Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Library Preparation and NGS Analysis
2.2. Data Analysis
3. Results
3.1. Clinical Report
3.2. Genetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.-M.; Lovell-Badge, R.; Goodfellow, P.N. A Gene from the Human Sex-Determining Region Encodes a Protein with Homology to a Conserved DNA-Binding Motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Gubbay, J.; Koopman, P.; Collignon, J.; Burgoyne, P.; Lovell-Badge, R. Normal Structure and Expression of Zfy Genes in XY Female Mice Mutant in Tdy. Development 1990, 109, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Lovell-Badge, R. The Early History of the Sox Genes. Int. J. Biochem. Cell Biol. 2010, 42, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Schepers, G.E.; Teasdale, R.D.; Koopman, P. Twenty Pairs of Sox. Dev. Cell 2002, 3, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, V.; Dumitriu, B.; Penzo-Méndez, A.; Han, Y.; Pallavi, B. Control of Cell Fate and Differentiation by Sry-Related High-Mobility-Group Box (Sox) Transcription Factors. Int. J. Biochem. Cell Biol. 2007, 39, 2195–2214. [Google Scholar] [CrossRef] [PubMed]
- Stevanovic, M.; Drakulic, D.; Lazic, A.; Ninkovic, D.S.; Schwirtlich, M.; Mojsin, M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation during Nervous System Development and Adult Neurogenesis. Front. Mol. Neurosci. 2021, 14, 654031. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.E.; Wynn, S.L.; Sesay, A.; Cruz, C.; Cheung, M.; Gaviro, M.-V.G.; Booth, S.; Gao, B.; Cheah, K.S.E.; Lovell-Badge, R.; et al. SOX9 Induces and Maintains Neural Stem Cells. Nat. Neurosci. 2010, 13, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Medina-Menéndez, C.; García-Corzo, L.; Córdoba-Beldad, C.M.; Quiroga, A.C.; Calleja Barca, E.; Zinchuk, V.; Muñoz-López, S.; Rodríguez-Martín, P.; Ciorraga, M.; et al. SoxD Genes Are Required for Adult Neural Stem Cell Activation. Cell Rep. 2022, 38, 110313. [Google Scholar] [CrossRef] [PubMed]
- Pevny, L.; Placzek, M. SOX Genes and Neural Progenitor Identity. Curr. Opin. Neurobiol. 2005, 15, 7–13. [Google Scholar] [CrossRef]
- Favaro, R.; Valotta, M.; Ferri, A.L.M.; Latorre, E.; Mariani, J.; Giachino, C.; Lancini, C.; Tosetti, V.; Ottolenghi, S.; Taylor, V.; et al. Hippocampal Development and Neural Stem Cell Maintenance Require Sox2-Dependent Regulation of Shh. Nat. Neurosci. 2009, 12, 1248–1256. [Google Scholar] [CrossRef]
- Lin, L.; Lee, V.M.; Wang, Y.; Lin, J.S.; Sock, E.; Wegner, M.; Lei, L. Sox11 Regulates Survival and Axonal Growth of Embryonic Sensory Neurons. Dev. Dyn. 2011, 240, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kuwako, K.; Okano, H.J.; Tsutsumi, S.; Aburatani, H.; Saga, Y.; Matsuzaki, Y.; Akaike, A.; Sugimoto, H.; Okano, H. Sox21 Promotes Hippocampal Adult Neurogenesis via the Transcriptional Repression of the Hes5 Gene. J. Neurosci. 2012, 32, 12543–12557. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Berti, L.; Masserdotti, G.; Covic, M.; Michaelidis, T.M.; Doberauer, K.; Merz, K.; Rehfeld, F.; Haslinger, A.; Wegner, M.; et al. SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis. J. Neurosci. 2012, 32, 3067–3080. [Google Scholar] [CrossRef] [PubMed]
- Hoshiba, Y.; Toda, T.; Ebisu, H.; Wakimoto, M.; Yanagi, S.; Kawasaki, H. Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex. J. Neurosci. 2016, 36, 5775–5784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, L. Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int. J. Mol. Sci. 2021, 22, 5949. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Luedeke, D.M.; McCoy, L.; Iwafuchi, M.; Zorn, A.M. SOX Transcription Factors Direct TCF-Independent WNT/β-Catenin Responsive Transcription to Govern Cell Fate in Human Pluripotent Stem Cells. Cell Rep. 2022, 40, 111247. [Google Scholar] [CrossRef] [PubMed]
- Bergsland, M.; Ramsköld, D.; Zaouter, C.; Klum, S.; Sandberg, R.; Muhr, J. Sequentially Acting Sox Transcription Factors in Neural Lineage Development. Genes. Dev. 2011, 25, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Malas, S.; Postlethwaite, M.; Ekonomou, A.; Whalley, B.; Nishiguchi, S.; Wood, H.; Meldrum, B.; Constanti, A.; Episkopou, V. Sox1-Deficient Mice Suffer from Epilepsy Associated with Abnormal Ventral Forebrain Development and Olfactory Cortex Hyperexcitability. Neuroscience 2003, 119, 421–432. [Google Scholar] [CrossRef]
- Sisodiya, S.M.; Ragge, N.K.; Cavalleri, G.L.; Hever, A.; Lorenz, B.; Schneider, A.; Williamson, K.A.; Stevens, J.M.; Free, S.L.; Thompson, P.J.; et al. Role of SOX2 Mutations in Human Hippocampal Malformations and Epilepsy. Epilepsia 2006, 47, 534–542. [Google Scholar] [CrossRef]
- Rosiles, A.; Rubio, C.; Trejo, C.; Gutierrez, J.; Hernández, L.; Paz, C. Commentary: Participation of Sox-1 Expression and Signaling of β-Catenin in the Pathophysiology of Generalized Seizures in Cerebellum of Rat. CNS Neurol. Disord. Drug Targets 2016, 15, 3–6. [Google Scholar] [CrossRef]
- Haenisch, S.; Zhao, Y.; Chhibber, A.; Kaiboriboon, K.; Do, L.V.; Vogelgesang, S.; Barbaro, N.M.; Alldredge, B.K.; Lowenstein, D.H.; Cascorbi, I.; et al. SOX11 Identified by Target Gene Evaluation of MiRNAs Differentially Expressed in Focal and Non-Focal Brain Tissue of Therapy-Resistant Epilepsy Patients. Neurobiol. Dis. 2015, 77, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Osornio, C.; Eguiluz-Meléndez, A.; Trejo-Solís, C.; Custodio, V.; Rubio-Osornio, M.; Rosiles-Abonce, A.; Martínez-Lazcano, J.C.; González, E.; Paz, C. Decreased Expression of Sox-1 in Cerebellum of Rat with Generalized Seizures Induced by Kindling Model. CNS Neurol. Disord. Drug Targets 2016, 15, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.D.; Sanchez-Cespedes, M. The SOX Family of Genes in Cancer Development: Biological Relevance and Opportunities for Therapy. Expert. Opin. Ther. Targets 2012, 16, 903–919. [Google Scholar] [CrossRef] [PubMed]
- Seok, J.; Gil, M.; Dayem, A.A.; Saha, S.K.; Cho, S.-G. Multi-Omics Analysis of SOX4, SOX11, and SOX12 Expression and the Associated Pathways in Human Cancers. J. Pers. Med. 2021, 11, 823. [Google Scholar] [CrossRef] [PubMed]
- Dy, P.; Penzo-Méndez, A.; Wang, H.; Pedraza, C.E.; Macklin, W.B.; Lefebvre, V. The Three SoxC Proteins—Sox4, Sox11 and Sox12—Exhibit Overlapping Expression Patterns and Molecular Properties. Nucleic Acids Res. 2008, 36, 3101–3117. [Google Scholar] [CrossRef] [PubMed]
- Potzner, M.R.; Tsarovina, K.; Binder, E.; Penzo-Méndez, A.; Lefebvre, V.; Rohrer, H.; Wegner, M.; Sock, E. Sequential Requirement of Sox4 and Sox11 during Development of the Sympathetic Nervous System. Development 2010, 137, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-C.; Hertz, J.; Zhang, X.; Jin, X.-L.; Shaw, P.; Derosa, B.A.; Li, J.Y.; Venugopalan, P.; Valenzuela, D.A.; Patel, R.D.; et al. Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development. J. Neurosci. 2017, 37, 4967–4981. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Cai, J.; Chen, F.; Zhu, J.; Zhong, J.; Zhong, H. SOX12: A Novel Potential Target for Acute Myeloid Leukaemia. Br. J. Haematol. 2017, 176, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, F.; Shen, S.; Xiao, H.; Li, G.; Wang, M.; Mei, J. Knockdown of SOX12 Expression Inhibits the Proliferation and Metastasis of Lung Cancer Cells. Am. J. Transl. Res. 2017, 9, 4003–4014. [Google Scholar]
- Du, F.; Chen, J.; Liu, H.; Cai, Y.; Cao, T.; Han, W.; Yi, X.; Qian, M.; Tian, D.; Nie, Y.; et al. SOX12 Promotes Colorectal Cancer Cell Proliferation and Metastasis by Regulating Asparagine Synthesis. Cell Death Dis. 2019, 10, 239. [Google Scholar] [CrossRef]
- Hoser, M.; Potzner, M.R.; Koch, J.M.C.; Bösl, M.R.; Wegner, M.; Sock, E. Sox12 Deletion in the Mouse Reveals Nonreciprocal Redundancy with the Related Sox4 and Sox11 Transcription Factors. Mol. Cell Biol. 2008, 28, 4675–4687. [Google Scholar] [CrossRef]
- Cheung, M.; Abu-Elmagd, M.; Clevers, H.; Scotting, P.J. Roles of Sox4 in Central Nervous System Development. Mol. Brain Res. 2000, 79, 180–191. [Google Scholar] [CrossRef]
- Uwanogho, D.; Rex, M.; Cartwright, E.J.; Pearl, G.; Healy, C.; Scotting, P.J.; Sharpe, P.T. Embryonic Expression of the Chicken Sox2, Sox3 and Sox11 Genes Suggests an Interactive Role in Neuronal Development. Mech. Dev. 1995, 49, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Hargrave, M.; Wright, E.; Kun, J.; Emery, J.; Cooper, L.; Koopman, P. Expression of TheSox11 Gene in Mouse Embryos Suggests Roles in Neuronal Maturation and Epithelio-Mesenchymal Induction. Dev. Dyn. 1997, 210, 79–86. [Google Scholar] [CrossRef]
- An, Y.; Amr, S.S.; Torres, A.; Weissman, L.; Raffalli, P.; Cox, G.; Sheng, X.; Lip, V.; Bi, W.; Patel, A.; et al. SOX12 and NRSN2 Are Candidate Genes for 20p13 Subtelomeric Deletions Associated with Developmental Delay. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. 2013, 162, 832–840. [Google Scholar] [CrossRef]
- Haslinger, A.; Schwarz, T.J.; Covic, M.; Chichung Lie, D. Expression of Sox11 in Adult Neurogenic Niches Suggests a Stage-specific Role in Adult Neurogenesis. Eur. J. Neurosci. 2009, 29, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Vinci, M.; Costanza, C.; Galati Rando, R.; Treccarichi, S.; Saccone, S.; Carotenuto, M.; Roccella, M.; Calì, F.; Elia, M.; Vetri, L. STXBP6 Gene Mutation: A New Form of SNAREopathy Leads to Developmental Epileptic Encephalopathy. Int. J. Mol. Sci. 2023, 24, 16436. [Google Scholar] [CrossRef]
- Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-Performance Genomics Data Visualization and Exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Musumeci, A.; Calì, F.; Scuderi, C.; Vinci, M.; Vitello, G.A.; Musumeci, S.A.; Chiavetta, V.; Federico, C.; Amore, G.; Saccone, S.; et al. Identification of a Novel Missense Mutation of POLR3A Gene in a Cohort of Sicilian Patients with Leukodystrophy. Biomedicines 2022, 10, 2276. [Google Scholar] [CrossRef] [PubMed]
- Carithers, L.J.; Moore, H.M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv Biobank 2015, 13, 307–308. [Google Scholar] [CrossRef]
- Pontén, F.; Schwenk, J.M.; Asplund, A.; Edqvist, P.-H.D. The Human Protein Atlas as a Proteomic Resource for Biomarker Discovery. J. Intern. Med. 2011, 270, 428–446. [Google Scholar] [CrossRef] [PubMed]
- Binns, D.; Dimmer, E.; Huntley, R.; Barrell, D.; O’Donovan, C.; Apweiler, R. QuickGO: A Web-Based Tool for Gene Ontology Searching. Bioinformatics 2009, 25, 3045–3046. [Google Scholar] [CrossRef] [PubMed]
- Hall, T. BioEdit: An Important Software for Molecular Biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Desvignes, J.-P.; Bartoli, M.; Delague, V.; Krahn, M.; Miltgen, M.; Béroud, C.; Salgado, D. VarAFT: A Variant Annotation and Filtration System for Human next Generation Sequencing Data. Nucleic Acids Res. 2018, 46, W545–W553. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. Inferring the Molecular and Phenotypic Impact of Amino Acid Variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef] [PubMed]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.A.; Edwards, K.J.; Day, I.N.M.; Gaunt, T.R. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions Using Hidden Markov Models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef]
- Shihab, H.A.; Rogers, M.F.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.M.; Gaunt, T.R.; Campbell, C. An Integrative Approach to Predicting the Functional Effects of Non-Coding and Coding Sequence Variation. Bioinformatics 2015, 31, 1536–1543. [Google Scholar] [CrossRef]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of Protein Stability Changes for Single-site Mutations Using Support Vector Machines. Proteins Struct. Funct. Bioinform. 2006, 62, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Crosara, K.T.B.; Moffa, E.B.; Xiao, Y.; Siqueira, W.L. Merging In-Silico and in Vitro Salivary Protein Complex Partners Using the STRING Database: A Tutorial. J. Proteom. 2018, 171, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The BioGRID Database: A Comprehensive Biomedical Resource of Curated Protein, Genetic, and Chemical Interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef] [PubMed]
- del Toro, N.; Shrivastava, A.; Ragueneau, E.; Meldal, B.; Combe, C.; Barrera, E.; Perfetto, L.; How, K.; Ratan, P.; Shirodkar, G.; et al. The IntAct Database: Efficient Access to Fine-Grained Molecular Interaction Data. Nucleic Acids Res. 2022, 50, D648–D653. [Google Scholar] [CrossRef] [PubMed]
- Grippa, M.; Graziano, C. Landscape of Constitutional SOX4 Variation in Human Disorders. Genes 2024, 15, 158. [Google Scholar] [CrossRef] [PubMed]
- Zawerton, A.; Yao, B.; Yeager, J.P.; Pippucci, T.; Haseeb, A.; Smith, J.D.; Wischmann, L.; Kühl, S.J.; Dean, J.C.S.; Pilz, D.T.; et al. De Novo SOX4 Variants Cause a Neurodevelopmental Disease Associated with Mild Dysmorphism. Am. J. Hum. Genet. 2019, 104, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, A.; Rasheed, F.; Rashid, M.; van Bokhoven, H.; Ahmed, Z.M.; Riazuddin, S.; Riazuddin, S. Biallelic In-Frame Deletion of SOX4 Is Associated with Developmental Delay, Hypotonia and Intellectual Disability. Eur. J. Hum. Genet. 2022, 30, 243–247. [Google Scholar] [CrossRef]
- Wissmuller, S. The High-Mobility-Group Domain of Sox Proteins Interacts with DNA-Binding Domains of Many Transcription Factors. Nucleic Acids Res. 2006, 34, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Jay, P. SOX22 Is a New Member of the SOX Gene Family, Mainly Expressed in Human Nervous Tissue. Hum. Mol. Genet. 1997, 6, 1069–1077. [Google Scholar] [CrossRef]
- Alhusaini, S.; Ronan, L.; Scanlon, C.; Whelan, C.D.; Doherty, C.P.; Delanty, N.; Fitzsimons, M. Regional Increase of Cerebral Cortex Thickness in Juvenile Myoclonic Epilepsy. Epilepsia 2013, 54, e138–e141. [Google Scholar] [CrossRef]
- Wong, J.C.; Escayg, A. Illuminating the Cerebellum as a Potential Target for Treating Epilepsy. Epilepsy Curr. 2015, 15, 277–278. [Google Scholar] [CrossRef]
- Streng, M.L.; Krook-Magnuson, E. The Cerebellum and Epilepsy. Epilepsy Behav. 2021, 121, 106909. [Google Scholar] [CrossRef]
- Ibdali, M.; Hadjivassiliou, M.; Grünewald, R.A.; Shanmugarajah, P.D. Cerebellar Degeneration in Epilepsy: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 473. [Google Scholar] [CrossRef]
- Forrest, M.P.; Hill, M.J.; Kavanagh, D.H.; Tansey, K.E.; Waite, A.J.; Blake, D.J. The Psychiatric Risk Gene Transcription Factor 4 (TCF4) Regulates Neurodevelopmental Pathways Associated With Schizophrenia, Autism, and Intellectual Disability. Schizophr. Bull. 2018, 44, 1100–1110. [Google Scholar] [CrossRef]
- Yasin, H.; Zahir, F.R. Chromodomain Helicase DNA-Binding Proteins and Neurodevelopmental Disorders. J. Transl. Genet. Genom. 2020, 4, 10–20517. [Google Scholar] [CrossRef]
- Santos-Terra, J.; Deckmann, I.; Fontes-Dutra, M.; Schwingel, G.B.; Bambini-Junior, V.; Gottfried, C. Transcription Factors in Neurodevelopmental and Associated Psychiatric Disorders: A Potential Convergence for Genetic and Environmental Risk Factors. Int. J. Dev. Neurosci. 2021, 81, 545–578. [Google Scholar] [CrossRef]
- Cho, N.H.; Cheveralls, K.C.; Brunner, A.-D.; Kim, K.; Michaelis, A.C.; Raghavan, P.; Kobayashi, H.; Savy, L.; Li, J.Y.; Canaj, H.; et al. OpenCell: Endogenous Tagging for the Cartography of Human Cellular Organization. Science 2022, 375, eabi6983. [Google Scholar] [CrossRef]
- López-Ramos, J.C.; Duran, J.; Gruart, A.; Guinovart, J.J.; Delgado-García, J.M. Role of Brain Glycogen in the Response to Hypoxia and in Susceptibility to Epilepsy. Front. Cell Neurosci. 2015, 9, 431. [Google Scholar] [CrossRef]
- Seo, G.Y.; Neal, E.S.; Han, F.; Vidovic, D.; Nooru-Mohamed, F.; Dienel, G.A.; Sullivan, M.A.; Borges, K. Brain Glycogen Content Is Increased in the Acute and Interictal Chronic Stages of the Mouse Pilocarpine Model of Epilepsy. Epilepsia Open 2022, 7, 361–367. [Google Scholar] [CrossRef]
- Mitra, S.; Chen, B.; Wang, P.; Chown, E.E.; Dear, M.; Guisso, D.R.; Mariam, U.; Wu, J.; Gumusgoz, E.; Minassian, B.A. Laforin Targets Malin to Glycogen in Lafora Progressive Myoclonus Epilepsy. Dis. Model. Mech. 2023, 16, dmm049802. [Google Scholar] [CrossRef]
- Nitschke, S.; Chown, E.E.; Zhao, X.; Gabrielian, S.; Petković, S.; Guisso, D.R.; Perri, A.M.; Wang, P.; Ahonen, S.; Nitschke, F.; et al. An Inducible Glycogen Synthase-1 Knockout Halts but Does Not Reverse Lafora Disease Progression in Mice. J. Biol. Chem. 2021, 296, 100150. [Google Scholar] [CrossRef] [PubMed]
- Donohue, K.J.; Fitzsimmons, B.; Bruntz, R.C.; Markussen, K.H.; Young, L.E.A.; Clarke, H.A.; Coburn, P.T.; Griffith, L.E.; Sanders, W.; Klier, J.; et al. Gys1 Antisense Therapy Prevents Disease-Driving Aggregates and Epileptiform Discharges in a Lafora Disease Mouse Model. Neurotherapeutics 2023, 20, 1808–1819. [Google Scholar] [CrossRef] [PubMed]
- Ahonen, S.; Nitschke, S.; Grossman, T.R.; Kordasiewicz, H.; Wang, P.; Zhao, X.; Guisso, D.R.; Kasiri, S.; Nitschke, F.; Minassian, B.A. Gys1 Antisense Therapy Rescues Neuropathological Bases of Murine Lafora Disease. Brain 2021, 144, 2985–2993. [Google Scholar] [CrossRef] [PubMed]
- DiNuzzo, M.; Mangia, S.; Maraviglia, B.; Giove, F. Does Abnormal Glycogen Structure Contribute to Increased Susceptibility to Seizures in Epilepsy? Metab. Brain Dis. 2015, 30, 307–316. [Google Scholar] [CrossRef]
- Dienel, G.A.; Gillinder, L.; McGonigal, A.; Borges, K. Potential New Roles for Glycogen in Epilepsy. Epilepsia 2023, 64, 29–53. [Google Scholar] [CrossRef]
Evidence of Pathogenicity | Category Code | Description |
---|---|---|
Strong | PS2 | De novo (both maternity and paternity confirmed) in a patient with the disease and no family history. |
Moderate | PM2 | Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium. |
Moderate | PP4 | Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology. |
Germline Variant Classification (ACMG criteria): Likely Pathogenic |
Tool | Prediction | Score |
---|---|---|
CADD | Uncertain | 23.8999 |
M-CAP | Pathogenic Moderate | 0.979 |
PrimateAI | Pathogenic, moderate | 0.9664 |
EIGEN | Benign, moderate | −0.2651 |
Mutation assessor | Benign, moderate | 0.55 |
MutationTaster | Disease-causing | 0.9626 |
PROVEAN | Pathogenic-supporting | −5.77 |
SIFT | Pathogenic-supporting | 0 |
FATHMM-MKL | Pathogenic-supporting | 0.84340 |
MutPred2 | Benign-supporting | 0.464 |
MVP | Benign-supporting | 0.6871 |
DANN | Uncertain | 0.9784 |
FATHMM | Damaging | −3.33 |
LRT | Uncertain | 0.000318 |
SIFT4G | Uncertain | 0.004 |
DEOGEN2 | Deleterious | 0.6900 |
BayesDel addAF | Uncertain | 0.1551 |
BayesDel noAF | Uncertain | −0.0149 |
MetaLR | Uncertain | 0.5195 |
MetaRNN | Uncertain | 0.5739 |
MetaSVM | Uncertain | 0.02229 |
aa Residue | HyB aa Partner (a) | SOX12wt (Arg 110) (b) | SOX12mut (Pro 110) (c) |
---|---|---|---|
Glu 29 | Tyr 104 | 1 | 0 |
His 39 | Thr 35 | 3 | 3 |
Arg 112 | 1 | 0 | |
His 53 | Trp 50 | 1 | 1 |
Arg 56 | 1 | 0 | |
Lys 57 | 1 | 1 | |
Arg 56 | Gln 52 | 1 | 1 |
His 53 | 1 | 0 | |
Asp 60 | 1 | 1 | |
Tyr 104 | Glu 29 | 1 | 0 |
His 100 | 1 | 1 | |
Tyr 107 | 1 | 1 | |
Arg 112 | His 39 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treccarichi, S.; Calì, F.; Vinci, M.; Ragalmuto, A.; Musumeci, A.; Federico, C.; Costanza, C.; Bottitta, M.; Greco, D.; Saccone, S.; et al. Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Curr. Issues Mol. Biol. 2024, 46, 6407-6422. https://doi.org/10.3390/cimb46070383
Treccarichi S, Calì F, Vinci M, Ragalmuto A, Musumeci A, Federico C, Costanza C, Bottitta M, Greco D, Saccone S, et al. Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Current Issues in Molecular Biology. 2024; 46(7):6407-6422. https://doi.org/10.3390/cimb46070383
Chicago/Turabian StyleTreccarichi, Simone, Francesco Calì, Mirella Vinci, Alda Ragalmuto, Antonino Musumeci, Concetta Federico, Carola Costanza, Maria Bottitta, Donatella Greco, Salvatore Saccone, and et al. 2024. "Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders" Current Issues in Molecular Biology 46, no. 7: 6407-6422. https://doi.org/10.3390/cimb46070383
APA StyleTreccarichi, S., Calì, F., Vinci, M., Ragalmuto, A., Musumeci, A., Federico, C., Costanza, C., Bottitta, M., Greco, D., Saccone, S., & Elia, M. (2024). Implications of a De Novo Variant in the SOX12 Gene in a Patient with Generalized Epilepsy, Intellectual Disability, and Childhood Emotional Behavioral Disorders. Current Issues in Molecular Biology, 46(7), 6407-6422. https://doi.org/10.3390/cimb46070383