Free Salivary Amino Acid Profile in Breast Cancer: Clinicopathological and Molecular Biological Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Collection of Saliva Samples
2.3. Determination of the Amino Acid Composition of Saliva
2.4. Determination of the Expression of the Receptors for Estrogen, Progesterone, HER2, and Ki-67
2.5. Statistical Analysis
3. Results
3.1. Features of the Amino Acid Profile of Saliva in Breast Cancer in Comparison with Non-Malignant Breast Pathologies and Healthy Controls
3.2. Effect of Breast Cancer Stage on Salivary Amino Acid Profile
3.3. The Influence of Lymph Node Involvement Status on the Amino Acid Profile of Saliva
3.4. The Influence of the Degree of Tumor Differentiation on the Amino Acid Profile of Saliva
3.5. The Influence of the Expression Status of Estrogen, Progesterone, HER2 Receptors, and the Proliferative Activity Index on the Amino Acid Profile of Saliva
3.6. The Influence of the Molecular Biological Subtype of Breast Cancer on the Amino Acid Profile of Saliva
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sugimoto, M. Salivary metabolomics for cancer detection. Expert Rev. Proteom. 2020, 17, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Urbanowicz, K.E.; Wei, F.; Rao, S.L.; Kim, J.; Shin, H.; Cheng, J.; Tu, M.; Wong, D.; Kim, Y. Clinical validity of saliva and novel technology for cancer detection. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 49–59. [Google Scholar] [CrossRef]
- Li, K.; Lin, Y.; Luo, Y.; Xiong, X.; Wang, L.; Durante, K.; Li, J.; Zhou, F.; Guo, Y.; Chen, S.; et al. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: A multicenter prospective study. Mol. Cancer. 2022, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C.; Wong, D.T.W. Role of Saliva and Salivary Diagnostics in the Advancement of Oral Health. J. Dent. Res. 2019, 98, 133–141. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Meroni, M.; Casati, S.; Goldoni, R.; Thomaz, D.V.; Kehr, N.S.; Galimberti, D.; Del Fabbro, M.; Tartaglia, G.M. Salivary biomarkers: Novel noninvasive tools to diagnose chronic inflammation. Int. J. Oral. Sci. 2023, 15, 27. [Google Scholar] [CrossRef]
- Shuai, Y.; Ma, Z.; Ju, J.; Wei, T.; Gao, S.; Kang, Y.; Yang, Z.; Wang, X.; Yue, J.; Yuan, P. Liquid-based biomarkers in breast cancer: Looking beyond the blood. J. Transl. Med. 2023, 21, 809. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Maleki Dizaj, S.; Sharifi, S.; Salatin, S.; Khalilov, R.; Samiei, M.; Zununi Vahed, S.; Ahmadian, E. Salivary biomarkers in cancer. Adv. Clin. Chem. 2022, 110, 171–192. [Google Scholar]
- Song, M.; Bai, H.; Zhang, P.; Zhou, X.; Ying, B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int. J. Oral. Sci. 2023, 15, 2. [Google Scholar] [CrossRef]
- Syedmoradi, L.; Norton, M.L.; Omidfar, K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2021, 225, 122002. [Google Scholar] [CrossRef]
- Joshi, S.; Kallappa, S.; Kumar, P.; Shukla, S.; Ghosh, R. Simple diagnosis of cancer by detecting CEA and CYFRA 21-1 in saliva using electronic sensors. Sci. Rep. 2022, 12, 15315. [Google Scholar] [CrossRef]
- Sinha, I.; Fogle, R.L.; Gulfidan, G.; Stanley, A.E.; Walter, V.; Hollenbeak, C.S.; Arga, K.Y.; Sinha, R. Potential Early Markers for Breast Cancer: A Proteomic Approach Comparing Saliva and Serum Samples in a Pilot Study. Int. J. Mol. Sci. 2023, 24, 4164. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, T.; Wong, D.T.W. Salivaomics, saliva exosomics, and saliva liquid biopsy. JADA 2023, 154, 696–704. [Google Scholar] [PubMed]
- Wang, L.; Liu, X.; Yang, Q. Application of metabolomics in cancer research: As a powerful tool to screen biomarker for diagnosis, monitoring and prognosis of cancer. Biomark. J. 2018, 4, 12. [Google Scholar] [CrossRef]
- Silva, C.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Breast cancer metabolomics: From analytical platforms to multivariate data analysis. A review. Metabolites 2019, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Koopaie, M.; Kolahdooz, S.; Fatahzadeh, M.; Manifar, S. Salivary biomarkers in breast cancer diagnosis: A systematic review and diagnostic meta-analysis. Cancer Med. 2022, 11, 2644–2661. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Tsutsui, H.; Shimizu, I.; Toyama, T.; Yoshimoto, N.; Endo, Y.; Inoue, K.; Todoroki, K.; Min, J.Z.; Mizuno, H.; et al. Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin. Chim. Acta 2016, 452, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Porto-Mascarenhas, E.C.; Assad, D.X.; Chardin, H.; Gozal, D.; De Luca Canto, G.; Acevedo, A.C.; Guerra, E.N. Salivary biomarkers in the diagnosis of breast cancer: A review. Crit. Rev. Oncol. Hematol. 2017, 110, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Xavier Assad, D.; Acevedo, A.C.; Porto Mascarenhas, E.C.; Costa Normando, A.G.; Pichon, V.; Chardin, H.; Neves Silva Guerra, E.; Combes, A. Using an Untargeted Metabolomics Approach to Identify Salivary Metabolites in Women with Breast Cancer. Metabolites 2020, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V.; Kosenok, V.K. Metabolic Features of Saliva in Breast Cancer Patients. Metabolites 2022, 12, 166. [Google Scholar] [CrossRef]
- Reçber, T.; Nemutlu, E.; Beksaç, K.; Cennet, Ö.; Kaynaroğlu, V.; Aksoy, S.; Kır, S. Optimization and normalization strategies for long term untargeted HILIC-LC-qTOF-MS based metabolomics analysis: Early diagnosis of breast cancer. Microchemical Journal 2022, 179, 107658. [Google Scholar] [CrossRef]
- Zambonin, C.; Aresta, A. MALDI-TOF/MS Analysis of Non-Invasive Human Urine and Saliva Samples for the Identification of New Cancer Biomarkers. Molecules 2022, 27, 1925. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Y.; Cai, H.; Wang, S.; Shen, Y.; Ke, C. Application of metabolomics in the diagnosis of breast cancer: A systematic review. J. Cancer. 2020, 11, 2540–2551. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Ma, H.; Wang, J.; Huang, M.; Fu, D.; Qin, L.; Yin, Q. Energy metabolism pathways in breast cancer progression: The reprogramming, crosstalk, and potential therapeutic targets. Transl Oncol. 2022, 26, 101534. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wang, Z.; Huang, Y.; Duan, Y.; Wang, X. Investigation of salivary free amino acid profile for early diagnosis of breast cancer with ultra-performance liquid chromatography-mass spectrometry. Clin. Chim. Acta 2015, 447, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Cheng, F.; Lu, X.; Duan, Y.; Wang, X. Untargeted saliva metabonomics study of breast cancer based on ultra-performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta 2016, 158, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida, T.; et al. Salivary metabolomics with alternative decision tree-based machine learning methods for breast cancer discrimination. Breast Cancer Res. Treat. 2019, 177, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Ilić, I.R.; Stojanovi´c, N.M.; Radulović, N.S.; Živković, V.V.; Randjelović, P.J.; Petrović, A.S.; Božić, M.; Ilić, R.S. The Quantitative ER Immunohistochemical Analysis in Breast Cancer: Detecting the 3 + 0, 4 + 0, and 5 + 0 Allred Score Cases. Medicina 2019, 55, 461. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef]
- Stålhammar, G.; Robertson, S.; Wedlund, L.; Lippert, M.; Rantalainen, M.; Bergh, J.; Hartman, J. Digital image analysis of Ki67 in hot spots is superior to both manual Ki67 and mitotic counts in breast cancer. Histopathology 2018, 72, 974–989. [Google Scholar] [CrossRef]
- Mirzaei, H.; Hamblin, M.R. Regulation of glycolysis by non-coding RNAs in cancer: Switching on the Warburg effect, Mol. Ther. Oncolytics 2020, 19, 218–239. [Google Scholar] [CrossRef] [PubMed]
- Kansara, S.; Singh, A.; Badal, A.K.; Rani, R.; Baligar, P.; Garg, M.; Pandey, A.K. The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer. Semin. Cancer Biol. 2023, 95, 1–12. [Google Scholar] [CrossRef]
- Kou, F.; Zhu, B.; Zhou, W.; Lv, C.; Cheng, Y.; Wei, H. Targeted metabolomics in the cell culture media reveals increased uptake of branched amino acids by breast cancer cells. Anal Biochem. 2021, 624, 114192. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C.B. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 19345–19350. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, F.; Handler, J.; Huang, C.R.; Xiang, Y.; Neretti, N.; Sedivy, J.M.; Zeller, K.I.; Dang, C.V. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE 2008, 3, e2722. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.H.; Jung, W.H.; Koo, J.S. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer. Endocr.-Relat. Cancer 2013, 20, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS ONE 2017, 12, e0185092. [Google Scholar] [CrossRef] [PubMed]
- Kung, H.N.; Marks, J.R.; Chi, J.T. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 2011, 7, e1002229. [Google Scholar] [CrossRef]
- Walsh, A.J.; Cook, R.S.; Manning, H.C.; Hicks, D.J.; Lafontant, A.; Arteaga, C.L.; Skala, M.C. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 2013, 73, 6164–6174. [Google Scholar] [CrossRef]
- O’Neal, J.; Clem, A.; Reynolds, L.; Dougherty, S.; Imbert-Fernandez, Y.; Telang, S.; Chesney, J.; Clem, B.F. Inhibition of 6- phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res. Treat. 2016, 160, 29–40. [Google Scholar] [CrossRef]
- Tian, C.; Yuan, Z.; Xu, D.; Ding, P.; Wang, T.; Zhang, L.; Jiang, Z. Inhibition of glycolysis by a novel EGFR/HER2 inhibitor KU004 suppresses the growth of HER2+ cancer. Exp. Cell Res. 2017, 357, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, L.A.; Holton, T.; Yuneva, M.; Louie, R.J.; Padro, M.; Daemen, A.; Hu, M.; Chan, D.A.; Ethier, S.P.; van ’t Veer, L.J.; et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple negative breast tumor therapeutic target. Cancer Cell 2013, 24, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liang, Z.; Gao, Y.; Teng, M.; Niu, L. Differentially expressed mitochondrial genes in breast cancer cells: Potential new targets for anti-cancer therapies. Gene 2017, 596, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhou, X.; Xia, T.S.; Chen, Z.; Li, J.; Liu, Q.; Alolga, R.N.; Chen, Y.; Lai, M.D.; Li, P.; et al. Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget 2016, 7, 9925–9938. [Google Scholar] [CrossRef] [PubMed]
- Geck, R.C.; Toker, A. Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul. 2016, 62, 11–17. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun. 2017, 486, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Kazberuk, A.; Chalecka, M.; Palka, J.; Bielawska, K.; Surazynski, A. NSAIDs Induce Proline Dehydrogenase/Proline Oxidase-Dependent and Independent Apoptosis in MCF7 Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 3813. [Google Scholar] [CrossRef]
- Contorno, S.; Darienzo, R.E.; Tannenbaum, R. Evaluation of aromatic amino acids as potential biomarkers in breast cancer by Raman spectroscopy analysis. Sci. Rep. 2021, 11, 1698. [Google Scholar] [CrossRef] [PubMed]
- Heng, B.; Bilgin, A.A.; Lovejoy, D.B.; Tan, V.X.; Milioli, H.H.; Gluch, L.; Bustamante, S.; Sabaretnam, T.; Moscato, P.; Lim, C.K.; et al. Differential kynurenine pathway metabolism in highly metastatic aggressive breast cancer subtypes: Beyond Ido1-induced immunosuppression. Breast Cancer Res. 2020, 22, 113. [Google Scholar] [CrossRef]
- Sarf, E.A.; Dyachenko, E.I.; Bel’skaya, L.V. Salivary Tryptophan as a Metabolic Marker of HER2-Negative Molecular Subtypes of Breast Cancer. Metabolites 2024, 14, 247. [Google Scholar] [CrossRef]
- Arenas, M.; Fargas-Saladié, M.; Moreno-Solé, M.; Moyano-Femenia, L.; Jiménez-Franco, A.; Canela-Capdevila, M.; Castañé, H.; Martínez-Navidad, C.; Camps, J.; Joven, J. Metabolomics and triple-negative breast cancer: A systematic review. Heliyon 2023, 10, e23628. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, Y.M.; Sampey, B.P.; Beyene, D.; Esnakula, A.K.; Naab, T.J.; Ricks-Santi, L.J.; Dasi, S.; Day, A.; Blackman, K.W.; Frederick, W.; et al. Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genom. Proteom. 2014, 11, 279–294. [Google Scholar]
- Yamashita, Y.; Nishiumi, S.; Kono, S.; Takao, S.; Azuma, T.; Yoshida, M. Differences in elongation of very long chain fatty acids and fatty acid metabolism between triple-negative and hormone receptor-positive breast cancer. BMC Cancer 2017, 17, 589. [Google Scholar] [CrossRef] [PubMed]
- Knott, S.R.V.; Wagenblast, E.; Khan, S.; Kim, S.Y.; Soto, M.; Wagner, M.; Turgeon, M.O.; Fish, L.; Erard, N.; Gable, A.L.; et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 2018, 554, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in Cancer Research and Emerging Applications in Clinical Oncology. CA Cancer J Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef] [PubMed]
- Novoselova, А.V.; Yushina, M.N.; Patysheva, M.R.; Prostakishina, E.A.; Bragina, О.D.; Garbukov, E.Y.; Kzhyshkowska, J.G. Peculiarities of amino acid profile in monocytes in breast cancer. Bull. RSMU 2022, 6, 55–62. [Google Scholar] [CrossRef]
- Prokopieva, V.D.; Yarygina, E.G.; Bokhan, N.A.; Ivanova, S.A. Use of Carnosine for Oxidative Stress Reduction in Different Pathologies. Oxid Med. Cell Longev. 2016, 2016, 2939087. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.D.; Fraser, S.; Boer, J.C.; Plebanski, M.; de Courten, B.; Apostolopoulos, V. Anti-Cancer Effects of Carnosine—A Dipeptide Molecule. Molecules 2021, 26, 1644. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.M.A.; Abdelfattah-Hassan, A.; Eldoumani, H.; Essawi, W.M.; Alsahli, T.G.; Alharbi, K.S.; Alzarea, S.I.; Al-Hejaili, H.Y.; Gaafar, S.F. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front. Pharmacol. 2023, 14, 1258387. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Loginova, A.I. Diagnostic Value of Salivary Amino Acid Levels in Cancer. Metabolites 2023, 13, 950. [Google Scholar] [CrossRef]
Feature | Breast Cancer, n = 116 | |
---|---|---|
Clinical Stage | ||
Stage IA + IB | 37 | |
Stage IIA + IIB | 43 | |
Stage IIIA + IIIB | 22 | |
Stage IIIC + IV | 14 | |
Lymph node status | ||
N0 | 60 | |
N1–3 | 56 | |
Subtype | ||
Luminal A-like | 40 | |
Luminal B-like (HER2+) | 15 | |
Luminal B-like (HER2-) | 35 | |
HER2-enriched (Non-Lum) | 12 | |
Triple-negative | 14 | |
HER2 status | ||
HER2-negative | 28 | |
HER2-positive | 88 | |
Estrogen (ER) status | ||
ER-negative | 26 | |
ER-positive | 90 | |
Progesterone (PR) status | ||
PR-negative | 46 | |
PR-positive | 70 | |
Degree of differentiation (G) | ||
G I + II | 74 | |
G III | 42 | |
Ki-67 | ||
<20% | 59 | |
>20% | 57 |
AAs | Breast Cancer, n = 116 | Breast Benign Lesion, n = 24 | Healthy Control, n = 25 | Kruskal–Wallis Test; p-Value |
---|---|---|---|---|
1-MH | 42.09 [39.13; 100.3] | 39.97 [39.21; 100.3] | 100.1 [39.25; 100.5] | 0.9043; 0.6363 |
GABA | 5.28 [4.66; 6.31] | 5.05 [4.60; 5.98] | 5.57 [4.72; 6.97] | 1.076; 0.5838 |
Hyl | 82.55 [41.98; 84.27] | 72.11 [44.84; 83.92] | 83.16 [43.59; 84.01] | 0.3879; 0.8237 |
Ala | 95.34 [73.80; 120.8] | 85.85 [68.09; 108.6] | 83.82 [77.30; 133.5] | 0.9605; 0.6186 |
Arg | 25.63 [15.41; 41.06] | 21.37 [15.92; 24.29] | 21.68 [17.44; 29.43] | 1.465; 0.4807 |
Asn | 9.02 [8.30; 10.95] | 10.57 [7.88; 12.62] | 8.56 [8.25; 14.35] | 0.3002; 0.8606 |
Asp | 17.43 [10.01; 22.57] | 9.57 [8.20; 13.22] | 12.42 [7.80; 21.79] | 7.920; 0.0191 * |
Car | 35.43 [28.19; 38.38] | 36.19 [27.44; 38.12] | 34.97 [27.16; 39.18] | 0.0979; 0.9522 |
Cit | 12.13 [7.35; 17.99] | 11.71 [6.17; 14.71] | 11.20 [6.92; 23.73] | 0.7476; 0.6881 |
Glu | 77.92 [50.94; 102.9] | 74.53 [51.77; 121.3] | 59.18 [44.52; 80.64] | 4.323; 0.1151 |
Gln | 238.8 [104.8; 412.8] | 180.6 [114.5; 439.6] | 438.76 [163.7; 638.4] | 4.319; 0.1154 |
Gly | 257.7 [163.7; 378.7] | 160.1 [144.8; 206.4] | 186.95 [141.7; 305.6] | 7.174; 0.0277 * |
His | 65.82 [57.38; 83.16] | 58.90 [55.42; 64.77] | 66.12 [55.96; 96.48] | 5.662; 0.0589 |
HCit | 56.37 [53.24; 57.83] | 55.03 [52.63; 58.87] | 57.38 [52.64; 61.26] | 0.5507; 0.7593 |
Leu + Ile | 79.02 [34.42; 110.7] | 24.50 [15.76; 32.77] | 37.21 [14.17; 68.03] | 11.59; 0.0031 * |
Met | 29.79 [24.07; 35.37] | 29.99 [27.49; 31.07] | 29.86 [28.60; 33.02] | 0.8095; 0.6671 |
Orn | 50.21 [29.16; 87.71] | 25.92 [19.62; 44.20] | 33.63 [20.45; 46.21] | 16.35; 0.0003 * |
Phe | 54.49 [42.66; 66.64] | 34.88 [26.79; 42.23] | 39.20 [30.79; 62.09] | 21.95; 0.0000 * |
Pro | 122.4 [88.58; 172.6] | 73.52 [59.84; 112.3] | 74.96 [63.51; 189.41] | 14.47; 0.0007 * |
Sar | 47.34 [43.31; 55.20] | 52.70 [43.31; 55.79] | 50.61 [43.64; 64.01] | 1.798; 0.4071 |
Ser | 58.51 [47.23; 72.63] | 59.22 [39.96; 73.76] | 52.19 [40.09; 74.29] | 0.7530; 0.6862 |
Thr | 193.0 [176.8; 229.9] | 242.1 [198.6; 258.0] | 224.2 [192.5; 266.0] | 4.437; 0.1088 * |
t4HYP | 47.46 [46.94; 48.33] | 47.41 [47.31; 47.66] | 48.06 [46.98; 51.22] | 0.5976; 0.7417 |
Trp | 46.42 [30.78; 50.14] | 44.58 [26.29; 48.15] | 47.43 [27.64; 53.27] | 1.029; 0.5979 |
Tyr | 145.4 [100.9; 202.7] | 96.40 [60.95; 112.9] | 94.85 [72.96; 170.0] | 16.38; 0.0003 * |
Val | 709.0 [408.9; 1041.0] | 676.2 [551.3; 774.2] | 557.1 [289.6; 944.9] | 1.281; 0.5269 |
Observed | Predicted BC | Predicted HC | Predicted BBL | Row Total | |
---|---|---|---|---|---|
Number | BC | 99 | 11 | 6 | 116 |
Row Percentage | 85.34% | 9.48% | 5.17% | ||
Number | HC | 2 | 18 | 5 | 25 |
Row Percentage | 8.00% | 72.00% | 20.00% | ||
Number | BBL | 2 | 4 | 18 | 24 |
Row Percentage | 8.33% | 16.67% | 75.00% |
AAs | Stage | Lymph Node Status | HER2 Status | ER Status | PR Status | Degree of Differentiation | Ki-67 Expression | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I + II | III + IV | N0 | N1–3 | (−) | (+) | (−) | (+) | (−) | (+) | I + II | III | Low | High | |
1-MH | −56 | −60 | 0 | −60 | −59 | −30 | 0 | −59 | 0 | −60 | −60 | 0 | −60 | 0 |
GABA | −7 | 2 | −7 | 2 | −6 | 3 | −4 | −6 | −3 | −9 | −6 | −4 | −7 | −4 |
Hyl | −7 | 0 | 0 | −33 | −22 | 1 | 0 | −22 | 0 | −39 | −37 | 0 | −37 | 0 |
Ala | 13 | 14 | 13 | 14 | 10 | 24 | 7 | 14 | 13 | 15 | 16 | 6 | 16 | 8 |
Arg | 20 | 7 | 20 | 12 | 19 | 8 | 23 | 18 | 8 | 21 | 20 | 5 | 18 | 15 |
Asn | 6 | −3 | 5 | 5 | 5 | NA | 69 | 2 | 28 | 4 | 0 | 110 | 0 | 110 |
Asp | 35 | 48 | 34 | 49 | 33 | 65 | 43 | 38 | 41 | 40 | 40 | 40 | 37 | 43 |
Car | 1 | 1 | 2 | −5 | 0 | 14 | 8 | 1 | 5 | −9 | −5 | 3 | −8 | 3 |
Cit | 11 | 8 | 11 | 8 | 2 | 23 | 5 | 10 | −3 | 20 | 20 | −20 | 20 | 1 |
Glu | 33 | 22 | 30 | 35 | 33 | 31 | 29 | 34 | 35 | 30 | 44 | 13 | 46 | 15 |
Gln | −60 | −40 | −60 | −42 | −52 | −42 | −42 | −69 | −49 | −37 | −61 | −40 | −68 | −40 |
Gly | 40 | 38 | 29 | 47 | 28 | 60 | 55 | 29 | 43 | 29 | 42 | 32 | 49 | 37 |
His | −1 | 1 | −2 | 1 | −2 | 16 | 1 | −2 | −2 | 1 | 5 | −3 | 0 | −1 |
Hcit | −3 | −1 | −2 | −1 | −3 | −1 | −1 | −4 | −1 | −5 | −4 | −1 | −4 | −1 |
Leu+Ile | 105 | 138 | 92 | 115 | 92 | 155 | 114 | 112 | 114 | 92 | 114 | 109 | 111 | 114 |
Met | −1 | 6 | 0 | 5 | 1 | −9 | 4 | 0 | 3 | −1 | 2 | 0 | −1 | 6 |
Orn | 48 | 50 | 47 | 50 | 35 | 103 | 51 | 44 | 52 | 38 | 54 | 28 | 44 | 51 |
Phe | 37 | 46 | 33 | 44 | 34 | 47 | 43 | 36 | 44 | 34 | 46 | 32 | 44 | 36 |
Pro | 68 | 57 | 61 | 70 | 62 | 81 | 71 | 63 | 60 | 67 | 64 | 60 | 71 | 57 |
Sar | −6 | −9 | −6 | −8 | −6 | −8 | −3 | −7 | −4 | −8 | −6 | −3 | −6 | −7 |
Ser | 13 | 9 | 11 | 13 | 9 | 19 | 11 | 13 | 13 | 10 | 18 | 5 | 19 | 6 |
Thr | −17 | 9 | −17 | −3 | −14 | 3 | −11 | −17 | −16 | −12 | −12 | −18 | −13 | −15 |
t4HYP | −2 | 1 | −1 | 0 | −1 | NA | 1 | −2 | 0 | −1 | −2 | 0 | −2 | 0 |
Trp | −5 | −2 | 0 | −7 | −7 | 6 | 2 | −7 | −1 | −6 | −7 | 0 | −8 | −1 |
Tyr | 54 | 53 | 52 | 54 | 42 | 70 | 59 | 52 | 55 | 42 | 56 | 33 | 57 | 44 |
Val | 12 | 36 | 10 | 32 | 11 | 41 | 47 | 7 | 30 | 12 | 29 | 9 | 30 | 9 |
AAs | Stage | Lymph Node Status | HER2 Status | ER Status | PR Status | Degree of Differentiation | Ki-67 Expression | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I + II | III + IV | N0 | N1–3 | (−) | (+) | (−) | (+) | (−) | (+) | I + II | III | Low | High | |
1-MH | 10 | 0 | 150 | 1 | 3 | 74 | 151 | 3 | 151 | −1 | 0 | 151 | 0 | 150 |
GABA | 3 | 13 | 3 | 13 | 4 | 13 | 6 | 4 | 7 | 1 | 3 | 6 | 3 | 6 |
Hyl | 7 | 15 | 15 | −22 | −10 | 16 | 15 | −10 | 15 | −30 | −27 | 15 | −27 | 15 |
Ala | 11 | 11 | 11 | 11 | 7 | 21 | 5 | 12 | 10 | 12 | 13 | 3 | 13 | 6 |
Arg | 22 | 8 | 22 | 13 | 20 | 10 | 24 | 20 | 10 | 23 | 22 | 6 | 20 | 16 |
Asn | −14 | −21 | −15 | −15 | −15 | NA | 37 | −17 | 4 | −16 | −19 | 70 | −19 | 70 |
Asp | 75 | 92 | 74 | 94 | 73 | 115 | 86 | 79 | 83 | 82 | 82 | 82 | 77 | 86 |
Car | −2 | −2 | −2 | −8 | −3 | 10 | 4 | −2 | 1 | −12 | −8 | 0 | −11 | −1 |
Cit | 7 | 3 | 6 | 4 | −3 | 17 | 0 | 6 | −7 | 14 | 14 | −23 | 15 | −4 |
Glu | 6 | −3 | 3 | 7 | 5 | 4 | 2 | 6 | 7 | 3 | 14 | −11 | 16 | −8 |
Gln | −4 | 46 | −4 | 42 | 16 | 41 | 41 | −24 | 23 | 52 | −4 | 46 | −21 | 46 |
Gly | 63 | 61 | 51 | 71 | 49 | 87 | 81 | 51 | 67 | 51 | 66 | 54 | 74 | 60 |
His | 11 | 13 | 10 | 13 | 9 | 30 | 14 | 10 | 10 | 14 | 18 | 9 | 13 | 11 |
Hcit | 1 | 3 | 2 | 3 | 1 | 3 | 3 | 0 | 3 | −1 | 0 | 3 | 0 | 3 |
Leu + Ile | 211 | 261 | 192 | 226 | 191 | 288 | 225 | 223 | 226 | 191 | 225 | 218 | 220 | 226 |
Met | −1 | 5 | −1 | 5 | 0 | −10 | 4 | −1 | 3 | −1 | 2 | −1 | −1 | 5 |
Orn | 92 | 94 | 90 | 94 | 75 | 163 | 96 | 87 | 98 | 80 | 100 | 65 | 87 | 96 |
Phe | 54 | 64 | 49 | 62 | 50 | 65 | 61 | 53 | 62 | 50 | 64 | 48 | 62 | 52 |
Pro | 71 | 60 | 64 | 73 | 65 | 85 | 74 | 66 | 63 | 70 | 67 | 63 | 74 | 60 |
Sar | −10 | −13 | −9 | −12 | −10 | −11 | −7 | −10 | −8 | −12 | −10 | −7 | −10 | −10 |
Ser | −1 | −4 | −2 | −1 | −4 | 5 | −2 | −1 | −1 | −3 | 4 | −8 | 5 | −6 |
Thr | −23 | 1 | −23 | −11 | −21 | −4 | −17 | −23 | −22 | −19 | −19 | −24 | −19 | −21 |
t4HYP | 0 | 2 | 0 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 1 | −1 | 1 |
Trp | 1 | 4 | 7 | −1 | −1 | 12 | 8 | −1 | 6 | 0 | −1 | 7 | −2 | 6 |
Tyr | 51 | 50 | 50 | 51 | 40 | 67 | 57 | 49 | 53 | 40 | 54 | 31 | 54 | 42 |
Val | −8 | 12 | −10 | 8 | −9 | 16 | 21 | −12 | 7 | −8 | 6 | −10 | 7 | −10 |
AAs | Lum A | Lum B (−) | Lum B (+) | Non-Lum | TNBC |
---|---|---|---|---|---|
1-MH | −60 | 0 | −61 | 0 | 0 |
GABA | −9 | −7 | 6 | −9 | 2 |
Hyl | −46 | −1 | −18 | 0 | 2 |
Ala | 15 | 4 | 48 | −4 | 18 |
Arg | 20 | 19 | −21 | 1 | 85 |
Asn | 0 | NA | NA | NA | 69 |
Asp | 35 | 29 | 84 | 22 | 68 |
Car | −12 | 2 | 20 | 9 | 37 |
Cit | 20 | −8 | 38 | −32 | 19 |
Glu | 45 | 15 | 34 | 8 | 29 |
Gln | −71 | −59 | 51 | −44 | 45 |
Gly | 24 | 20 | 93 | 32 | 73 |
His | −1 | −5 | 19 | −9 | 2 |
Hcit | −5 | −1 | −4 | −2 | 2 |
Leu + Ile | 82 | 83 | 174 | 90 | 136 |
Met | −1 | 4 | −28 | 4 | 25 |
Orn | 35 | 27 | 163 | 11 | 99 |
Phe | 34 | 33 | 54 | 44 | 37 |
Pro | 63 | 57 | 89 | 61 | 73 |
Sar | −8 | −6 | −5 | −4 | 6 |
Ser | 7 | 13 | 25 | 13 | 15 |
Thr | −13 | −20 | 16 | −16 | 42 |
t4HYP | −2 | −1 | NA | 0 | 1 |
Trp | −31 | −5 | 25 | 0 | 27 |
Tyr | 53 | 39 | 76 | 2 | 62 |
Val | 10 | 6 | 34 | 52 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V. Free Salivary Amino Acid Profile in Breast Cancer: Clinicopathological and Molecular Biological Features. Curr. Issues Mol. Biol. 2024, 46, 5614-5631. https://doi.org/10.3390/cimb46060336
Bel’skaya LV, Sarf EA, Solomatin DV. Free Salivary Amino Acid Profile in Breast Cancer: Clinicopathological and Molecular Biological Features. Current Issues in Molecular Biology. 2024; 46(6):5614-5631. https://doi.org/10.3390/cimb46060336
Chicago/Turabian StyleBel’skaya, Lyudmila V., Elena A. Sarf, and Denis V. Solomatin. 2024. "Free Salivary Amino Acid Profile in Breast Cancer: Clinicopathological and Molecular Biological Features" Current Issues in Molecular Biology 46, no. 6: 5614-5631. https://doi.org/10.3390/cimb46060336
APA StyleBel’skaya, L. V., Sarf, E. A., & Solomatin, D. V. (2024). Free Salivary Amino Acid Profile in Breast Cancer: Clinicopathological and Molecular Biological Features. Current Issues in Molecular Biology, 46(6), 5614-5631. https://doi.org/10.3390/cimb46060336