef]
- Dabhole, M.P.; Joishy, K.N. Production and Effect of Killer Toxin by Saccharomyces cerevisiae and Pichia kluyveri on Sensitive Yeasts and Fungal Pathogens. Indian J. Biotechnol. 2005, 4, 290–292. [Google Scholar]
- Rodríguez-Cousiño, N.; Esteban, R. Relationships and Evolution of Double-Stranded RNA Totiviruses of Yeasts Inferred from Analysis of L-A-2 and L-BC Variants in Wine Yeast Strain Populations. Appl. Environ. Microbiol. 2017, 83, 2991–3007. [Google Scholar]
- Zahumenský, J.; Jančíková, I.; Drietomská, A.; Švenkrtová, A.; Hlaváček, O.; Hendrych, T.; Plášek, J.; Sigler, K.; Gášková, D. Yeast Tok1p Channel Is a Major Contributor to Membrane Potential Maintenance under Chemical Stress. Biochim. Biophys. Acta (BBA)-Biomembr. 2017, 1859, 1974–1985. [Google Scholar] [CrossRef]
- Orentaite, I.; Poranen, M.M.; Oksanen, H.M.; Daugelavicius, R.; Bamford, D.H. K2 Killer Toxin-Induced Physiological Changes in the Yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2016, 16, fow003. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.; Schmitt, M.J. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing. Toxins 2017, 9, 333. [Google Scholar] [CrossRef]
- Albertin, W.; Setati, M.E.; Miot-Sertier, C.; Mostert, T.T.; Colonna-Ceccaldi, B.; Coulon, J.; Girard, P.; Moine, V.; Pillet, M.; Salin, F.; et al. Hanseniaspora uvarum from Winemaking Environments Show Spatial and Temporal Genetic Clustering. Front. Microbiol. 2016, 6, 1569. [Google Scholar] [CrossRef]
- Hameed, A.R.; Al-Qaysi, S.A.S.; Hameed, S.T. Killer Activity of Hanseniaspora uvarum Isolated from Dates Vinegar: Partially Purification and Characterization of Killer Toxin. Baghdad Sci. J. 2019, 16, 141–150. [Google Scholar] [CrossRef]
- Radler, F.; Schmitt, M.J.; Meyer, B. Killer toxin of Hanseniaspora uvarum. Arch. Microbiol. 1990, 154, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Wyk, N.; Badura, J.; Wallbrunn, C.; Pretorius, I.S. Exploring Future Applications of the Apiculate Yeast Hanseniaspora. Crit. Rev. Biotechnol. 2024, 44, 100–119. [Google Scholar] [CrossRef] [PubMed]
- Stratford, M.; Steels, H.; Nebe-von-Caron, G.; Novodvorska, M.; Hayer, K.; Archer, D.B. Extreme Resistance to Weak-Acid Preservatives in the Spoilage Yeast Zygosaccharomyces bailii. Int. J. Food Microbiol. 2013, 166, 126–134. [Google Scholar] [PubMed]
- Schmitt, M.J.; Neuhausen, F. Killer toxin-secreting double-stranded RNA mycoviruses in the yeasts Hanseniaspora uvarum and Zygosaccharomyces bailii. J. Virol. 1994, 68, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Weiler, F.; Schmitt, M.J. Zygocin, a Secreted Antifungal Toxin of the Yeast Zygosaccharomyces bailii, and Its Effect on Sensitive Fungal Cells. FEMS Yeast Res. 2003, 3, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Radler, F.; Herzberger, S.; Schönig, I.; Schwarz, P. Investigation of a Killer Strain of Zygosaccharomyces bailii. Microbiol. Soc. 1993, 139, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.J.; Breinig, F. Yeast Viral Killer Toxins: Lethality and Self-Protection. Nat. Rev. Microbiol. 2006, 4, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Bruenn, J. The Ustilago Maydis Killer Toxins. In Microbial Protein Toxins; Schmitt, M.J., Schaffrath, R., Eds.; Topics in Current Genetics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 11, pp. 157–174. ISBN 978-3-540-23562-0. [Google Scholar]
- Santos, A.; Navascués, E.; Bravo, E.; Marquina, D. Ustilago maydis Killer Toxin as a New Tool for the Biocontrol of the Wine Spoilage Yeast Brettanomyces bruxellensis. Int. J. Food Microbiol. 2011, 145, 147–154. [Google Scholar] [CrossRef]
- Park, C.-M.; Bruenn, J.A.; Ganesa, C.; Flurkey, W.F.; Bozarth, R.F.; Koltin, Y. Structure and Heterologous Expression of the Ustilago maydis Viral Toxin KP4. Mol. Microbiol. 1994, 11, 155–164. [Google Scholar] [CrossRef]
- Gage, M.J.; Bruenn, J.; Fischer, M.; Sanders, D.; Smith, T.J. KP4 Fungal Toxin Inhibits Growth in Ustilago maydis by Blocking Calcium Uptake. Mol. Microbiol. 2001, 41, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.; Islamovic, E.; Kaur, J.; Gold, S.; Shah, D.; Smith, T.J. The Virally Encoded Killer Proteins from Ustilago maydis. Fungal Biol. Rev. 2013, 26, 166–173. [Google Scholar] [CrossRef]
- Batt, C.A. Kluyveromyces. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1115–1118. [Google Scholar]
- Gunge, N.; Kitada, K. Replication and Maintenance of the Kluyveromyces linear pGKL Plasmids. Eur. J. Epidemiol. 1988, 4, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Starovi, M. Yeast Killer Factors: Biology and Relevance in Food Biotechnology; Instituto de Ciencias de la Vid y del Vino: Logroño, Spain, 2020. [Google Scholar]
- dos Santos, A.M.; Albuini, F.M.; Barros, G.C.; Pereira, O.L.; da Silveira, W.B.; Fietto, L.G. Identification of the Main Proteins Secreted by Kluyveromyces marxianus and Their Possible Roles in Antagonistic Activity against Fungi. FEMS Yeast Res. 2023, 23, foad007. [Google Scholar] [CrossRef] [PubMed]
- Lu, J. The Kluyveromyces lactis Killer Toxin Is a Transfer RNA Endonuclease. RNA 2005, 11, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Comitini, F.; Ciani, M. Kluyveromyces Wickerhamii Killer Toxin: Purification and Activity towards Brettanomyces/Dekkera Yeasts in Grape Must. FEMS Microbiol. Lett. 2011, 316, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Buzdar, M.A.; Chi, Z.; Wang, Q.; Hua, M.X.; Chi, Z.M. Production, Purification, and Characterization of a Novel Killer Toxin from Kluyveromyces siamensis against a Pathogenic Yeast in Crab. Appl. Microbiol. Biotechnol. 2011, 91, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Klassen, R.; Meinhardt, F. Linear Plasmids pWR1A and pWR1B of the Yeast Wingea robertsiae Are Associated with a Killer Phenotype. Plasmid 2002, 48, 142–148. [Google Scholar] [CrossRef]
- Muccilli, S.; Wemhoff, S.; Restuccia, C.; Meinhardt, F. Exoglucanase-Encoding Genes from Three Wickerhamomyces anomalus Killer Strains Isolated from Olive Brine. Yeast 2013, 30, 33–43. [Google Scholar] [CrossRef]
- Grevesse, C. Study of the Implication of Exo-Beta-1,3-Glucanase Encoding Genes in the Biocontrol Activity of Pichia anomala (Hansen) Kurtzman (Strain K) against Botrytis cinerea on Post-Harvest Apples; FAO: Rome, Italy, 2002. [Google Scholar]
- Grevesse, C.; Lepoivre, P.; Jijakli, M.H. Characterization of the Exoglucanase-Encoding Gene PaEXG2 and Study of Its Role in the Biocontrol Activity of Pichia anomala Strain K. Phytopathology 2003, 93, 1145–1152. [Google Scholar] [CrossRef]
- Comitini, F.; Agarbati, A.; Canonico, L.; Galli, E.; Ciani, M. Purification and Characterization of WA18, a New Mycocin Produced by Wickerhamomyces anomalus Active in Wine Against Brettanomyces bruxellensis Spoilage Yeasts. Microorganisms 2021, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Ullivarri, M.; Mendoza, L.M.; Raya, R.R. Characterization of the Killer Toxin KTCf20 from Wickerhamomyces anomalus, a Potential Biocontrol Agent against Wine Spoilage Yeasts. Biol. Control 2018, 121, 223–228. [Google Scholar] [CrossRef]
- Fernández de Ullivarri, M.; Bulacios, G.A.; Navarro, S.A.; Lanza, L.; Mendoza, L.M.; Chalón, M.C. The Killer Yeast Wickerhamomyces anomalus Cf20 Exerts a Broad Anti-Candida Activity through the Production of Killer Toxins and Volatile Compounds. Med. Mycol. 2020, 58, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Killer Yeasts Exert Anti-Plasmodial Activities against the Malaria Parasite Plasmodium Berghei in the Vector Mosquito Anopheles Stephensi and in Mice|Parasites & Vectors. Available online: https://link.springer.com/article/10.1186/s13071-019-3587-4 (accessed on 28 March 2024).
- Vijayraghavan, S.; Kozmin, S.G.; Strope, P.K.; Skelly, D.A.; Magwene, P.M.; Dietrich, F.S.; McCusker, J.H. RNA Viruses, M Satellites, Chromosomal Killer Genes, and Killer/Nonkiller Phenotypes in the 100-Genomes S. Cerevisiae Strains. G3 Genes|Genomes|Genet. 2023, 13, jkad167. [Google Scholar] [CrossRef] [PubMed]
- Ullivarri, M.F.; Mendoza, L.M.; Raya, R.R. Killer Activity of Saccharomyces berevisiae Strains: Partial Characterization and Strategies to Improve the Biocontrol Efficacy in Winemaking. Antonie Van Leeuwenhoek 2014, 106, 865–878. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Alonso, A.; Marquina, D.; Santos, A. The Biology of Pichia membranifaciens Killer Toxins. Toxins 2017, 9, 112. [Google Scholar] [CrossRef]
- Szotkowski, M.; Byrtusova, D.; Haronikova, A.; Vysoka, M.; Rapta, M.; Shapaval, V.; Marova, I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms 2019, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sinisterra, A.F.; Ramírez-Castrillón, M. Yeast Carotenoids: Production and Activity as Antimicrobial Biomolecule. Arch. Microbiol. 2021, 203, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula glutinis—Potential Source of Lipids, Carotenoids, and Enzymes for Use in Industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef]
- Kot, A.M.; Sęk, W.; Kieliszek, M.; Błażejak, S.; Pobiega, K.; Brzezińska, R. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains. Appl. Biochem. Biotechnol. 2023, 1–43. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, L.; Xia, Y.; Zhuang, X.; Chu, W. Isolation, Identification of Carotenoid-Producing Rhodotorula sp. from Marine Environment and Optimization for Carotenoid Production. Mar. Drugs 2019, 17, 161. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, B.; Li, J.; Zhang, J. Rhodotorula toruloides: An Ideal Microbial Cell Factory to Produce Oleochemicals, Carotenoids, and Other Products. World J. Microbiol. Biotechnol. 2021, 38, 13. [Google Scholar] [CrossRef] [PubMed]
- Manimala, M.R.A.; Murugesan, R. In Vitro Antioxidant and Antimicrobial Activity of Carotenoid Pigment Extracted from Sporobolomyces sp. Isolated from Natural Source. J. Appl. Nat. Sci. 2014, 6, 649–653. [Google Scholar] [CrossRef]
- Keceli, T.; Erginkaya, Z.; Turkkan, E.; Kaya, U. Antioxidant and Antibacterial Effects of Carotenoids Extracted from Rhodotorula glutinis Strains. Asian J. Chem. 2013, 25, 42–46. [Google Scholar] [CrossRef]
- Vazquez-Rodriguez, A.; Vasto-Anzaldo, X.G.; Barboza Perez, D.; Vázquez-Garza, E.; Chapoy-Villanueva, H.; García-Rivas, G.; Garza-Cervantes, J.A.; Gómez-Lugo, J.J.; Gomez-Loredo, A.E.; Garza Gonzalez, M.T.; et al. Microbial Competition of Rhodotorula mucilaginosa UANL-001L and E. coli Increase Biosynthesis of Non-Toxic Exopolysaccharide with Applications as a Wide-Spectrum Antimicrobial. Sci. Rep. 2018, 8, 798. [Google Scholar] [CrossRef] [PubMed]
- Merhan, O. The Biochemistry and Antioxidant Properties of Carotenoids. In Carotenoids; Cvetkovic, D.J., Nikolic, G.S., Eds.; InTech: Singapore, 2017; ISBN 978-953-51-3211-0. [Google Scholar]
- Ayadi, I.; Akermi, S.; Louati, M.; Gargouri, A.; Mellouli, L.; Guerfali, M. Microbial Bioactive Compounds from Oleaginous Yeast Culture: Insights into Molecular Docking Interactions and Toxicity Prediction. Biomass Convers. Biorefinery 2024, 1–19. [Google Scholar] [CrossRef]
- Rapoport, A.; Guzhova, I.; Bernetti, L.; Buzzini, P.; Kieliszek, M.; Kot, A.M. Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Carotenoids Market Size to Hit USD 1.84 Billion by 2027. Available online: https://www.fortunebusinessinsights.com/industry-reports/carotenoids-market-100180 (accessed on 24 March 2024).
- Li, W.; Cui, L.; Mai, J.; Shi, T.-Q.; Lin, L.; Zhang, Z.-G.; Ledesma-Amaro, R.; Dong, W.; Ji, X.-J. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. J. Agric. Food Chem. 2022, 70, 9246–9261. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wang, Y.; Zhang, J.; Cai, Y.; He, Z. Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production. J. Microbiol. Biotechnol. 2019, 29, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Błażejak, S.; Gientka, I.; Kieliszek, M.; Bryś, J. Torulene and Torularhodin: “New” Fungal Carotenoids for Industry? Microb. Cell Factories 2018, 17, 49. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Kieliszek, M.; Gientka, I.; Bryś, J. Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater. Appl. Biochem. Biotechnol. 2019, 189, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Landolfo, S.; Ianiri, G.; Camiolo, S.; Porceddu, A.; Mulas, G.; Chessa, R.; Zara, G.; Mannazzu, I. CAR Gene Cluster and Transcript Levels of Carotenogenic Genes in Rhodotorula mucilaginosa. Microbiology 2018, 164, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, N.; Song, J.; Wei, N.; Li, B.; Zou, H.; Han, X. A Single Desaturase Gene from Red Yeast Sporidiobolus pararoseus Is Responsible for Both Four- and Five-Step Dehydrogenation of Phytoene. Gene 2016, 590, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Pousada, C.; Nevitt, T.; Menezes, R. The Yeast Stress Response. FEBS J. 2005, 272, 2639–2647. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Delaunay-Moisan, A.; Outten, C.; Igbaria, A. Functions and Cellular Compartmentation of the Thioredoxin and Glutathione Pathways in Yeast. Antioxid. Redox Signal. 2013, 18, 1699–1711. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Adaptive Response to Oxidative Stress: Bacteria, Fungi, Plants and Animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Zyrina, A.N.; Smirnova, E.A.; Markova, O.V.; Severin, F.F.; Knorre, D.A. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2017, 83, e02759-16. [Google Scholar] [CrossRef] [PubMed]
- Tanghe, A.; Prior, B.; Thevelein, J.M. Yeast Responses to Stresses. In Biodiversity and Ecophysiology of Yeasts; Péter, G., Rosa, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 175–195. ISBN 978-3-540-30985-7. [Google Scholar]
- Moliné, M.; Flores, M.R.; Libkind, D.; Carmen Diéguez, M.d.C.; Farías, M.E.; van Broock, M. Photoprotection by Carotenoid Pigments in the Yeast Rhodotorula mucilaginosa: The Role of Torularhodin. Photochem. Photobiol. Sci. 2010, 9, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Pérez, P.; Libkind, D.; del Carmen Diéguez, M.; Summerer, M.; Sonntag, B.; Sommaruga, R.; van Broock, M.; Zagarese, H.E. Mycosporines from Freshwater Yeasts: A Trophic Cul-de-Sac? Photochem. Photobiol. Sci. 2006, 5, 25–30. [Google Scholar] [CrossRef]
- Sepúlveda, D.; Campusano, S.; Moliné, M.; Barahona, S.; Baeza, M.; Alcaíno, J.; Colabella, F.; Urzúa, B.; Libkind, D.; Cifuentes, V. Unraveling the Molecular Basis of Mycosporine Biosynthesis in Fungi. Int. J. Mol. Sci. 2023, 24, 5930. [Google Scholar] [CrossRef]
- Mannazzu, I.; Landolfo, S.; da Silva, T.L.; Buzzini, P. Red Yeasts and Carotenoid Production: Outlining a Future for Non-Conventional Yeasts of Biotechnological Interest. World J. Microbiol. Biotechnol. 2015, 31, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Gul, K.; Tak, A.; Singh, A.K.; Singh, P.; Yousuf, B.; Wani, A.A. Chemistry, Encapsulation, and Health Benefits of β-Carotene—A Review. Cogent Food Agric. 2015, 1, 1018696. [Google Scholar] [CrossRef]
- Razzak, S.A. Comprehensive Overview of Microalgae-Derived Carotenoids and Their Applications in Diverse Industries. Algal Res. 2024, 78, 103422. [Google Scholar] [CrossRef]
- Lee, J.; Heo, S.C.; Kim, Y. Combination of Oxaliplatin and β-Carotene Suppresses Colorectal Cancer by Regulating Cell Cycle, Apoptosis, and Cancer Stemness in Vitro. Nutr. Res. Pract. 2024, 18, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.; Jiang, H.; Mao, X. Biotechnology Advances in β-Carotene Production by Microorganisms. Trends Food Sci. Technol. 2021, 111, 322–332. [Google Scholar] [CrossRef]
- Kato, S.; Takaichi, S.; Ishikawa, T.; Asahina, M.; Takahashi, S.; Shinomura, T. Identification and Functional Analysis of the Geranylgeranyl Pyrophosphate Synthase Gene (crtE) and Phytoene Synthase Gene (crtB) for Carotenoid Biosynthesis in Euglena gracilis. BMC Plant Biol. 2016, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-J.; Thia, C.; Lin, H.-Y.; Liu, H.-L.; Ho, F.-J.; Wu, J.-T.; Shih, M.-C.; Li, W.-H.; Huang, C.-C. Integrating an Algal β-Carotene Hydroxylase Gene into a Designed Carotenoid-Biosynthesis Pathway Increases Carotenoid Production in Yeast. Bioresour. Technol. 2015, 184, 2–8. [Google Scholar] [CrossRef]
- Rathod, J.P.; Vira, C.; Lali, A.M.; Prakash, G. Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production. Appl. Biochem. Biotechnol. 2020, 190, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Ciaraldi, T.P.; Boeder, S.C.; Mudaliar, S.R.; Giovannetti, E.R.; Henry, R.R.; Pettus, J.H. Astaxanthin, a Natural Antioxidant, Lowers Cholesterol and Markers of Cardiovascular Risk in Individuals with Prediabetes and Dyslipidaemia. Diabetes Obes. Metab. 2023, 25, 1985–1994. [Google Scholar] [CrossRef]
- Xie, W.-J.; Liu, M.; Zhang, X.; Zhang, Y.-G.; Jian, Z.-H.; Xiong, X.-X. Astaxanthin Suppresses LPS-Induced Myocardial Apoptosis by Regulating PTP1B/JNK Pathway in Vitro. Int. Immunopharmacol. 2024, 127, 111395. [Google Scholar] [CrossRef]
- Erbaş, E.; Üstündağ, H.; Öztürk, E.; Parlak, S.N.; Atcalı, T. Astaxanthin Treatment Reduces Kidney Damage and Facilitates Antioxidant Recovery in Lithium-Intoxicated Rats. Toxicon 2024, 241, 107664. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Tong, R.; Bian, Y.; Hou, G. Astaxanthin Attenuates Cigarette Smoking-Induced Oxidative Stress and Inflammation in a Sirtuin 1-Dependent Manner. Biomed. Pharmacother. 2023, 159, 114230. [Google Scholar] [CrossRef] [PubMed]
- Astaxanthin Market. Available online: https://www.futuremarketinsights.com/reports/astaxanthin-market (accessed on 24 March 2024).
- Moliné, M.; Libkind, D.; van Broock, M.R. Two at Once: Simultaneous Increased Production of Astaxanthin and Mycosporines in a Single Batch Culture Using a Phaffia rhodozyma Mutant Strain. World J. Microbiol. Biotechnol. 2024, 40, 87. [Google Scholar] [CrossRef] [PubMed]
- Mussagy, C.U.; Dias, A.C.R.V.; Santos-Ebinuma, V.C.; Shaaban Sadek, M.; Ahmad, M.; de Andrade, C.R.; Haddad, F.F.; dos Santos, J.L.; Scarim, C.B.; Pereira, J.F.B.; et al. Is the Carotenoid Production from Phaffia Rhodozyma Yeast Genuinely Sustainable? A Comprehensive Analysis of Biocompatibility, Environmental Assessment, and Techno-Economic Constraints. Bioresour. Technol. 2024, 397, 130456. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sáiz, M.; de la Fuente, J.L.; Barredo, J.L. Xanthophyllomyces Dendrorhous for the Industrial Production of Astaxanthin. Appl. Microbiol. Biotechnol. 2010, 88, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Alcaíno, J.; Barahona, S.; Carmona, M.; Lozano, C.; Marcoleta, A.; Niklitschek, M.; Sepúlveda, D.; Baeza, M.; Cifuentes, V. Cloning of the Cytochrome P450 Reductase (crtR) Gene and Its Involvement in the Astaxanthin Biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol. 2008, 8, 169. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhou, Y.; Hu, J.; Chen, Y.; Liang, J. Production of Astaxanthin by a Mutant Strain of Phaffia rhodozyma and Optimization of Culture Conditions Using Response Surface Methodology. Ann. Microbiol. 2014, 64, 1473–1481. [Google Scholar] [CrossRef]
- Najafi, N.; Ahmadi, A.-R.; Hosseini, R.; Golkhoo, S. Gamma Irradiation as a Useful Tool for the Isolation of Astaxanthin-Overproducing Mutant Strains of Phaffia rhodozyma. Can. J. Microbiol. 2011, 57, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, I.; Schewe, H.; Gassel, S.; Jin, C.; Buckingham, J.; Hümbelin, M.; Sandmann, G.; Schrader, J. Biotechnological Production of Astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 2011, 89, 555–571. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Cheng, P.; Yu, G. Rhodotorula mucilaginosa—Alternative Sources of Natural Carotenoids, Lipids, and Enzymes for Industrial Use. Heliyon 2022, 8, e11505. [Google Scholar] [CrossRef]
- Poorniammal, R.; Prabhu, S.; Dufossé, L.; Kannan, J. Safety Evaluation of Fungal Pigments for Food Applications. J. Fungi 2021, 7, 692. [Google Scholar] [CrossRef] [PubMed]
- Latha, B.V.; Jeevaratanm, K. Thirteen-Week Oral Toxicity Study of Carotenoid Pigment from Rhodotorula glutinis DFR-PDY in Rats. Indian J. Exp. Biol. 2012, 50, 645–651. [Google Scholar] [PubMed]
- Du, C.; Guo, Y.; Cheng, Y.; Han, M.; Zhang, W.; Qian, H. Anti-Cancer Effects of Torulene, Isolated from Sporidiobolus pararoseus, on Human Prostate Cancer LNCaP and PC-3 Cells via a Mitochondrial Signal Pathway and the down-Regulation of AR Expression. RSC Adv. 2017, 7, 2466–2474. [Google Scholar] [CrossRef]
- Bhosale, P.; Motiwale, L.; Ingle, A.D.; Gadre, R.V.; Rao, K.V.K. Protective Effect of Rhodotorula glutinis NCIM 3353 on the Development of Hepatic Preneoplastic Lesions. Curr. Sci. 2002, 83, 303–308. [Google Scholar]
- Cardoso, L.A.C.; Jäckel, S.; Karp, S.G.; Framboisier, X.; Chevalot, I.; Marc, I. Improvement of Sporobolomyces Ruberrimus Carotenoids Production by the Use of Raw Glycerol. Bioresour. Technol. 2016, 200, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, S.; Pavlova, K.; Lukanov, L.; Korotkova, E.; Petrova, E.; Zagorchev, P.; Kuncheva, M. Production of Metabolites with Antioxidant and Emulsifying Properties by Antarctic Strain Sporobolomyces salmonicolor AL1. Appl. Biochem. Biotechnol. 2013, 169, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, H.; Nakanishi, T.; Tada, A.; Miki, W.; Komemushi, S. Activation of Torularhodin Production by Rhodotorula Glutinis Using Weak White Light Irradiation. J. Biosci. Bioeng. 2001, 92, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, N.; Li, B.; Xu, Q.; Song, J.; Wei, N.; Wang, W.; Zou, H. Increased Torulene Accumulation in Red Yeast Sporidiobolus pararoseus NGR as Stress Response to High Salt Conditions. Food Chem. 2017, 237, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.B.M.; Mota, R.C.; Bomfim, M.R.Q.; Vieira, M.L.A.; Zani, C.L.; Rosa, C.A.; Rosa, L.H. Antimicrobial Activity of Endophytic Fungi Associated with Orchidaceae in Brazil. Can. J. Microbiol. 2009, 55, 1381–1391. [Google Scholar] [CrossRef]
- Naisi, S.; Bayat, M.; Zahraei Salehi, T.; Rahimian Zarif, B.; Yahyaraeyat, R. Antimicrobial and Anti-Biofilm Effects of Carotenoid Pigment Extracted from Rhodotorula glutinis Strain on Food-Borne Bacteria. Iran J. Microbiol. 2023, 15, 79–88. [Google Scholar] [CrossRef]
- Rostami, H.; Hamedi, H.; Yolmeh, M. Some Biological Activities of Pigments Extracted from Micrococcus roseus (PTCC 1411) and Rhodotorula Glutinis (PTCC 5257). Int. J. Immunopathol. Pharmacol. 2016, 29, 684–695. [Google Scholar] [CrossRef]
- Yolmeh, M.; Khomeiri, M. Using Physical and Chemical Mutagens for Enhanced Carotenoid Production from Rhodotorula glutinis (PTCC 5256). Biocatal. Agric. Biotechnol. 2016, 8, 158–166. [Google Scholar] [CrossRef]
- Moreira, M.D.; Melo, M.M.; Coimbra, J.M.; dos Reis, K.C.; Schwan, R.F.; Silva, C.F. Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Manag. 2018, 82, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Abdulhafedh, H.M.; Al-Saadoon, A.H.; Abu-Mejdad, N.M. Efficiency of Fungal β-Carotene Against Some Causative Agents of Dermatomycoses. Iran. J. War Public Health 2023, 15, 167–175. [Google Scholar]
- Ungureanu, C.; Ferdes, M.; Chirvase, A.A.; Mocanu, E. Method for Torularhodin Separation and Analysis in the Yeast Rhodotorula rubra Aerobically Cultivated in Lab Bioreactor. In Proceedings of the ICHEAP-10: 10th International Conference on Chemical and Process Engineering, PTS 1-3, Firenze, Italy, 8–11 May 2011. [Google Scholar]
- Ungureanu, C.; Ferdes, M. Evaluation of Antioxidant and Antimicrobial Activities of Torularhodin. Adv. Sci. Lett. 2012, 18, 50–53. [Google Scholar] [CrossRef]
- Ungureanu, C.; Dumitriu, C.; Popescu, S.; Enculescu, M.; Tofan, V.; Popescu, M.; Pirvu, C. Enhancing Antimicrobial Activity of TiO2/Ti by Torularhodin Bioinspired Surface Modification. Bioelectrochemistry 2016, 107, 14–24. [Google Scholar] [CrossRef]
- Zahran, M.K.; Mohamed, A.A.; Mohamed, F.M.; El-Rafie, M.H. Optimization of Biological Synthesis of Silver Nanoparticles by Some Yeast Fungi. Egypt. J. Chem. 2013, 56, 91–110. [Google Scholar] [CrossRef]
- Soliman, H.; Elsayed, A.; Dyaa, A. Antimicrobial Activity of Silver Nanoparticles Biosynthesised by Rhodotorula sp. Strain ATL72. Egypt. J. Basic Appl. Sci. 2018, 5, 228–233. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Elumalai, A.; Shanmugasundaram, S. Emerging Trends in Biological Control Agents for Food Safety Applications. In Non-Thermal Technologies for the Food Industry; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-00-335930-2. [Google Scholar]
- Bharath, P.; Gahir, S.; Raghavendra, A.S. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Front. Plant Sci. 2021, 12, 615114. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, L.; Zhou, Y.; Ming, J.; Yao, S.; Zeng, K. Wound Healing in Citrus Fruit Is Promoted by Chitosan and Pichia membranaefaciens as a Resistance Mechanism against Colletotrichum Gloeosporioides. Postharvest Biol. Technol. 2018, 145, 134–143. [Google Scholar] [CrossRef]
- Wu, Z.; Bi, Y.; Zhang, J.; Gao, T.; Li, X.; Hao, J.; Li, G.; Liu, P.; Liu, X. Multidrug Resistance of Botrytis cinerea Associated with Its Adaptation to Plant Secondary Metabolites. mBio 2024, 15, e02237-23. [Google Scholar] [CrossRef]
- Filonow, A.B. Role of Competition for Sugars by Yeasts in the Biocontrol of Gray Mold of Apple. Biocontrol Sci. Technol. 1998, 8, 243–256. [Google Scholar] [CrossRef]
- Li, B.; Peng, H.; Tian, S. Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy. Front. Microbiol. 2016, 7, 601. [Google Scholar] [CrossRef] [PubMed]
- Biocontrol Efficacy of Three Antagonistic Yeasts against Penicillium expansum in Harvested Apple Fruits. Available online: https://www.jipb.net/CN/Y2003/V45/I4/417 (accessed on 26 March 2024).
- Wang, Y.; Bao, Y.; Shen, D.; Feng, W.; Yu, T.; Zhang, J.; Zheng, X.D. Biocontrol of Alternaria Alternata on Cherry Tomato Fruit by Use of Marine Yeast Rhodosporidium Paludigenum Fell & Tallman. Int. J. Food Microbiol. 2008, 123, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Sansone, G.; Lambrese, Y.; Calvente, V.; Fernández, G.; Benuzzi, D.; Sanz Ferramola, M. Evaluation of Rhodosporidium fluviale as Biocontrol Agent against Botrytis cinerea on Apple Fruit. Lett. Appl. Microbiol. 2018, 66, 455–461. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, Z.; Cai, Y.; Jin, L.; Yu, T. The Influence of N-Acetylglucosamine: Inducing Rhodosporidium Paludigenum to Enhance the Inhibition of Penicillium expansum on Pears. Postharvest Biol. Technol. 2021, 176, 111486. [Google Scholar] [CrossRef]
- Qin, G.; Tian, S.; Xu, Y. Biocontrol of Postharvest Diseases on Sweet Cherries by Four Antagonistic Yeasts in Different Storage Conditions. Postharvest Biol. Technol. 2004, 31, 51–58. [Google Scholar] [CrossRef]
- Muccilli, S.; Restuccia, C. Bioprotective Role of Yeasts. Microorganisms 2015, 3, 588–611. [Google Scholar] [CrossRef]
- Identification and Characterization of an Outer Membrane Receptor Gene in Acinetobacter baumannii Required for Utilization of Desferricoprogen, Rhodotorulic Acid, and Desferrioxamine B as Xenosiderophores. Available online: https://www.jstage.jst.go.jp/article/bpb/35/5/35_5_753/_article/-char/ja/ (accessed on 27 March 2024).
- Puyo, M.; Scalabrino, L.; Romanet, R.; Simonin, S.; Klein, G.; Alexandre, H.; Tourdot-Maréchal, R. Competition for Nitrogen Resources: An Explanation of the Effects of a Bioprotective Strain Metschnikowia pulcherrima on the Growth of Hanseniaspora Genus in Oenology. Foods 2024, 13, 724. [Google Scholar] [CrossRef]
- Ferramola, M.I.S.; Benuzzi, D.; Calvente, V.; Calvo, J.; Sansone, G.; Cerutti, S.; Raba, J. The Use of Siderophores for Improving the Control of Postharvest Diseases in Stored Fruits and Vegetables. In Microbial Pathogens and Strategies for Combating Them; Formatex Research Center: Badajoz, Spain, 2013. [Google Scholar]
- Haas, H. Fungal Siderophore Metabolism with a Focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014, 31, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, L.; Wang, X.; Shah, D.; Song, X.; Kumar, V.; Shakoor, A.; Tripathi, K.; Ramteke, P.W.; Rani, R. Biosynthesis Pathways, Transport Mechanisms and Biotechnological Applications of Fungal Siderophores. J. Fungi 2021, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L. Iron and Siderophores in Fungal–Host Interactions. Mycol. Res. 2008, 112, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Andersen, D.; Renshaw, J.C.; Wiebe, M.G. Rhodotorulic Acid Production by Rhodotorula mucilaginosa. Mycol. Res. 2003, 107, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Calvente, V.; de Orellano, M.E.; Sansone, G.; Benuzzi, D.; Sanz de Tosetti, M.I. A Simple Agar Plate Assay for Screening Siderophore Producer Yeasts. J. Microbiol. Methods 2001, 47, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Akers, H.A.; Neilands, J.B. A Hydroxamic Acid Present in Rhodotorula Pilimanae Cultures Grown at Low pH and Its Metabolic Relation to Rhodotorulic Acid. Biochemistry 1973, 12, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.; Ron, E.Z. High-and Low-Molecular-Mass Microbial Surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Rahman, P.K.; Gakpe, E. Production, Characterisation and Applications of Biosurfactants-Review. Biotechnology 2008, 7, 360–370. [Google Scholar] [CrossRef]
- Amaral, P.F.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A. Biosurfactants from Yeasts: Characteristics, Production and Application. In Biosurfactants; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Corbu, V.; Csutak, O. Candida–Produced Biosurfactants–Beneficial Agents for Environmental Remediation Biotechnologies. Rom. Biotechnol. Lett. 2019, 24, 381–387. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.A.; Develter, D.; Soetaert, W.; Vandamme, E.J. Cloning and Characterization of the NADPH Cytochrome P450 Reductase Gene (CPR) from Candida bombicola. FEMS Yeast Res. 2007, 7, 922–928. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.A.; Holvoet, K.; Roelants, S.L.K.W.; Li, B.; Lin, Y.-C.; Van de Peer, Y.; Soetaert, W. The Biosynthetic Gene Cluster for Sophorolipids: A Biotechnological Interesting Biosurfactant Produced by Starmerella bombicola. Mol. Microbiol. 2013, 88, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, K.; Roelants, S.L.; Bogaert, I.N.; Waele, S.; Vandenberghe, I.; Groeneboer, S.; Soetaert, W.; Devreese, B. Characterization of a Novel Enzyme—Starmerella bombicola Lactone Esterase (SBLE)—Responsible for Sophorolipid Lactonization. Appl. Microbiol. Biotechnol. 2016, 100, 9529–9541. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.A.; Demey, M.; Develter, D.; Soetaert, W.; Vandamme, E.J. Importance of the Cytochrome P450 Monooxygenase CYP52 Family for the Sophorolipid-Producing Yeast Candida bombicola. FEMS Yeast Res. 2009, 9, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Liu, G.; Zhao, G.; Fang, X.; Song, X. A Cumulative Effect by Multiple-Gene Knockout Strategy Leads to a Significant Increase in the Production of Sophorolipids in Starmerella bombicola CGMCC 1576. Front. Bioeng. Biotechnol. 2022, 10, 818445. [Google Scholar] [CrossRef] [PubMed]
- Graeve, M.; Maeseneire, S.L.; Roelants, S.L.; Soetaert, W. Starmerella bombicola, an Industrially Relevant, yet Fundamentally Underexplored Yeast. FEMS Yeast Res. 2018, 18, foy072. [Google Scholar] [CrossRef]
- Roelants, S.L.; Ciesielska, K.; Maeseneire, S.L.; Moens, H.; Everaert, B.; Verweire, S.; Denon, Q.; Vanlerberghe, B.; Bogaert, I.N.; Meeren, P.; et al. Towards the Industrialization of New Biosurfactants: Biotechnological Opportunities for the Lactone Esterase Gene from Starmerella bombicola. Biotechnol. Bioeng. 2016, 113, 550–559. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Liu, Y.; Fu, S.; Liu, X. Metal Ions Can Affect the Composition and Production of Sophorolipids by Wickerhamiella domercqiae Y2A CGMCC 3798. Eur. J. Lipid Sci. Technol. 2014, 116, 1505–1512. [Google Scholar] [CrossRef]
- Morita, T.; Konishi, M.; Fukuoka, T.; Imura, T.; Kitamoto, H.K.; Kitamoto, D. Characterization of the Genus Pseudozyma by the Formation of Glycolipid Biosurfactants, Mannosylerythritol Lipids. FEMS Yeast Res. 2007, 7, 286–292. [Google Scholar] [CrossRef]
- Jezierska, S.; Claus, S.; Bogaert, I. Yeast Glycolipid Biosurfactants. FEBS Lett. 2018, 592, 1312–1329. [Google Scholar] [CrossRef]
- Kitamoto, D.; Isoda, H.; Nakahara, T. Functions and Potential Applications of Glycolipid Biosurfactants--from Energy-Saving Materials to Gene Delivery Carriers. J. Biosci. Bioeng. 2002, 94, 187–201. [Google Scholar] [CrossRef]
- Morita, T.; Koike, H.; Koyama, Y.; Hagiwara, H.; Ito, E.; Fukuoka, T.; Imura, T.; Machida, M.; Kitamoto, D. Genome Sequence of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids. Genome Announc. 2013, 1, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- González, S.S. Optimising Production of Mannosylerythritol Lipids by Pseudozyma graminicola through Omic and Molecular Approaches. Ph.D. Thesis, The University of Liverpool, Liverpool, UK, 2018. [Google Scholar]
- Saika, A.; Koike, H.; Fukuoka, T.; Yamamoto, S.; Kishimoto, T.; Morita, T. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2 R, 3 S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis. PLoS ONE 2016, 11, 0157858. [Google Scholar] [CrossRef]
- Saika, A.; Koike, H.; Yamamoto, S.; Sugahara, T.; Kawahara, A.; Sogabe, A.; Morita, T. Improvement of Oil Degradation and MEL Production in a Yeast Strain, Pseudozyma tsukubaensis, by Translation Elongation Factor 1 Promoter-Driven Expression of a Lipase. J. Oleo Sci. 2022, 71, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Koike, H.; Fujii, T.; Morita, T. Targeted Transcriptomic Study of the Implication of Central Metabolic Pathways in Mannosylerythritol Lipids Biosynthesis in Pseudozyma antarctica T-34. PLoS ONE 2020, 15, 0227295. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, S.K.; Kant, C.; Verma, H.; Kumar, D.; Singh, P.P.; Modi, A.; Droby, S.; Kesawat, M.S.; Alavilli, H.; et al. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants 2021, 10, 1472. [Google Scholar] [CrossRef] [PubMed]
- Khedher, S.B.; Boukedi, H.; Laarif, A.; Tounsi, S. Biosurfactant Based Biocontrol of Agriculturally Important Plant Pathogens. Eur. Chem. Bull. 2023, 12, 3279–3296. [Google Scholar]
- Vaughn, S.F.; Behle, R.W.; Skory, C.D.; Kurtzman, C.P.; Price, N.P.J. Utilization of Sophorolipids as Biosurfactants for Postemergence Herbicides. Crop Prot. 2014, 59, 29–34. [Google Scholar] [CrossRef]
- Hipólito, A.; Silva, R.A.A.; Oliveira Caretta, T.; Silveira, V.A.I.; Amador, I.R.; Panagio, L.A.; Borsato, D.; Celligoi, M.A.P.C. Evaluation of the Antifungal Activity of Sophorolipids from Starmerella bombicola against Food Spoilage Fungi. Biocatal. Agric. Biotechnol. 2020, 29, 101797. [Google Scholar] [CrossRef]
- de O Caretta, T.; I Silveira, V.A.; Andrade, G.; Macedo, F.; PC Celligoi, M.A. Antimicrobial Activity of Sophorolipids Produced by Starmerella bombicola against Phytopathogens from Cherry Tomato. J. Sci. Food Agric. 2022, 102, 1245–1254. [Google Scholar] [CrossRef]
- Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Production, Characterization, and Antifungal Activity of a Biosurfactant Produced by Rhodotorula babjevae YS3. Microb. Cell Factories 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Gharaghani, M.; Halvaeezadeh, M.; Mahmoudabadi, A.Z. Evaluation Laboratory Produced Biosurfactant by Rhodotorula Species and Its Antifungal Activity. Jundishapur J. Nat. Pharm. Prod. 2019, 15, e11846. [Google Scholar] [CrossRef]
- Celligoi, M.A.P.; Silveira, V.A.; Hipólito, A.; Caretta, T.O.; Baldo, C. Sophorolipids: A Review on Production and Perspectives of Application in Agriculture. Span. J. Agric. Res. 2020, 18, e03R01. [Google Scholar] [CrossRef]
- Silva, A.F.; Banat, I.M.; Giachini, A.J.; Robl, D. Fungal Biosurfactants, from Nature to Biotechnological Product: Bioprospection, Production and Potential Applications. Bioprocess Biosyst. Eng. 2021, 44, 2003–2034. [Google Scholar] [CrossRef] [PubMed]
- Matosinhos, R.D.; Cesca, K.; Carciofi, B.A.M.; Oliveira, D.; Andrade, C.J. The Biosurfactants Mannosylerythritol Lipids (MELs) as Stimulant on the Germination of Lactuca sativa L. Agriculture 2023, 13, 1646. [Google Scholar] [CrossRef]
- Fukuoka, T.; Yoshida, S.; Nakamura, J.; Koitabashi, M.; Sakai, H.; Abe, M.; Kitamoto, D.; Kitamoto, H. Application of Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, as Agrospreaders. J. Oleo Sci. 2015, 64, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Akiyode, O.; George, D.; Getti, G.; Boateng, J. Systematic Comparison of the Functional Physico-Chemical Characteristics and Biocidal Activity of Microbial Derived Biosurfactants on Blood-Derived and Breast Cancer Cells. J. Colloid Interface Sci. 2016, 479, 221–233. [Google Scholar] [CrossRef]
- Fernandes, T.; Osório, C.; Sousa, M.J.; Franco-Duarte, R. Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J. Fungi 2023, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yoo, D.; Kim, Y.; Lee, B.; Shin, D.; Kim, E.K. Characteristics of Sophorolipid as an Antimicrobial Agent. J. Microbiol. Biotechnol. 2002, 12, 235–241. [Google Scholar]
- Diniz, R.; Luna, J.M.; Asfora, L. Antimicrobial and Anti-Adhesive Potential of a Biosurfactants Produced by Candida Species. Pract. Appl. Biomed. Eng. 2013. [Google Scholar] [CrossRef]
- Loeto, D.; Jongman, M.; Lekote, L.; Muzila, M.; Mokomane, M.; Motlhanka, K.; Ndlovu, T.; Zhou, N. Biosurfactant Production by Halophilic Yeasts Isolated from Extreme Environments in Botswana. FEMS Microbiol. Lett. 2021, 368, 146. [Google Scholar] [CrossRef]
- Haque, F.; Verma, N.K.; Alfatah, M.; Bijlani, S.; Bhattacharyya, M.S. Sophorolipid Exhibits Antifungal Activity by ROS Mediated Endoplasmic Reticulum Stress and Mitochondrial Dysfunction Pathways in Candida albicans. RSC Adv. 2019, 9, 41639–41648. [Google Scholar] [CrossRef] [PubMed]
- Haque, F.; Alfatah, M.; Ganesan, K.; Bhattacharyya, M.S. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Sci. Rep. 2016, 6, 23575. [Google Scholar] [CrossRef] [PubMed]
- Alfian, A.R.; Watchaputi, K.; Sooklim, C.; Soontorngun, N. Production of New Antimicrobial Palm Oil-Derived Sophorolipids by the Yeast Starmerella riodocensis sp. nov. against Candida albicans Hyphal and Biofilm Formation. Microb. Cell Factories 2022, 21, 163. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Satpute, S.K.; Cameotra, S.S.; Patil, R.; Nyayanit, N.V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production. Front. Microbiol. 2014, 5, 697. [Google Scholar] [CrossRef] [PubMed]
- Shu, Q.; Niu, Y.; Zhao, W.; Chen, Q. Antibacterial activity and mannosylerythritol lipids against vegetative cells and spores of Bacillus cereus. Food Control 2019, 106, 106711. [Google Scholar] [CrossRef]
- Shu, Q.; Wei, T.; Lu, H.; Niu, Y.; Chen, Q. Mannosylerythritol Lipids: Dual Inhibitory Modes against Staphylococcus aureus through Membrane-Mediated Apoptosis and Biofilm Disruption. Appl. Microbiol. Biotechnol. 2020, 104, 5053–5064. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shu, Q.; Chen, Q.; Pang, X.; Wu, Y.; Zhou, W.; Wu, Y.; Niu, J.; Zhang, X. Antibacterial Efficacy and Mechanism of Mannosylerythritol Lipids-A on Listeria monocytogenes. Molecules 2020, 25, 4857. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.; Hutton, S.; Lajarin-Cuesta, M.; Heaton, R.; Hargreaves, I.; Fracchia, L.; Rienzo, M.A.D. Production of Mannosylerythritol Lipids (MELs) to Be Used as Antimicrobial Agents against S. aureus ATCC 6538. Curr. Microbiol. 2020, 77, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, S.; Furukawa, M.; Kawahara, A.; Sugahara, T.; Yamamoto, S.; Kitabayashi, M.; Sogabe, A.; Shimoda, S.; Hata, E.; Watanabe, K.; et al. Roles of Mannosylerythritol Lipid-B Components in Antimicrobial Activity against Bovine Mastitis-Causing Staphylococcus aureus. World J. Microbiol. Biotechnol. 2022, 38, 54. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.L.S.; Feuser, P.E.; Carciofi, B.A.M.; Andrade, C.J.; Oliveira, D. Mannosylerythritol Lipids: Antimicrobial and Biomedical Properties. Appl. Microbiol. Biotechnol. 2020, 104, 2297–2318. [Google Scholar] [CrossRef]
Killer Toxin | Physico-Chemical Characteristics | Mechanism | Susceptible Strains |
---|---|---|---|
PaEXG1 (WaEXG1) | ~45.7 kDa; acidic protein and a glycosylation site | Exo-β-1-3 glucanase secreted into the culture medium | Fungal strains that affect fruit quality, e.g., B. cinerea [44,45,46] |
PaEXG2 (WaEXG2) | Exo-β-1-3 glucanase attached to the cell wall | ||
WA18 | ~31 kDa; the producing strain is isolated from dairy products; resistance to high concentrations of sugars, ethanol, pH 2.0–4.5; T > 35 °C | β 1-3 glucanase activity It recognizes β 1-3 and β 1-6 glucan from the cell wal | B. bruxellensis [47] |
KTCf20 | Isolated from wine products; resistance to high concentrations of sugars, ethanol, low pH | β 1-3 glucanase activity It recognizes β 1-3 and β 1-6 glucan from the cell wal | Filamentous fungi affecting wine quality [48,49] |
WaF1.712 | ~140 kDa; the producing strain is isolated from the microbiota of the Anopheles stephensi mosquito | β-glucosidase activity | Antiplasmodial action against Plasmodium berghei (the etiological agent of malaria) [50] |
Killer Yeast Species | Killer Toxin | Antimicrobial Properties |
---|---|---|
H. uvarum | K1 KT470 | Increases the membrane permeability, forms ion channels |
Z. bailii | Zygocin KT412 | Increases the membrane permeability, forms ion channels |
U. maydis | KP4 KP6 | Increases the membrane permeability, forms ion channels Blocks uptake of Ca2+ from the extracellular environment; decreases the intracellular K+ concentration |
K. lactis | Zymocine | When tested against S. cerevisiae
|
K. wickerhamii | Kwkt | Unknown |
K. siamensis | Unknown | Unknown |
W. robertsiae | pWR1A pWR1B | Most likely cellular arrest in G1 phase |
S.cerevisiae | K1 K2 K28 KHR KHS CF8 M12 | Increases the membrane permeability to H+ while releasing K+ Activates TOK1 pumps |
Determines cellular arrest in G1 phase | ||
Not fully established Increases the membrane permeability, forming ion channels | ||
P. membraniefaciens | PMKT PMKT2 | Activates the HOG signaling path Overexpresses 19 genes involved in maintaining ion homeostasis Increases the membrane permeability for H+, K+ and Na+; induces cellular arrest in the G1 phase of the cellular cycle |
Yeast Strain | Type of Tested Extract | Method Used for Extraction | Potential Sensitive Microbial Strains | Efficiency (MIC Value/Inhibition Zone Diameter) | References |
---|---|---|---|---|---|
R. mucilaginosa 9C3R | Crude extract | Yeast macerate obtained using methanol extraction from PDA cultures was dried and then the crude extract was prepared in dimethyl sulfoxide at the appropriate concentration | E. coli ATCC 25922 | MIC > 1 mg/mL | [110] |
S. aureus ATCC 12600 | |||||
B. cereus ATCC 19115 | |||||
S. thyphimurium ATCC 14028 | |||||
R. mucilaginosa YP187 | Crude extract | Acetone extraction from freeze-dried cells hydrolyzed with 1N hydrocloric acid | Enterococcus sp. | 1.9 cm | [60] |
S. aureus | 2.6 cm | ||||
S. faecalis | 2.2 cm | ||||
B. subtilis | 2.3 cm | ||||
E. coli | 2.9 cm | ||||
P. aeruginosa | 2.1 cm | ||||
R. glutinis | Crude extract | Pigment extraction using nonpolar solvents such as petroleum ether, n-hexane, ethanol, acetone (25:25:50 v/v/v); the colored solution was concentrated and turned into powder using a freeze dryer before determining the antimicrobial activity | S. aureus ATCC25923 | 3.8 µL/mL | [111] |
S. typhimurium ST38 | 15.4 µL/mL | ||||
S. aureus M1 | 3.8 µL/mL | ||||
S. aureus M2 | 7.7 µL/mL | ||||
S. aureus M3 | 3.8 µL/mL | ||||
S. aureus M4 | 1.9 µL/mL | ||||
S. aureus M5 | 3.8 µL/mL | ||||
S. typhimurium Ch1 | 15.5 µL/mL | ||||
S. typhimurium Ch2 | 15.4 µL/mL | ||||
S. typhimurium Ch3 | 30.7 µL/mL | ||||
S. typhimurium Ch4 | 15.4 µL/mL | ||||
S. typhimurium Ch5 | 15.4 µL/mL | ||||
R. glutinis PTCC 5256; R. glutinis PTCC5257 | Crude extract | Acetone extraction from fresh cellular sediment of wild type strain respectively, mutagenized strain using UV irradiation or due to sodium azide exposure | S. aureus PTCC1431 | 16 mg/mL | [112,113] |
B. cereus PTCC1539 | 8–16 mg/mL | ||||
Streptococcus pyogenes PTCC 1147 | 16 mg/mL | ||||
E. coli PTCC 1269 | 32–64 mg/mL | ||||
S. enteriditis PTCC 1709 | 32–64 mg/mL | ||||
Listeria monocytogenes PTCC1163 | 16–64 mg/mL | ||||
Alternaria citri ATCC | 128 mg/mL | ||||
P. digitatum ATCC 48.113 | 64–128 mg/mL | ||||
R. mucilaginosa CCMA 0156 | Crude extract | Acetone: methanol extraction from dried cell mass | P. aeruginosa | 1.225–1.6 mg/mL | [114] |
S. cholerasus | 0.612–1.225 mg/mL | ||||
E. coli | 1.225–1.6 mg/mL | ||||
S. aureus | 0.612–1.225 mg/mL | ||||
L. monocytogenes | 1.225–1.6 mg/mL | ||||
R. diobovata R1 | β-carotene (0.03 mg/mL) | Acetone extraction in presence of magnetic beads followed by chromatographic purification. The antimicrobial activity was determined for 0.03 mg/mL pure β-carotene | C. albicans HAM25 | 2.8 cm | [115] |
C. dubliniensis | 2.9 cm | ||||
C. tropicalis HAM13 | 2.7 cm | ||||
Cutaneotrichosporon dermatis Judy 4 | 2.3 cm | ||||
R. mucilaginosa R2 | β-carotene (0.03mg/mL) | C. albicans HAM25 | 3.0 cm | ||
C. dubliniensis | 2.7 cm | ||||
C. tropicalis HAM13 | 2.9 cm | ||||
C. dermatis Judy 4 | 2.4 cm | ||||
R. rubra | Torularhodin | Alkaline methanol extraction from cells with permeabilized cell wall | S. aureus ATCC25923 | 22.18 µg/L | [116,117] |
E. faecalis ATCC29212 | 44.375 µg/L | ||||
E. coli K 120MG1655 | 22.18 µg/L | ||||
C. utilis | 44.375 µg/L | ||||
A. ochraceus | 44.375 µg/L | ||||
F. oxysporum MUCL 791 | 44.375 µg/L |
Glycolipid Biosurfactants | Producing Species (Strain) | Biocontrol Activity | Fungal Species Affected |
---|---|---|---|
Sophorolipids (SL) | Starmerella bombicola ATCC 22214 | inhibition of fungal mycelial growth | Aspergillus flavus Aspergillus melleus Aspergillus ochraceus Aspergillus parasiticus Aspergillus niger Fusarium oxysporum Botrytis cinerea Rhizopus spp. Pythium ultimum Sclerotium rolfsii Rhizoctonia solani |
modifications of mycelia morfology | Fusarium oxysporum Aspergillus niger Botrytis cinerea Rhizopus spp. | ||
modification of cell and hyphae appearance | Botrytis cinerea Rhizoctonia solani Pythium ultimum Sclerotium rolfsii | ||
Wickerhamiella domercqiae Y2A |
| Fusarium sp. Fusarium oxysporum Fusarium concentricum Pythium ultimum Pyricularia oryzae Rhizoctorzia solani Alternaria kikuchiana Gaeumannomyces graminis var. tritici Phytophthora infestans | |
Rhodotorula babjevae YS3 | inhibition of fungal growth | Colletotrichum gloeosporioides | |
Rhodotorula glutinis | inhibition of fungal growth | Aspergillus niger Alternaria sp. Rhizopus sp. Syncephalastrum sp. | |
Mannosylerytrithol lipids (MEL) | |||
MEL-A | Pseudozyma sp. | supression of conidia germination | Blumeria graminis f. sp. tritici |
MEL-B | Pseudozyma sp. | supression of conidia germination | Colletotrichum dematium Magnaporthe grisea |
MEL-C | Pseudozyma sp. | supression of conidia germination | Colletotrichum dematium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, A.-M.; Corbu, V.M.; Csutak, O. Molecular Basis of Yeasts Antimicrobial Activity—Developing Innovative Strategies for Biomedicine and Biocontrol. Curr. Issues Mol. Biol. 2024, 46, 4721-4750. https://doi.org/10.3390/cimb46050285
Georgescu A-M, Corbu VM, Csutak O. Molecular Basis of Yeasts Antimicrobial Activity—Developing Innovative Strategies for Biomedicine and Biocontrol. Current Issues in Molecular Biology. 2024; 46(5):4721-4750. https://doi.org/10.3390/cimb46050285
Chicago/Turabian StyleGeorgescu, Ana-Maria, Viorica Maria Corbu, and Ortansa Csutak. 2024. "Molecular Basis of Yeasts Antimicrobial Activity—Developing Innovative Strategies for Biomedicine and Biocontrol" Current Issues in Molecular Biology 46, no. 5: 4721-4750. https://doi.org/10.3390/cimb46050285
APA StyleGeorgescu, A. -M., Corbu, V. M., & Csutak, O. (2024). Molecular Basis of Yeasts Antimicrobial Activity—Developing Innovative Strategies for Biomedicine and Biocontrol. Current Issues in Molecular Biology, 46(5), 4721-4750. https://doi.org/10.3390/cimb46050285