Safety of Exposure to 0.2 T and 4 Hz Rotating Magnetic Field: A Ten-Month Study on C57BL/6 Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. RMF Characterization
2.2. Materials
2.3. Animals
2.4. RMF Treatments
2.5. Open Field Test
2.6. Blood Routine Examination and Blood Biochemistry
2.7. Organ Coefficient Analysis
2.8. Histomorphological Analysis
2.9. X-ray Imaging
2.10. Micro-CT Imaging
2.11. Safranin -O and Fast Green Staining
2.12. Immunochip
2.13. Lipid Metabolomics Analysis
2.14. Statistical Analysis
3. Results
3.1. Effects of 10-Month RMF Exposure on Clinical Observations, Body Weight, and Behavior in Mice
3.2. Effects of 10-Month RMF Exposure on Blood Routine Indexes in Mice
3.3. Effects of 10-Month RMF Exposure on Blood Biochemistry Indexes in Mice
3.4. Effect of 10-Month RMF Exposure on Organ Histomorphological Alterations and Organ Coefficients in Mice
3.5. Effects of 10-Month RMF Exposure on the Skeletal System in Mice
3.6. Effects of 10-Month RMF Exposure on the Immune System in Mice
Protein ID | SHAM (pg/mL) | RMF (pg/mL) |
---|---|---|
IL-28 ** | 2.79 ± 1.70 | 15.94 ± 9.73 |
IL-1β | 21.83 ± 3.09 | 32.57 ± 12.51 |
IL-2 | 10.09 ± 0.47 | 11.91 ± 2.70 |
IL-5 | 33.27 ± 20.43 | 10.02 ± 3.36 |
IL-6 | 33.75 ± 6.14 | 29.12 ± 3.6 |
IL-10 | 88.34 ± 12.79 | 95.65 ± 14.39 |
IL-12p70 | 42.96 ± 2.90 | 45.81 ± 6.53 |
IL-13 | 12.25 ± 2.21 | 10.85 ± 0.98 |
IL-17 | 8.92 ± 3.34 | 12.31 ± 1.98 |
IL-17F | 7.13 ± 0.34 | 9.14 ± 1.27 |
IL-21 | 2.31 ± 0.74 | 2.62 ± 1.21 |
IL-22 | 0.04 ± 0.01 | 0.05 ± 0.02 |
IL-23 | 281.69 ± 55.45 | 303.54 ± 54.33 |
IFNg | 50.73 ± 5.29 | 54.43 ± 6.60 |
MIP-3a | 16.36 ± 5.30 | 15.49 ± 7.36 |
TGF-β1 | 502.92 ± 34.42 | 744.83 ± 166.80 |
TNF-α | 7.22 ± 1.63 | 5.98 ± 1.63 |
IL-4 | 0.88 ± 0.14 | 0.85 ± 0.07 |
3.7. Effect of 10-Month RMF Exposure on Lipid Metabolism in Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erdmann, W.; Kmita, H.; Kosicki, J.Z.; Kaczmarek, L. How the Geomagnetic Field Influences Life on Earth—An Integrated Approach to Geomagnetobiology. Orig. Life Evol. Biosph. 2021, 51, 231–257. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.P.; Wang, X.M. Biological effects of rotating magnetic field: A review from 1969 to 2021. Prog. Biophys. Mol. Biol. 2023, 178, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Struk, M.; Grygorcewicz, B.; Nawrotek, P.; Augustyniak, A.; Konopacki, M.; Kordas, M.; Rakoczy, R. Enhancing effect of 50 Hz rotating magnetic field on induction of Shiga toxin-converting lambdoid prophages. Microb. Pathog. 2017, 109, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Z.; Chen, R.; Xue, P.P.; Luo, L.Z.; Zhong, B.; Tong, M.Q.; Chen, B.; Yao, Q.; Yuan, J.D.; Xu, H.L. Magnetic PLGA microspheres loaded with SPIONs promoted the reconstruction of bone defects through regulating the bone mesenchymal stem cells under an external magnetic field. Mat. Sci. Eng. C-Mater. 2021, 122, 111877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, C.; Ren, L.; Zhou, Y.M.; Shang, P. The effects of static magnetic fields on bone. Prog. Biophys. Mol. Biol. 2014, 114, 146–152. [Google Scholar] [CrossRef]
- de Abreu, M.C.; Ponzoni, D.; Langie, R.; Artuzi, F.E.; Puricelli, E. Effects of a buried magnetic field on cranial bone reconstruction in rats. J. Appl. Oral. Sci. 2016, 24, 162–170. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, J.; Zhao, L.; Zhang, F.; Liang, X.J.; Guo, Y.; Weir, M.D.; Reynolds, M.A.; Gu, N.; Xu, H.H.K. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018, 183, 151–170. [Google Scholar] [CrossRef]
- Chuo, W.Y.; Ma, T.C.; Saito, T.; Sugita, Y.; Maeda, H.; Zhang, G.R.; Li, J.Q.; Liu, J.H.; Lu, L. A Preliminary Study of the Effect of Static Magnetic Field Acting on Rat Bone Marrow Mesenchymal Stem Cells during Osteogenic Differentiation. J. Hard Tissue Biol. 2013, 22, 227–232. [Google Scholar] [CrossRef]
- Xu, J.Y.; Liu, K.; Chen, T.T.; Zhan, T.Y.; Ouyang, Z.J.; Wang, Y.S.; Liu, W.; Zhang, X.Y.; Sun, Y.; Xu, G.X.; et al. Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans. Aging 2019, 11, 10385–10408. [Google Scholar] [CrossRef]
- Zhan, T.; Wang, X.; Ouyang, Z.; Yao, Y.; Xu, J.; Liu, S.; Liu, K.; Deng, Q.; Wang, Y.; Zhao, Y. Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17. Aging 2020, 12, 6225–6239. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, M.; Lou, C.; Chen, S.; Guo, H.; Gao, Y.; Lv, H.; Yuan, X.; Zhang, X.; Shang, P. Evaluating the biological safety on mice at 16 T static magnetic field with 700 MHz radio-frequency electromagnetic field. Ecotoxicol. Environ. Saf. 2021, 230, 113125. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, B.A.; Tsepilov, N.A.; Panov, V.G.; Sutunkova, M.P.; Varaksin, A.N.; Gurvich, V.B.; Minigalieva, I.A.; Valamina, I.E.; Makeyev, O.H.; Meshtcheryakova, E.Y. Applying theoretical premises of binary toxicity mathematical modeling to combined impacts of chemical plus physical agents (A case study of moderate subchronic exposures to fluoride and static magnetic field). Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2016, 95, 110–120. [Google Scholar] [CrossRef]
- Nishimura, I.; Oshima, A.; Shibuya, K.; Mitani, T.; Negishi, T. Acute and subchronic toxicity of 20 kHz and 60 kHz magnetic fields in rats. J. Appl. Toxicol. JAT 2016, 36, 199–210. [Google Scholar] [CrossRef]
- National Toxicology, P. NTP Toxicology and Carcinogenesis Studies of 60-HZ Magnetic Fields IN F344/N Rats and B6C3F1 Mice (Whole-body Exposure Studies). Natl. Toxicol. Program. Tech. Rep. Ser. 1999, 488, 1–168. [Google Scholar]
- NTP Toxicity Studies of 60-Hz Magnetic Fields Administered by Whole Body Exposure to F344/N Rats, Sprague-Dawley Rats, and B6C3F1 Mice. Toxic. Rep. Ser. 1996, 58, 1-B6.
- Zhang, X.Y.; Xue, Y.; Zhang, Y. Effects of 0.4 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones. Bioelectromagnetics 2006, 27, 1–9. [Google Scholar] [CrossRef]
- Jedrzejczak-Silicka, M.; Kordas, M.; Konopacki, M.; Rakoczy, R. Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)-An In Vitro Wound Healing Study. Int. J. Mol. Sci. 2021, 22, 5785. [Google Scholar] [CrossRef]
- Wasak, A.; Drozd, R.; Jankowiak, D.; Rakoczy, R. Rotating magnetic field as tool for enhancing enzymes properties—laccase case study. Sci. Rep. 2019, 9, 3707. [Google Scholar] [CrossRef]
- Woroszyło, M.; Ciecholewska-Juśko, D.; Junka, A.; Wardach, M.; Chodaczek, G.; Dudek, B.; Fijałkowski, K. The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. Int. J. Mol. Sci. 2021, 22, 11551. [Google Scholar] [CrossRef]
- Gilson, R.C.; Deissler, R.J.; Bihary, R.F.; Condit, W.C.; Thompson, M.E.; Blankenship, D.; Grimberg, K.O.; Brown, R.W.; Grimberg, B.T. Growth of Plasmodium falciparum in response to a rotating magnetic field. Malar. J. 2018, 17, 190. [Google Scholar] [CrossRef] [PubMed]
- Boehm, O.; Zur, B.; Koch, A.; Tran, N.; Freyenhagen, R.; Hartmann, M.; Zacharowski, K. Clinical chemistry reference database for Wistar rats and C57/BL6 mice. Biol. Chem. 2007, 388, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Wiedmeyer, C.E.; Ruben, D.; Franklin, C. Complete blood count, clinical chemistry, and serology profile by using a single tube of whole blood from mice. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2007, 46, 59–64. [Google Scholar] [PubMed]
- Chung, M.K.; Kim, J.C.; Myung, S.H.; Lee, D.I. Developmental toxicity evaluation of ELF magnetic fields in Sprague-Dawley rats. Bioelectromagnetics 2003, 24, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, H.J.; Choi, S.Y.; Gimm, Y.M.; Pack, J.K.; Choi, H.D.; Lee, Y.S. Toxicity bioassay in Sprague-Dawley rats exposed to 20 kHz triangular magnetic field for 90 days. Bioelectromagnetics 2006, 27, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Zendehdel, R.; Asadi, S.; Alizadeh, S.; Ranjbarian, M. Quality assessment of DNA and hemoglobin by Fourier transform infrared spectroscopy in occupational exposure to extremely low-frequency magnetic field. Environ. Sci. Pollut. Res. Int. 2020, 27, 45374–45380. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Gimm, Y.M.; Choi, H.D.; Kim, N.; Kim, S.H.; Lee, Y.S. Chronic exposure of Sprague-Dawley rats to 20 kHz triangular magnetic fields. Int. J. Radiat. Biol. 2010, 86, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, S.H.; Choi, S.Y.; Gimm, Y.M.; Pack, J.K.; Choi, H.D.; Lee, Y.S. Long-term exposure of Sprague Dawley rats to 20 kHz triangular magnetic fields. Int. J. Radiat. Biol. 2006, 82, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, I.; Oshima, A.; Shibuya, K.; Negishi, T. Lack of teratological effects in rats exposed to 20 or 60 kHz magnetic fields. Birth Defects Res. Part. B Dev. Reprod. Toxicol. 2011, 92, 469–477. [Google Scholar] [CrossRef]
- Huuskonen, H.; Juutilainen, J.; Komulainen, H. Effects of low-frequency magnetic fields on fetal development in rats. Bioelectromagnetics 1993, 14, 205–213. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Zhang, G.; Fang, Y.; Fang, Z.; Shang, P.; Zhang, H. Static Magnetic Field (2-4 T) Improves Bone Microstructure and Mechanical Properties by Coordinating Osteoblast/Osteoclast Differentiation in Mice. Bioelectromagnetics 2021, 42, 200–211. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, S.; Lv, H.; Wei, M.; Fang, Y.; Shang, P. Static magnetic field of 0.2-0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice. Int. J. Radiat. Biol. 2021, 97, 746–754. [Google Scholar] [CrossRef]
- Li, S.; Wei, C.; Lv, Y. Preparation and Application of Magnetic Responsive Materials in Bone Tissue Engineering. Curr. Stem Cell Res. Ther. 2020, 15, 428–440. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Fedutik, Y.; Mao, Z.; Gao, C. Nanodiamonds of Different Surface Chemistry Influence the Toxicity and Differentiation of Rat Bone Mesenchymal Stem Cells In Vitro. J. Nanosci. Nanotechnol. 2019, 19, 5426–5434. [Google Scholar] [CrossRef] [PubMed]
- Vinhas, A.; Rodrigues, M.T.; Gonçalves, A.I.; Reis, R.L.; Gomes, M.E. Pulsed Electromagnetic Field Modulates Tendon Cells Response in IL-1β-Conditioned Environment. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2020, 38, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, C. Infusion of HLA-matched and static magnetic field-exposed allogenic lymphocytes treating lymphocytopenia and cytokine storm syndrome: A treatment proposal for COVID-19 patients. Electromagn. Biol. Med. 2021, 40, 11–25. [Google Scholar] [CrossRef]
- Vinhas, A.; Rodrigues, M.T.; Gonçalves, A.I.; Reis, R.L.; Gomes, M.E. Magnetic responsive materials modulate the inflammatory profile of IL-1β conditioned tendon cells. Acta Biomater. 2020, 117, 235–245. [Google Scholar] [CrossRef]
- Yu, B.; Choi, B.; Li, W.; Kim, D.H. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun. 2020, 11, 3637. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J.; et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003, 4, 63–68. [Google Scholar] [CrossRef]
- Rynda, A.; Maddaloni, M.; Ochoa-Repáraz, J.; Callis, G.; Pascual, D.W. IL-28 supplants requirement for T(reg) cells in protein sigma1-mediated protection against murine experimental autoimmune encephalomyelitis (EAE). PLoS ONE 2010, 5, e8720. [Google Scholar] [CrossRef]
- Li, M.C.; Wang, H.Y.; Wang, H.Y.; Li, T.; He, S.H. Liposome-mediated IL-28 and IL-29 expression in A549 cells and anti-viral effect of IL-28 and IL-29 on WISH cells. Acta Pharmacol. Sin. 2006, 27, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Todorović, D.; Ilijin, L.; Mrdaković, M.; Vlahović, M.; Grčić, A.; Petković, B.; Perić-Mataruga, V. The impact of chronic exposure to a magnetic field on energy metabolism and locomotion of Blaptica dubia. Int. J. Radiat. Biol. 2020, 96, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Vigani, G.; Maffei, M.E. The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development. Plants 2020, 9, 1729. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Zhou, D.; Zhou, S.P.; Jia, G. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague-Dawley rats. J. Appl. Toxicol. 2019, 39, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, T.J.; Mellor, H.R.; Roberts, R.R.A. Gender differences in drug toxicity. Trends Pharmacol. Sci. 2010, 31, 108–114. [Google Scholar] [CrossRef]
- Miller, M.A. Gender-based differences in the toxicity of pharmaceuticals—The Food and Drug Administration’s perspective. Int. J. Toxicol. 2001, 20, 149–152. [Google Scholar] [CrossRef]
Indices | SHAM | RMF |
---|---|---|
AST (U/L) | 150.15 ± 52.66 | 149.85 ± 40.28 |
ALB (g/L) | 26.85 ± 1.30 | 23.1 ± 3.66 |
ALT (U/L) | 23.375 ± 6.09 | 22.8 ± 5.25 |
GLU (mmol/L) | 6.675 ± 0.14 | 6.7225 ± 0.98 |
TG (mmol/L) | 2.13 ± 0.41 | 1.725 ± 0.68 |
UREA (mmol/L) | 6.63 ± 0.99 | 5.64 ± 2.52 |
CR (μmol/L) | 24.6 ± 5.32 | 24.6 ± 7.53 |
UA (μmol/L) | 116.825 ± 23.12 | 112.55 ± 72.00 |
ALP (U/L) | 40.05 ± 24.46 | 36.325 ± 11.43 |
LDH (U/L) | 559.8 ± 79.52 | 564.6 ± 89.01 |
CK (U/L) * | 987.25 ± 229.59 | 648.325 ± 52.42 |
TC (mmol/L) * | 3.525 ± 0.06 | 2.505 ± 0.61 |
T-BIL (μmol/L) | 4.395 ± 0.81 | 4.515 ± 1.68 |
γ-GT (U/L) | 1.375 ± 0.75 | 1.425 ± 0.39 |
D-BIL (μmol/L) | 0.61 ± 0.31 | 0.88 ± 0.67 |
α-HBDH (U/L) | 351.2 ± 105.08 | 433.65 ± 65.91 |
CKMB (U/L) | 820.825 ± 386.04 | 798.325 ± 155.45 |
AG | 0.929 ± 0.01 | 0.92125 ± 0.03 |
LDL-C (mmol/L) | 0.3115 ± 0.08 | 0.2855 ± 0.11 |
HDL-C (mmol/L) | 3.56225 ± 0.49 | 3.48575 ± 0.75 |
GLB (g/L) | 30.855 ± 0.91 | 29.9775 ± 1.67 |
TP (g/L) | 70.0525 ± 17.00 | 74.2075 ± 11.81 |
Primary Outcome Measure | Outcomes | Types of Studies |
---|---|---|
body weight changes | body weight monitoring | longitudinal study regular measurements and recordings |
behavioral traits | open-field experiments | in vivo experiments video tracking analysis software |
biological effect | cell proliferation differentiation apoptosis | cell culture CCK8, WB flow cytometry |
physiological impact | blood pressure heart rate respiration | in vivo experiments physiological monitoring |
blood and biochemical markers | blood components biochemical markers | hematological and biochemical analyses (automated hematology analyzers) |
histopathological changes | the effect of RMF on the organization of major organs | H&E staining microscopic observation |
skeletal system effects | bone density bone microarchitecture bone metabolism | X-ray, micro-CT bone histomorphometric analysis |
immune system evaluation | immune cell activity cytokine levels immune response | immunochip technology flow cytometry |
lipid metabolic changes | serum lipid metabolites | mass spectrometry chromatography |
dose-response relationship | RMF with different intensities and frequencies | system dose-effect study |
safety and risk assessment | the safety and potential risks | experimental data epidemiological studies |
statistical analysis | statistical significance and reliability | statistical methods statistical software t-test, ANOVA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Han, Y.; Zhou, C.; Nie, S.; Li, M.; Yu, Q.; Wei, Y.; Wang, X. Safety of Exposure to 0.2 T and 4 Hz Rotating Magnetic Field: A Ten-Month Study on C57BL/6 Mice. Curr. Issues Mol. Biol. 2024, 46, 6390-6406. https://doi.org/10.3390/cimb46070382
Yang H, Han Y, Zhou C, Nie S, Li M, Yu Q, Wei Y, Wang X. Safety of Exposure to 0.2 T and 4 Hz Rotating Magnetic Field: A Ten-Month Study on C57BL/6 Mice. Current Issues in Molecular Biology. 2024; 46(7):6390-6406. https://doi.org/10.3390/cimb46070382
Chicago/Turabian StyleYang, Hua, Yu Han, Cai Zhou, Shenglan Nie, Mengqing Li, Qinyao Yu, Yunpeng Wei, and Xiaomei Wang. 2024. "Safety of Exposure to 0.2 T and 4 Hz Rotating Magnetic Field: A Ten-Month Study on C57BL/6 Mice" Current Issues in Molecular Biology 46, no. 7: 6390-6406. https://doi.org/10.3390/cimb46070382
APA StyleYang, H., Han, Y., Zhou, C., Nie, S., Li, M., Yu, Q., Wei, Y., & Wang, X. (2024). Safety of Exposure to 0.2 T and 4 Hz Rotating Magnetic Field: A Ten-Month Study on C57BL/6 Mice. Current Issues in Molecular Biology, 46(7), 6390-6406. https://doi.org/10.3390/cimb46070382