Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment
Abstract
:1. Introduction
2. Primary Chorea
2.1. Chronic Chorea
2.2. Paroxysmal Chorea
3. Chorea and Epileptic–Dyskinetic Encephalopathy
4. Chorea Associated with Other Multiorgan Manifestations
5. Treatment Options
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanger, T.D.; Chen, D.; Fehlings, D.L.; Hallett, M.; Lang, A.E.; Mink, J.W.; Singer, H.S.; Alter, K.; Ben-Pazi, H.; Butler, E.E.; et al. Definition and classification of hyperkinetic movements in childhood. Mov. Disord. Off. J. Mov. Disord. Soc. 2010, 25, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- de Gusmao, C.M.; Waugh, J.L. Inherited and Acquired Choreas. Semin. Pediatr. Neurol. 2018, 25, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.L. Acute and chronic chorea in childhood. Semin. Pediatr. Neurol. 2009, 16, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Carecchio, M.; Mencacci, N.E. Emerging Monogenic Complex Hyperkinetic Disorders. Curr. Neurol. Neurosci. Rep. 2017, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Fakhari, D.; Münchau, A.; Stamelou, M. A special issue on childhood-onset movement disorders. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Frassoldati, R.; Berardi, A.; Di Palma, F.; Ori, L.; Lucaccioni, L.; Bertoncelli, N.; Einspieler, C. The ontogeny of fidgety movements from 4 to 20weeks post-term age in healthy full-term infants. Early Hum. Dev. 2016, 103, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Prechtl, H.F.; Cioni, G.; Einspieler, C.; Bos, A.F.; Ferrari, F. Role of vision on early motor development: Lessons from the blind. Dev. Med. Child Neurol. 2001, 43, 198–201. [Google Scholar] [CrossRef]
- Gittis, A.H.; Kreitzer, A.C. Striatal microcircuitry and movement disorders. Trends Neurosci. 2012, 35, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Mencacci, N.E.; Carecchio, M. Recent advances in genetics of chorea. Curr. Opin. Neurol. 2016, 29, 486–495. [Google Scholar] [CrossRef]
- Schneider, S.A.; Bird, T. Huntington’s Disease, Huntington’s Disease Look-Alikes, and Benign Hereditary Chorea: What’s New? Mov. Disord. Clin. Pract. 2016, 3, 342–354. [Google Scholar] [CrossRef]
- Blumkin, L.; Lerman-Sagie, T.; Westenberger, A.; Ben-Pazi, H.; Zerem, A.; Yosovich, K.; Lev, D. Multiple Causes of Pediatric Early Onset Chorea-Clinical and Genetic Approach. Neuropediatrics 2018, 49, 246–255. [Google Scholar] [CrossRef]
- Burgunder, J.M. Chorea: An Update on Genetics. Eur. Neurol. 2022, 85, 342–348. [Google Scholar] [CrossRef]
- Diggle, C.P.; Sukoff Rizzo, S.J.; Popiolek, M.; Hinttala, R.; Schülke, J.P.; Kurian, M.A.; Carr, I.M.; Markham, A.F.; Bonthron, D.T.; Watson, C.; et al. Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy. Am. J. Hum. Genet. 2016, 98, 735–743. [Google Scholar] [CrossRef]
- Delorme, C.; Giron, C.; Bendetowicz, D.; Méneret, A.; Mariani, L.L.; Roze, E. Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders. Expert Rev. Neurother. 2021, 21, 81–97. [Google Scholar] [CrossRef]
- Kozon, K.; Łysikowska, W.; Olszewski, J.; Milanowski, Ł.; Figura, M.; Mazurczak, T.; Hoffman- Zacharska, D.; Koziorowski, D. ADCY5-related dyskinesia—Case series with literature review. Neurol. I Neurochir. Pol. 2024, 58, 161–166. [Google Scholar] [CrossRef]
- Doyle, T.B.; Hayes, M.P.; Chen, D.H.; Raskind, W.H.; Watts, V.J. Functional characterization of AC5 gain-of-function variants: Impact on the molecular basis of ADCY5-related dyskinesia. Biochem. Pharmacol. 2019, 163, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Carapito, R.; Paul, N.; Untrau, M.; Le Gentil, M.; Ott, L.; Alsaleh, G.; Jochem, P.; Radosavljevic, M.; Le Caignec, C.; David, A.; et al. A de novo ADCY5 mutation causes early-onset autosomal dominant chorea and dystonia. Mov. Disord. Off. J. Mov. Disord. Soc. 2015, 30, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, A.; Steel, D.; Barwick, K.; Kurian, M.A. An Update on the Phenotype, Genotype and Neurobiology of ADCY5-Related Disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Carecchio, M.; Mencacci, N.E.; Iodice, A.; Pons, R.; Panteghini, C.; Zorzi, G.; Zibordi, F.; Bonakis, A.; Dinopoulos, A.; Jankovic, J.; et al. ADCY5-related movement disorders: Frequency, disease course and phenotypic variability in a cohort of paediatric patients. Park. Relat. Disord. 2017, 41, 37–43. [Google Scholar] [CrossRef]
- Mencacci, N.E.; Erro, R.; Wiethoff, S.; Hersheson, J.; Ryten, M.; Balint, B.; Ganos, C.; Stamelou, M.; Quinn, N.; Houlden, H.; et al. ADCY5 mutations are another cause of benign hereditary chorea. Neurology 2015, 85, 80–88. [Google Scholar] [CrossRef]
- Menon, P.J.; Nilles, C.; Silveira-Moriyama, L.; Yuan, R.; de Gusmao, C.M.; Münchau, A.; Carecchio, M.; Grossman, S.; Grossman, G.; Méneret, A.; et al. Scoping Review on ADCY5-Related Movement Disorders. Mov. Disord. Clin. Pract. 2023, 10, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Mencacci, N.E.; Kamsteeg, E.J.; Nakashima, K.; R’Bibo, L.; Lynch, D.S.; Balint, B.; Willemsen, M.A.; Adams, M.E.; Wiethoff, S.; Suzuki, K.; et al. De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. Am. J. Hum. Genet. 2016, 98, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, D.L.; Deshpande, D.; Das Bhowmik, A.; Varma, D.R.; Dalal, A. Familial choreoathetosis due to novel heterozygous mutation in PDE10A. Am. J. Med. Genet. Part A 2018, 176, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Carecchio, M.; Tonduti, D.; Saletti, V.; Panteghini, C.; Chiapparini, L.; Zorzi, G.; Pantaleoni, C.; Garavaglia, B.; Krainc, D.; et al. A PDE10A de novo mutation causes childhood-onset chorea with diurnal fluctuations. Mov. Disord. Off. J. Mov. Disord. Soc. 2017, 32, 1646–1647. [Google Scholar] [CrossRef] [PubMed]
- Van der Weijden, M.C.M.; Rodriguez-Contreras, D.; Delnooz, C.C.S.; Robinson, B.G.; Condon, A.F.; Kielhold, M.L.; Stormezand, G.N.; Ma, K.Y.; Dufke, C.; Williams, J.T.; et al. A Gain-of-Function Variant in Dopamine D2 Receptor and Progressive Chorea and Dystonia Phenotype. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Mencacci, N.E.; Steel, D.; Magrinelli, F.; Hsu, J.; Keller Sarmiento, I.J.; Troncoso Schifferli, M.; Muñoz, D.; Stefanis, L.; Lubbe, S.J.; Wood, N.W.; et al. Childhood-Onset Chorea Caused by a Recurrent De Novo DRD2 Variant. Mov. Disord. Off. J. Mov. Disord. Soc. 2021, 36, 1472–1473. [Google Scholar] [CrossRef]
- Costeff, H.; Gadoth, N.; Apter, N.; Prialnic, M.; Savir, H. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology 1989, 39, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, G.; Anikster, Y.; Huna-Baron, R.; Hoffmann, C.; Blumkin, L.; Lev, D.; Tsabari, R.; Nitsan, Z.; Lerman, S.F.; Ben-Zeev, B.; et al. Costeff syndrome: Clinical features and natural history. J. Neurol. 2014, 261, 2275–2282. [Google Scholar] [CrossRef]
- Huna-Baron, R.; Yahalom, G.; Anikster, Y.; Ben Zeev, B.; Hoffmann, C.; Hassin-Baer, S. Neuro-Ophthalmic Phenotype of OPA3. J. Neuro-Ophthalmol. Off. J. North Am. Neuro-Ophthalmol. Soc. 2022, 42, e147–e152. [Google Scholar] [CrossRef]
- Arif, B.; Kumar, K.R.; Seibler, P.; Vulinovic, F.; Fatima, A.; Winkler, S.; Nürnberg, G.; Thiele, H.; Nürnberg, P.; Jamil, A.Z.; et al. A novel OPA3 mutation revealed by exome sequencing: An example of reverse phenotyping. JAMA Neurol. 2013, 70, 783–787. [Google Scholar] [CrossRef]
- Carmi, N.; Lev, D.; Leshinsky-Silver, E.; Anikster, Y.; Blumkin, L.; Kivity, S.; Lerman-Sagie, T.; Zerem, A. Atypical presentation of Costeff syndrome-severe psychomotor involvement and electrical status epilepticus during slow wave sleep. Eur. J. Paediatr. Neurol. EJPN: Off. J. Eur. Paediatr. Neurol. Soc. 2015, 19, 733–736. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, D.J.; Ryan, S.; Salomons, G.; Jakobs, C.; Monavari, A.; King, M.D. Guanidinoacetate methyltransferase (GAMT) deficiency: Late onset of movement disorder and preserved expressive language. Dev. Med. Child Neurol. 2009, 51, 404–407. [Google Scholar] [CrossRef] [PubMed]
- El-Gharbawy, A.H.; Goldstein, J.L.; Millington, D.S.; Vaisnins, A.E.; Schlune, A.; Barshop, B.A.; Schulze, A.; Koeberl, D.D.; Young, S.P. Elevation of guanidinoacetate in newborn dried blood spots and impact of early treatment in GAMT deficiency. Mol. Genet. Metab. 2013, 109, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Bozaci, A.E.; Er, E.; Ünal, A.T.; Taş, İ.; Ayaz, E.; Ozbek, M.N.; Durmaz, A.; Aykut, A.; Kose, M. Glutaric aciduria and L-2-hydroxyglutaric aciduria: Clinical and molecular findings of 35 patients from Turkey. Mol. Genet. Metab. Rep. 2023, 36, 100979. [Google Scholar] [CrossRef] [PubMed]
- Gitiaux, C.; Roze, E.; Kinugawa, K.; Flamand-Rouvière, C.; Boddaert, N.; Apartis, E.; Valayannopoulos, V.; Touati, G.; Motte, J.; Devos, D.; et al. Spectrum of movement disorders associated with glutaric aciduria type 1: A study of 16 patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2392–2397. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.; Polster, B.J.; Hayflick, S.J. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J. Med. Genet. 2009, 46, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; Shen, N.X.; Zhang, C.; Xie, H.C.; Li, Z.Y.; Cao, L.; Chen, L.Z.; Zeng, Y.J.; Fan, C.X.; Chen, Q.; et al. Novel PANK2 Mutations in Patients with Pantothenate Kinase-Associated Neurodegeneration and the Genotype-Phenotype Correlation. Front. Aging Neurosci. 2022, 14, 848919. [Google Scholar] [CrossRef] [PubMed]
- Hörtnagel, K.; Prokisch, H.; Meitinger, T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum. Mol. Genet. 2003, 12, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Klopstock, T.; Mercimek-Andrews, S.; Jurecka, A.; Wood, P.; Cwyl, M.; Klucken, A.; López, A.; Scalise, R.; Valle, A.; Mollet, F.; et al. Patient and caregiver experiences with pantothenate kinase-associated neurodegeneration (PKAN): Results from a patient community survey. Orphanet J. Rare Dis. 2023, 18, 257. [Google Scholar] [CrossRef]
- Hayflick, S.J.; Westaway, S.K.; Levinson, B.; Zhou, B.; Johnson, M.A.; Ching, K.H.; Gitschier, J. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N. Engl. J. Med. 2003, 348, 33–40. [Google Scholar] [CrossRef]
- Dastsooz, H.; Nemati, H.; Fard, M.A.F.; Fardaei, M.; Faghihi, M.A. Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: Two case reports. BMC Med. Genet. 2017, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Bakels, H.S.; Roos, R.A.C.; van Roon-Mom, W.M.C.; de Bot, S.T. Juvenile-Onset Huntington Disease Pathophysiology and Neurodevelopment: A Review. Mov. Disord. Off. J. Mov. Disord. Soc. 2022, 37, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Quarrell, O.W.; Nance, M.A.; Nopoulos, P.; Paulsen, J.S.; Smith, J.A.; Squitieri, F. Managing juvenile Huntington’s disease. Neurodegener Dis. Manag. 2013, 3, 267–276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martinez-Ramirez, D.; Walker, R.H.; Rodríguez-Violante, M.; Gatto, E.M. Rare Movement Disorders Study Group of International Parkinson’s Disease. Review of Hereditary and Acquired Rare Choreas. Tremor Other Hyperkinetic Mov. 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Koutsis, G.; Panas, M.; Paraskevas, G.P.; Bougea, A.M.; Kladi, A.; Karadima, G.; Kapaki, E. From mild ataxia to huntington disease phenocopy: The multiple faces of spinocerebellar ataxia 17. Case Rep. Neurol. Med. 2014, 2014, 643289. [Google Scholar] [CrossRef] [PubMed]
- Hire, R.R.; Katrak, S.M.; Vaidya, S.; Radhakrishnan, K.; Seshadri, M. Spinocerebellar ataxia type 17 in Indian patients: Two rare cases of homozygous expansions. Clin. Genet. 2011, 80, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.C.; Takahashi-Fujigasaki, J.; Maltecca, F.; Foncin, J.F.; Servadio, A.; Casari, G.; D’Adamo, P.; Maletta, R.; Curcio, S.A.; De Michele, G.; et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch. Neurol. 2004, 61, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Garg, D.; Mohammad, S.; Shukla, A.; Sharma, S. Genetic Links to Episodic Movement Disorders: Current Insights. Appl. Clin. Genet. 2023, 16, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Erro, R.; Sheerin, U.M.; Bhatia, K.P. Paroxysmal dyskinesias revisited: A review of 500 genetically proven cases and a new classification. Mov. Disord. Off. J. Mov. Disord. Soc. 2014, 29, 1108–1116. [Google Scholar] [CrossRef]
- Bhatia, K.P. Paroxysmal dyskinesias. Mov. Disord. Off. J. Mov. Disord. Soc. 2011, 26, 1157–1165. [Google Scholar] [CrossRef]
- Garone, G.; Capuano, A.; Travaglini, L.; Graziola, F.; Stregapede, F.; Zanni, G.; Vigevano, F.; Bertini, E.; Nicita, F. Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int. J. Mol. Sci. 2020, 21, 3603. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Lin, Y.; Xiong, Z.Q.; Wei, W.; Ni, W.; Tan, G.H.; Guo, S.L.; He, J.; Chen, Y.F.; Zhang, Q.J.; et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat. Genet. 2011, 43, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Li, H.F.; Wu, Z.Y. Paroxysmal Kinesigenic Dyskinesia: Genetics and Pathophysiological Mechanisms. Neurosci. Bull. 2023. [Google Scholar] [CrossRef] [PubMed]
- Spoto, G.; Valentini, G.; Saia, M.C.; Butera, A.; Amore, G.; Salpietro, V.; Nicotera, A.G.; Di Rosa, G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front. Neurol. 2022, 13, 826211. [Google Scholar] [CrossRef]
- Harvey, S.; King, M.D.; Gorman, K.M. Paroxysmal Movement Disorders. Front. Neurol. 2021, 12, 659064. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.Y.; Salles, P.A.; Shuaib, U.A.; Fernandez, H.H. Genetic updates on paroxysmal dyskinesias. J. Neural Transm. 2021, 128, 447–471. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.S.; Pons, R. Movement Disorders in Children. Continuum 2019, 25, 1099–1120. [Google Scholar] [CrossRef] [PubMed]
- Spoto, G.; Saia, M.C.; Amore, G.; Gitto, E.; Loddo, G.; Mainieri, G.; Nicotera, A.G.; Di Rosa, G. Neonatal Seizures: An Overview of Genetic Causes and Treatment Options. Brain Sci. 2021, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Cellini, E.; Vignoli, A.; Pisano, T.; Falchi, M.; Molinaro, A.; Accorsi, P.; Bontacchio, A.; Pinelli, L.; Giordano, L.; Guerrini, R.; et al. The hyperkinetic movement disorder of FOXG1-related epileptic-dyskinetic encephalopathy. Dev. Med. Child Neurol. 2016, 58, 93–97. [Google Scholar] [CrossRef]
- Baizabal-Carvallo, J.F.; Cardoso, F. Chorea in children: Etiology, diagnostic approach and management. J. Neural Transm. 2020, 127, 1323–1342. [Google Scholar] [CrossRef]
- Regad, T.; Roth, M.; Bredenkamp, N.; Illing, N.; Papalopulu, N. The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat. Cell Biol. 2007, 9, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, M.; Pivetta, C.; Granzotto, M.; Filippis, C.; Mallamaci, A. Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells 2010, 28, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Ariani, F.; Hayek, G.; Rondinella, D.; Artuso, R.; Mencarelli, M.A.; Spanhol-Rosseto, A.; Pollazzon, M.; Buoni, S.; Spiga, O.; Ricciardi, S.; et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 2008, 83, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, A.; Schneider, R.B.; Augustine, E.F.; Ng, J.; Mankad, K.; Meyer, E.; McTague, A.; Ngoh, A.; Hemingway, C.; Robinson, R.; et al. Delineation of the movement disorders associated with FOXG1 mutations. Neurology 2016, 86, 1794–1800. [Google Scholar] [CrossRef] [PubMed]
- Saitsu, H.; Fukai, R.; Ben-Zeev, B.; Sakai, Y.; Mimaki, M.; Okamoto, N.; Suzuki, Y.; Monden, Y.; Saito, H.; Tziperman, B.; et al. Phenotypic spectrum of GNAO1 variants: Epileptic encephalopathy to involuntary movements with severe developmental delay. Eur. J. Hum. Genet. EJHG 2016, 24, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Carral, J.; Ludlam, W.G.; Junyent Segarra, M.; Fornaguera Marti, M.; Balsells, S.; Muchart, J.; Čokolić Petrović, D.; Espinoza, I.; Ortigoza-Escobar, J.D.; Martemyanov, K.A.; et al. Severity of GNAO1-Related Disorder Correlates with Changes in G-Protein Function. Ann. Neurol. 2023, 94, 987–1004. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, H.; Li, L.; Cao, X.; Ding, X.; Chen, L.; Cao, D. Phenotypes in children with GNAO1 encephalopathy in China. Front. Pediatr. 2023, 11, 1086970. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Sjögren, B.; Karaj, B.; Shaw, V.; Gezer, A.; Neubig, R.R. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology 2017, 89, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Muntean, B.S.; Masuho, I.; Dao, M.; Sutton, L.P.; Zucca, S.; Iwamoto, H.; Patil, D.N.; Wang, D.; Birnbaumer, L.; Blakely, R.D.; et al. Gαo is a major determinant of cAMP signaling in the pathophysiology of movement disorders. Cell Rep. 2021, 34, 108718. [Google Scholar] [CrossRef]
- Akamine, S.; Okuzono, S.; Yamamoto, H.; Setoyama, D.; Sagata, N.; Ohgidani, M.; Kato, T.A.; Ishitani, T.; Kato, H.; Masuda, K.; et al. GNAO1 organizes the cytoskeletal remodeling and firing of developing neurons. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 16601–16621. [Google Scholar] [CrossRef]
- Schirinzi, T.; Garone, G.; Travaglini, L.; Vasco, G.; Galosi, S.; Rios, L.; Castiglioni, C.; Barassi, C.; Battaglia, D.; Gambardella, M.L.; et al. Phenomenology and clin-ical course of movement disorder in GNAO1 variants: Results from an analytical review. Park. Relat. Disord. 2019, 61, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lemke, J.R.; Geider, K.; Helbig, K.L.; Heyne, H.O.; Schütz, H.; Hentschel, J.; Courage, C.; Depienne, C.; Nava, C.; Heron, D.; et al. Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology 2016, 86, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Efthymiou, S.; Rumbos Siurana, E.; Salpietro, V.; Bayat, A.; Houlden, H. GRIA2-Related Neurodevelopmental Disorder. In GeneReviews®; Adam, M.P., Ed.; University of Washington: Seattle, WA, USA, 2024. [Google Scholar]
- Piard, J.; Béreau, M.; XiangWei, W.; Wirth, T.; Amsallem, D.; Buisson, L.; Richard, P.; Liu, N.; Xu, Y.; Myers, S.J.; et al. The GRIA3 c.2477G > A Variant Causes an Exaggerated Startle Reflex, Chorea, and Multifocal Myoclonus. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 1224–1232. [Google Scholar] [CrossRef]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nature reviews. Neuroscience 2013, 14, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Dicanio, D.; Nicotera, A.G.; Cucinotta, F.; Di Rosa, G. Perampanel treatment in Early-onset Epileptic Encephalopathy with infantile movement disorders associated with a de novo GRIN1 gene mutation: A 3-year follow-up. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2021, 42, 1627–1629. [Google Scholar] [CrossRef] [PubMed]
- XiangWei, W.; Kannan, V.; Xu, Y.; Kosobucki, G.J.; Schulien, A.J.; Kusumoto, H.; Moufawad El Achkar, C.; Bhattacharya, S.; Lesca, G.; Nguyen, S.; et al. Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain A J. Neurol. 2019, 142, 3009–3027. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, A.; Urulangodi, M.; Ajit Valaparambil, K.; Sundaram, S.; Krishnan, S. Movement Disorders in GRIA2-Related Disorder—Expanding the Genetic Spectrum of Developmental Dyskinetic Encephalopathy. Mov. Disord. Clin. Pract. 2023, 10, 1222–1224. [Google Scholar] [CrossRef] [PubMed]
- Madeo, M.; Stewart, M.; Sun, Y.; Sahir, N.; Wiethoff, S.; Chandrasekar, I.; Yarrow, A.; Rosenfeld, J.A.; Yang, Y.; Cordeiro, D.; et al. Loss-of-Function Mutations in FRRS1L Lead to an Epileptic-Dyskinetic Encephalopathy. Am. J. Hum. Genet. 2016, 98, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.; Gordon, S.L.; Melland, H.; Bumbak, F.; Scott, D.J.; Jiang, T.J.; Owen, D.; Turner, B.J.; Boyd, S.G.; Rossi, M.; et al. SYT1-associated neurodevelopmental disorder: A case series. Brain A J. Neurol. 2018, 141, 2576–2591. [Google Scholar] [CrossRef]
- Baker, K.; Gordon, S.L.; Grozeva, D.; van Kogelenberg, M.; Roberts, N.Y.; Pike, M.; Blair, E.; Hurles, M.E.; Chong, W.K.; Baldeweg, T.; et al. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J. Clin. Investig. 2015, 125, 1670–1678. [Google Scholar] [CrossRef]
- Lipstein, N.; Verhoeven-Duif, N.M.; Michelassi, F.E.; Calloway, N.; van Hasselt, P.M.; Pienkowska, K.; van Haaften, G.; van Haelst, M.M.; van Empelen, R.; Cuppen, I.; et al. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J. Clin. Investig. 2017, 127, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Vezyroglou, A.; Akilapa, R.; Barwick, K.; Koene, S.; Brownstein, C.A.; Holder-Espinasse, M.; Fry, A.E.; Németh, A.H.; Tofaris, G.K.; Hay, E.; et al. The Phenotypic Continuum of ATP1A3-Related Disorders. Neurology 2022, 99, e1511–e1526. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, T.; Saito, Y.; Ishii, A.; Hirose, S.; Hiraiwa, R.; Maegaki, Y.; Ohno, K. Further characterization of CAPOS/CAOS syndrome with the Glu818Lys mutation in the ATP1A3 gene: A case report. Brain Dev. 2018, 40, 576–581. [Google Scholar] [CrossRef] [PubMed]
- McMillan, H.J.; Telegrafi, A.; Singleton, A.; Cho, M.T.; Lelli, D.; Lynn, F.C.; Griffin, J.; Asamoah, A.; Rinne, T.; Erasmus, C.E.; et al. Recessive mutations in ATP8A2 cause severe hypotonia, cognitive impairment, hyperkinetic movement disorders and progressive optic atrophy. Orphanet J. Rare Dis. 2018, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Kanemasa, H.; Fukai, R.; Sakai, Y.; Torio, M.; Miyake, N.; Lee, S.; Ono, H.; Akamine, S.; Nishiyama, K.; Sanefuji, M.; et al. De novo p.Arg756Cys mutation of ATP1A3 causes an atypical form of alternating hemiplegia of childhood with prolonged paralysis and choreoathetosis. BMC Neurol. 2016, 16, 174. [Google Scholar] [CrossRef] [PubMed]
- Peall, K.J.; Kurian, M.A. Benign Hereditary Chorea: An Update. Tremor Other Hyperkinetic Mov. 2015, 5, 314. [Google Scholar] [CrossRef] [PubMed]
- Peall, K.J.; Lumsden, D.; Kneen, R.; Madhu, R.; Peake, D.; Gibbon, F.; Lewis, H.; Hedderly, T.; Meyer, E.; Robb, S.A.; et al. Benign hereditary chorea related to NKX2.1: Expansion of the genotypic and phenotypic spectrum. Dev. Med. Child Neurol. 2014, 56, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Wilpert, N.M.; Tonduti, D.; Vaia, Y.; Krude, H.; Sarret, C.; Schuelke, M. Establishing Patient-Centered Outcomes for MCT8 Deficiency: Stakeholder Engagement and Systematic Literature Review. Neuropsychiatr. Dis. Treat. 2023, 19, 2195–2216. [Google Scholar] [CrossRef] [PubMed]
- Micol, R.; Ben Slama, L.; Suarez, F.; Le Mignot, L.; Beauté, J.; Mahlaoui, N.; Dubois d’Enghien, C.; Laugé, A.; Hall, J.; Couturier, J.; et al. CEREDIH Network Investigators Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J. Allergy Clin. Immunol. 2011, 128, 382–389.e1. [Google Scholar] [CrossRef]
- Barbeau, A.; Roy, M.; Sadibelouiz, M.; Wilensky, M.A. Recessive ataxia in Acadians and “Cajuns”. Can. J. Neurol. Sci./J. Can. Des Sci. Neurologiques. 1984, 11, 526–533. [Google Scholar] [CrossRef]
- Navarro, J.A.; Ohmann, E.; Sanchez, D.; Botella, J.A.; Liebisch, G.; Moltó, M.D.; Ganfornina, M.D.; Schmitz, G.; Schneuwly, S. Altered lipid metabolism in a Drosophila model of Friedreich’s ataxia. Hum. Mol. Genet. 2010, 19, 2828–2840. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.S. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes. Tremor Other Hyperkinetic Mov. 2016, 6, 368. [Google Scholar] [CrossRef] [PubMed]
- Keita, M.; McIntyre, K.; Rodden, L.N.; Schadt, K.; Lynch, D.R. Friedreich ataxia: Clinical features and new developments. Neurodegener. Dis. Manag. 2022, 12, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Mink, J.W. Treatment of Chorea in Childhood. Pediatr. Neurol. 2020, 102, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Méneret, A.; Garcin, B.; Frismand, S.; Lannuzel, A.; Mariani, L.L.; Roze, E. Treatable Hyperkinetic Movement Disorders Not to Be Missed. Front. Neurol. 2021, 12, 659805. [Google Scholar] [CrossRef] [PubMed]
- Gras, D.; Jonard, L.; Roze, E.; Chantot-Bastaraud, S.; Koht, J.; Motte, J.; Rodriguez, D.; Louha, M.; Caubel, I.; Kemlin, I.; et al. Benign hereditary chorea: Phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J. Neurol. Neurosurg. Psychiatry 2012, 83, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Nou-Fontanet, L.; Martín-Gómez, C.; Isabel-Gómez, R.; Bachoud-Lévi, A.C.; Zorzi, G.; Capuano, A.; NKX2-1-Related Disorders Guideline Working Group; Blasco-Amaro, J.A.; Ortigoza-Escobar, J.D. Systematic review of drug therapy for chorea in NXK2-1-related disorders: Efficacy and safety evidence from case studies and series. Eur. J. Neurol. 2023, 30, 3928–3948. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Kono, S.; Fujimoto, M.; Terada, T.; Matsushita, K.; Ouchi, Y.; Miyajima, H. Benign hereditary chorea: Dopaminergic brain imaging in patients with a novel intronic NKX2.1 gene mutation. J. Neurol. 2013, 260, 207–213. [Google Scholar] [CrossRef]
- Méneret, A.; Mohammad, S.S.; Cif, L.; Doummar, D.; DeGusmao, C.; Anheim, M.; Barth, M.; Damier, P.; Demonceau, N.; Friedman, J.; et al. Efficacy of Caffeine in ADCY5-Related Dyskinesia: A Retrospective Study. Mov. Disord. Off. J. Mov. Disord. Soc. 2022, 37, 1294–1298. [Google Scholar] [CrossRef]
Gene | Age at Onset | Inheritance | Chorea Features | Other Hyperkinetic MD | Course of MD | Other Neurologic Features | Cognitive Development | Psychiatric Features | Brain MRI | Treatment Option |
---|---|---|---|---|---|---|---|---|---|---|
ADCY5 | Infancy (<1 year) to adolescence | AD/de novo | Focal or generalized with facial involvement; Chronic and/or paroxysmal | Episodic exacerbations on awaking, dystonia, and myoclonus | Non-progressive | Axial hypotonia, DD, OMA, alternating hemiplegia, and speech disorders | Normal to mild ID | OCD, depression, anxiety, and phobias | Unspecific | Caffeine, acetazolamide, clonazepam, methylphenidate, and DBS |
chr4p15.3 | Early onset | AR | Generalized; Chronic and/or paroxysmal | HD-like features | Progressive | Extrapyramidal/pyramidal signs, epilepsy, spasticity, and speech disturbances | Cognitive deterioration | NR | Progressive atrophy of the caudates and the frontal cortex | NR |
DRD2 | Infancy (4 months) | De novo | Generalized with facial involvement; Chronic | OMA, occasional myoclonus, and dystonia | Progressive | Axial hypotonia and DD | Mild ID | ADHD, anxiety, and occasional aggressive behavior | Unspecific | Symptomatic: DRD2 antagonists |
GAMT | Infancy to early childhood | AR | Chronic | Dystonia, ataxia, and hemiballism | NR | DD, hypotonia, epilepsy, spasticity, and severe speech delay | ID and severe learning disability | Autistic-like features and aggressive behavior | Bilateral increased signal intensity in GP | Supplementative |
GCDH | Infancy (<2 years) to adolescence | AR | Generalized with facial involvement; Chronic | Dystonia and athetosis | Progressive | Macrocephaly, axial hypotonia, DD, epilepsy, acute encephalitic crisis, akinetic-rigid parkinsonism, and speech disorder with dysarthria and apraxia | Normal to ID | NR | Increased signal intensity in the putamen and caudate | Supplementative |
HTT | Genetic anticipation | AD (CAG repeat expansion) | Sporadic choreic movements; Chronic | Dystonia and impaired saccadic eye movements | Progressive | Bradykinesia, rigidity, parkinsonian features, seizures, and DD or regression | Cognitive deterioration | Depression, suicidal ideation, ODD, and deficit of executive functions | Unspecific | Symptomatic |
JPH3 | Genetic anticipation | AD (CTG-CAG repeat expansion) | Generalized; Chronic | HD-like features | Progressive | Parkinsonism | Cognitive deterioration | Similar to HD | Cerebral atrophy, especially in the caudate and putamen | Symptomatic |
OPA3 | Infancy (1 year) to adulthood | AR | Generalized; Chronic | Ataxia, dystonia, and athetosis | Non-progressive | Hypotonia, DD, optic atrophy, progressive spastic paraplegia, and occasionally epilepsy | Normal and occasionally mild ID | NR | Normal or cerebellar/optic chiasm atrophy | Symptomatic |
PANK2 | Early childhood | AR | Generalized; Chronic | Dystonia and choreoatheosis | Progressive | Rigidity, Spasticity, and speech disorder with dysarthria | Neurodevelopmental regression | NR | “Eye-of-the-tiger” sign and hypointensity of the GP with a central hyperintensity | Symptomatic |
PDE10a | Infancy (3 months) to early childhood | AD/AR | Generalized, with facial involvement; Chronic and/or paroxysmal | Mild dystonic posturing of upper limbs | Non- or slowly progressive | Axial hypotonia, DD, language delay, dysarthria or stammering, and occasionally epilepsy | Normal to mild ID | NR | Normal or symmetrical bilateral striatal lesions | Symptomatic |
TBP | Genetic anticipation | AD (CAG/CAA repeat expansion) | Generalized; Chronic and/or paroxysmal | HD-like features, cerebellar ataxia, and dystonia | Progressive | Progressive encephalopathy, progressive akinetic-rigid syndrome, pyramidal signs, and epilepsy | Cognitive deterioration | Psychosis | Atrophy of the cerebellum and caudate nucleus | Symptomatic |
Gene | Age at Onset | Inheritance | Chorea Features | Other Hyperkinetic MD | Course of MD | Other Neurologic Features | Cognitive Development | Psychiatric Features | Brain MRI | Treatment Option |
---|---|---|---|---|---|---|---|---|---|---|
ATP1A3 | Infancy (<2 years) to adulthood | AD/de novo | Generalized; chronic and/or paroxysmal | Dystonia, myoclonus, ataxia and choreoathetosis, and nystagmus | Progressive | Global DD, hypotonia, microcephaly trigger-induced episodic flaccid tetraplegia, RDP, AHC, and CAPOS syndrome | Moderate ID | Behavioral disorder and executive dysfunction | Unspecific | Symptomatic |
ATP8A2 | Infancy (6 months) | AR | Generalized with facial involvement; chronic | Cerebellar ataxia, athetosis, and dystonia | NR | Global DD, neonatal hypotonia microcephaly, and optic atrophy | Severe ID, with poor/absent speech | ADHD, feeding difficulties, and sleep disorder | Unspecific, cerebral, or cortical atrophy | Symptomatic: tetrabenazine |
FOXG1 | Infancy (<1 year) to early childhood | AD/de novo | Generalized (mainly upper limbs and trunk) with facial involvement; chronic | Dystonia, myoclonus, and hand and/or tongue stereotypies | Non-progressive | Axial or global hypotonia and microcephaly | Severe ID, with absent speech | Sleep disturbances and paroxysmal laughter/crying | CC hypoplasia or aplasia, delayed myelination, simplified gyration, and frontotemporal abnormalities | Symptomatic (pimozide and tetrabenazine) |
FRRS1L | Infancy (<2 years) | AR | Generalized; chronic | Atethosis, ballismus, and dystonia | Progressive to akinetic-rigid phenotype | Diffuse hypotonia, developmental regression, and rigid- akinetic state | Severe ID | NR | Progressive cortical and cerebellar atrophy | Symptomatic |
GNAO1 | Infancy (<1 year) to early childhood | AD/de novo | Generalized with facial involvement; chronic and/or paroxysmal | Ballismus, dystonia, and episodic exacerbations of chorea/ballism; status dystonicus | Progressive | DD and hypotonia | Severe ID | NR | Unspecific, cerebral atrophy | Symptomatic tetrabenazine, antidopaminergic agents, and DBS |
GRIA2 | Infancy (<1 year) | AD/de novo | Generalized; chronic | Ataxia, dystonia, choreoathetosis, and stereotypies | NR | Gait dyspraxia | Developmental regression, moderate-to-severe ID with poor/absent speech | ADHD, ASD, anxiety, and OCD | Unspecific | Symptomatic: ASMs |
GRIA3 | Early childhood (<3 years) | X-linked | Generalized; chronic | Multifocal myoclonus and dystonia | Non-progressive | Exaggerated startle reflex, language delay, and dysarthria | Mild ID | Occasional ODD, ADHD, and anxiety | Unspecific | Symptomatic: ASMs and tetrabenazine |
GRIN1 | Infancy (<1 year) | AD/AR | Generalized; chronic | Dystonia, stereotypies, and oculogyric crises | Non-progressive | Cortical visual impairment spastic tetraplegia, hypotonia | Mild-to-severe ID with absent speech | Behavioral disorder, sleep disturbances, and ASD | Unspecific, cerebral atrophy and polymicrogyria | Symptomatic: ASMs |
GRIN2D | Infancy (<1 year) | AD/de novo | Generalized; chronic | Dyskinetic and choreiform movements | NR | DD/ID, hypotonia, tetraplegia, and cortical visual impairment | Mild-to-severe ID | Sleep disturbances and ASD | Unspecific, cerebral atrophy | Symptomatic: ASMs |
SYT1 | Early childhood (3 years) to adolescence | AD/de novo | Generalized, especially of the lower limbs; chronic and/or paroxysmal | Mixed movement: dystonia, ballism, athetosis, and nocturnal episodic exacerbations | NR | Hypotonia, delayed visual maturation, and severe DD | Severe ID | Episodic agitation and sleep disorder | Unspecific | Symptomatic: dopamine agonist (pramipexole) |
UNC13A | Congenital | De novo | Generalized, especially of the upper limbs; chronic and/or paroxysmal | Dyskinesias with intention tremor and rare febrile seizures | Non-progressive | Developmental and speech delay and hypotonia | Mild ID | ASD and ADHD | Unspecific | Symptomatic |
Gene | Age at Onset | Inheritance | Chorea Features | Other Hyperkinetic MD | Course of MD | Other Systemic Features | Cognitive Development | Neuropsychiatric Features | Brain MRI | Treatment Option |
---|---|---|---|---|---|---|---|---|---|---|
ATM | Infancy (1 year) to adolescence | AR | Generalized; chronic | Prominent ataxia, mixed MD: myoclonus, choreoathetosis, and dystonia | Progressive | Ocular telangiectasias, immunodeficiency, and a predisposition to malignancy | Cognitive deterioration | Peripheral neuropathy, oculomotor apraxia, and dysarthria | Unspecific | Symptomatic: Antiglutamatergic agent: Amantadine |
FXN | Genetic anticipation | AR (GAA repeat expansion and/or mutations) | Generalized; chronic | Dystonia, ataxia and macrosaccadic oscillations | Progressive | Pes cavus, diabetes mellitus, cardiomyopathy, and scoliosis | NR | Areflexia, peripheral sensory loss, and extensor plantar reflexes | Unspecific | NR |
NKX-2.1 | Infancy (<1 year) to early childhood | AD/de novo | Generalized; chronic, worsen with stress or excitement | Myoclonus, dystonia, ataxia, and motor/vocal tics | Non-progressive or improve with age | Hypothyroidism, thyroid carcinoma, pulmonary infections, neonatal RDS, obstructive airway disorders, interstitial lung disease, and lung cancer | Almost normal | Hypotonia, DD, ASD, ADHD, anxiety, and executive dysfunction | Unspecific | Symptomatic: Levodopa, tetrabenazine, methylphenidate |
SLC16A2 | Congenital or within 6 months | X-linked | Generalized; chronic and/or paroxysmal | Dystonia, choreoathetosis, paroxysmal dyskinesia | Progressive to spastic paraplegia | Hypothyroidism and lung cancer | ID | Hypotonia and global DD | Unspecific | Symptomatic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoto, G.; Ceraolo, G.; Butera, A.; Di Rosa, G.; Nicotera, A.G. Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Curr. Issues Mol. Biol. 2024, 46, 5632-5654. https://doi.org/10.3390/cimb46060337
Spoto G, Ceraolo G, Butera A, Di Rosa G, Nicotera AG. Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Current Issues in Molecular Biology. 2024; 46(6):5632-5654. https://doi.org/10.3390/cimb46060337
Chicago/Turabian StyleSpoto, Giulia, Graziana Ceraolo, Ambra Butera, Gabriella Di Rosa, and Antonio Gennaro Nicotera. 2024. "Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment" Current Issues in Molecular Biology 46, no. 6: 5632-5654. https://doi.org/10.3390/cimb46060337
APA StyleSpoto, G., Ceraolo, G., Butera, A., Di Rosa, G., & Nicotera, A. G. (2024). Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Current Issues in Molecular Biology, 46(6), 5632-5654. https://doi.org/10.3390/cimb46060337