Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts
Abstract
:1. Introduction
2. Diagnosis
3. Pathogenesis
4. Treatment
4.1. Physical Treatments in OA
4.2. Pharmacological Treatments in OA
4.2.1. Nonsteroidal Anti-Inflammatory Drugs
4.2.2. Steroidal Anti-Inflammatory Drugs
4.2.3. Disease-Modifying OA Drugs
4.3. Regenerative Therapies in OA
4.3.1. Hyaluronic Acid
4.3.2. Platelet-Rich Plasma
4.4. Surgical Approaches
5. Natural Extracts
5.1. Curcumin
5.2. Bromelain
5.3. Boswellia serrata
5.4. Harpagophytum procumbens
5.5. Aescin
5.6. Matricaria chamomilla
5.7. Glycine soja
5.8. Zingiber officinale Roscoe
5.9. Quercetin
6. Challenges in Natural Molecules Quality Control and Standardization
7. Future Research Directions
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Renzo, L.; Gualtieri, P.; De Lorenzo, A. Diet, Nutrition and Chronic Degenerative Diseases. Nutrients 2021, 13, 1372. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.D.; Culbreth, G.T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; Brooks, P.M.; et al. Global, Regional, and National Burden of Osteoarthritis, 1990–2020 and Projections to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.-F. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Pan, J.; Tang, S.; Duan, D.; Yu, D.; Nong, H.; Wang, Z. Global Trends in the Incidence, Prevalence, and Years Lived with Disability of Parkinson’s Disease in 204 Countries/Territories From 1990 to 2019. Front. Public Health 2021, 9, 776847. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.; Munir, A.; Musarò, D.; Coppola, C.; Maffia, M. Restoring Autophagic Function: A Case for Type 2 Diabetes Mellitus Drug Repurposing in Parkinson’s Disease. Front. Neurosci. 2023, 17, 1244022. [Google Scholar] [CrossRef] [PubMed]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, B.; Caldera, F.E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med. Clin. N. Am. 2020, 104, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Tuckermann, J.; Adams, R.H. The Endothelium–Bone Axis in Development, Homeostasis and Bone and Joint Disease. Nat. Rev. Rheumatol. 2021, 17, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Tonutti, A.; Granata, V.; Marrella, V.; Sobacchi, C.; Ragusa, R.; Sconza, C.; Rani, N.; Di Matteo, B.; Ceribelli, A. The Role of WNT and IL-1 Signaling in Osteoarthritis: Therapeutic Implications for Platelet-Rich Plasma Therapy. Front. Aging 2023, 4, 1201019. [Google Scholar] [CrossRef]
- Taruc-Uy, R.L.; Lynch, S.A. Diagnosis and Treatment of Osteoarthritis. Prim. Care Clin. Off. Pract. 2013, 40, 821–836. [Google Scholar] [CrossRef]
- GBD 2019: Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 7 February 2024).
- Shane Anderson, A.; Loeser, R.F. Why Is Osteoarthritis an Age-Related Disease? Best. Pract. Res. Clin. Rheumatol. 2010, 24, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Wang, Y.; Giles, G.G.; Graves, S.; Wluka, A.E.; Cicuttini, F.M. Female Reproductive and Hormonal Factors and Incidence of Primary Total Knee Arthroplasty Due to Osteoarthritis. Osteoarthr. Cartil. 2018, 26, S206. [Google Scholar] [CrossRef]
- Tang, J.; Liu, T.; Wen, X.; Zhou, Z.; Yan, J.; Gao, J.; Zuo, J. Estrogen-Related Receptors: Novel Potential Regulators of Osteoarthritis Pathogenesis. Mol. Med. 2021, 27, 5. [Google Scholar] [CrossRef]
- Martín-Millán, M.; Castañeda, S. Estrogens, Osteoarthritis and Inflammation. Jt. Bone Spine 2013, 80, 368–373. [Google Scholar] [CrossRef]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the Skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Reese, M.E.; Casey, E. Hormonal Influence on the Neuromusculoskeletal System in Pregnancy. In Musculoskeletal Health in Pregnancy and Postpartum; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–39. [Google Scholar]
- Bliddal, M.; Pottegård, A.; Kirkegaard, H.; Olsen, J.; Jørgensen, J.S.; Sørensen, T.I.A.; Dreyer, L.; Nohr, E.A. Association of Pre-Pregnancy Body Mass Index, Pregnancy-Related Weight Changes, and Parity with the Risk of Developing Degenerative Musculoskeletal Conditions. Arthritis Rheumatol. 2016, 68, 1156–1164. [Google Scholar] [CrossRef]
- Mitani, Y. Gender-Related Differences in Lower Limb Alignment, Range of Joint Motion, and the Incidence of Sports Injuries in Japanese University Athletes. J. Phys. Ther. Sci. 2017, 29, 12–15. [Google Scholar] [CrossRef]
- Grainger, A.J.; Resnik, C.S. Arthritis. In Musculoskeletal Diseases 2021–2024: Diagnostic Imaging; Hodler, J., Kubik-Huch, R.A., von Schulthess, G.K., Eds.; Springer: Cham, Switzerland, 2021; pp. 149–168. [Google Scholar]
- Felson, D.T. Identifying Different Osteoarthritis Phenotypes through Epidemiology. Osteoarthr. Cartil. 2010, 18, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Chen, D.; Zhang, J.; Hu, S.; Jin, H.; Tong, P. Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms. Calcif. Tissue Int. 2014, 95, 495–505. [Google Scholar] [CrossRef]
- Maniar, K.H.; Jones, I.A.; Gopalakrishna, R.; Vangsness, C.T. Lowering Side Effects of NSAID Usage in Osteoarthritis: Recent Attempts at Minimizing Dosage. Expert. Opin. Pharmacother. 2018, 19, 93–102. [Google Scholar] [CrossRef]
- van Doormaal, M.C.M.; Meerhoff, G.A.; Vliet Vlieland, T.P.M.; Peter, W.F. A Clinical Practice Guideline for Physical Therapy in Patients with Hip or Knee Osteoarthritis. Musculoskelet. Care 2020, 18, 575–595. [Google Scholar] [CrossRef] [PubMed]
- Liddle, A.D.; Pegg, E.C.; Pandit, H. Knee Replacement for Osteoarthritis. Maturitas 2013, 75, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Lohmander, L.S.; Peltonen, M.; Andersson-Assarsson, J.C.; Maglio, C.; Sjöholm, K.; Taube, M.; Jacobson, P.; Svensson, P.A.; Carlsson, L.M.S.; Ahlin, S. Bariatric Surgery, Osteoarthritis and Arthroplasty of the Hip and Knee in Swedish Obese Subjects—Up to 31 Years Follow-up of a Controlled Intervention Study. Osteoarthr. Cartil. 2023, 31, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Grigore, A.; Vulturescu, V. Natural Approach in Osteoarthritis Therapy. Recent Adv. Inflamm. Allergy Drug Discov. 2022, 16, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Yunus, M.H.M.; Ugusman, A.; Yazid, M.D. Natural Compounds Affecting Inflammatory Pathways of Osteoarthritis. Antioxidants 2022, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; McDougall, J.J.; Keefe, F.J. The Symptoms of Osteoarthritis and the Genesis of Pain. Rheum. Dis. Clin. N. Am. 2008, 34, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The Genesis of Pain. Rheumatology 2018, 57, iv43–iv50. [Google Scholar] [CrossRef]
- Association, C.O. Diagnosis and Treatment of Osteoarthritis. Orthop. Surg. 2010, 2, 1–6. [Google Scholar] [CrossRef]
- Hanada, M.; Takahashi, M.; Furuhashi, H.; Koyama, H.; Matsuyama, Y. Elevated Erythrocyte Sedimentation Rate and High-Sensitivity C-Reactive Protein in Osteoarthritis of the Knee: Relationship with Clinical Findings and Radiographic Severity. Ann. Clin. Biochem. Int. J. Lab. Med. 2016, 53, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Faustino, A.; Lanas, A. Monitoring Complete Blood Counts and Haemoglobin Levels in Osteoarthritis Patients: Results from a European Survey Investigating Primary Care Physician Behaviours and Understanding. Open Rheumatol. J. 2014, 8, 110–115. [Google Scholar] [CrossRef]
- Mekic, M.; Hadzigrahic, E. Anti-Cyclic Citrullinated Peptide Antibody as a Predictor of Rheumathoid Arthritis Complications. Med. Arch. 2020, 74, 183. [Google Scholar] [CrossRef]
- Mohammed, A.; Alshamarri, T.; Adeyeye, T.; Lazariu, V.; McNutt, L.-A.; Carpenter, D.O. A Comparison of Risk Factors for Osteo- and Rheumatoid Arthritis Using NHANES Data. Prev. Med. Rep. 2020, 20, 101242. [Google Scholar] [CrossRef] [PubMed]
- De Rycke, L. Rheumatoid Factor and Anticitrullinated Protein Antibodies in Rheumatoid Arthritis: Diagnostic Value, Associations with Radiological Progression Rate, and Extra-Articular Manifestations. Ann. Rheum. Dis. 2004, 63, 1587–1593. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis. JAMA 2021, 325, 568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, C.; Jiang, Q.; Zheng, Y.; Liu, Y.; Liu, S.; Chen, Y.; Mei, Y.; Ding, C.; Chen, M.; et al. Guidelines for the Diagnosis and Treatment of Osteoarthritis in China (2019 Edition). Ann. Transl. Med. 2020, 8, 1213. [Google Scholar] [CrossRef]
- Sen, R.; Hurley, J.A. Osteoarthritis; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yokose, C.; Chen, M.; Berhanu, A.; Pillinger, M.H.; Krasnokutsky, S. Gout and Osteoarthritis: Associations, Pathophysiology, and Therapeutic Implications. Curr. Rheumatol. Rep. 2016, 18, 65. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, F.; Bindoli, S.; Scanu, A.; Feist, E.; Doria, A.; Galozzi, P.; Sfriso, P. Autoinflammatory Mechanisms in Crystal-Induced Arthritis. Front. Med. 2020, 7, 166. [Google Scholar] [CrossRef]
- Ivory, D.; Velázquez, C.R. The Forgotten Crystal Arthritis: Calcium Pyrophosphate Deposition. Mo. Med. 2012, 109, 64–68. [Google Scholar]
- Haartmans, M.J.J.; Emanuel, K.S.; Tuijthof, G.J.M.; Heeren, R.M.A.; Emans, P.J.; Cillero-Pastor, B. Mass Spectrometry-Based Biomarkers for Knee Osteoarthritis: A Systematic Review. Expert. Rev. Proteom. 2021, 18, 693–706. [Google Scholar] [CrossRef]
- Felekkis, K.; Pieri, M.; Papaneophytou, C. Exploring the Feasibility of Circulating MiRNAs as Diagnostic and Prognostic Biomarkers in Osteoarthritis: Challenges and Opportunities. Int. J. Mol. Sci. 2023, 24, 13144. [Google Scholar] [CrossRef]
- Kraus, V.B.; Karsdal, M.A. Osteoarthritis: Current Molecular Biomarkers and the Way Forward. Calcif. Tissue Int. 2021, 109, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Rocha, F.A.C.; Ali, S.A. Soluble Biomarkers in Osteoarthritis in 2022: Year in Review. Osteoarthr. Cartil. 2023, 31, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Nagy-Finna, C.; Popoviciu, H.-V.; Kovács, B. Soluble Biomarkers of Osteoporosis and Osteoarthritis, from Pathway Mapping to Clinical Trials: An Update. Clin. Interv. Aging 2020, 15, 501–518. [Google Scholar] [CrossRef]
- Bauer, D.C.; Hunter, D.J.; Abramson, S.B.; Attur, M.; Corr, M.; Felson, D.; Heinegård, D.; Jordan, J.M.; Kepler, T.B.; Lane, N.E.; et al. Classification of Osteoarthritis Biomarkers: A Proposed Approach. Osteoarthr. Cartil. 2006, 14, 723–727. [Google Scholar] [CrossRef]
- Runhaar, J.; Sanchez, C.; Taralla, S.; Henrotin, Y.; Bierma-Zeinstra, S.M.A. Fibulin-3 Fragments Are Prognostic Biomarkers of Osteoarthritis Incidence in Overweight and Obese Women. Osteoarthr. Cartil. 2016, 24, 672–678. [Google Scholar] [CrossRef]
- Henrotin, Y.; Gharbi, M.; Mazzucchelli, G.; Dubuc, J.; De Pauw, E.; Deberg, M. Fibulin 3 Peptides Fib3-1 and Fib3-2 Are Potential Biomarkers of Osteoarthritis. Arthritis Rheum. 2012, 64, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.; Lohmander, L.S.; Struglics, A. Biological Variation of Human Aggrecan ARGS Neoepitope in Synovial Fluid and Serum in Early-Stage Knee Osteoarthritis and after Knee Injury. Osteoarthr. Cartil. Open 2022, 4, 100307. [Google Scholar] [CrossRef]
- Verma, P.; Dalal, K. Serum Cartilage Oligomeric Matrix Protein (COMP) in Knee Osteoarthritis: A Novel Diagnostic and Prognostic Biomarker. J. Orthop. Res. 2013, 31, 999–1006. [Google Scholar] [CrossRef]
- Tootsi, K.; Kals, J.; Zilmer, M.; Paapstel, K.; Ottas, A.; Märtson, A. Medium- and Long-chain Acylcarnitines Are Associated with Osteoarthritis Severity and Arterial Stiffness in End-stage Osteoarthritis Patients: A Case-control Study. Int. J. Rheum. Dis. 2018, 21, 1211–1218. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, S.J.; Lee, K.J.; Yang, S.S.; Min, B.-H.; Yoon, H.C. Detection of CTX-II in Serum and Urine to Diagnose Osteoarthritis by Using a Fluoro-Microbeads Guiding Chip. Biosens. Bioelectron. 2015, 67, 192–199. [Google Scholar] [CrossRef]
- Sasaki, E.; Yamamoto, H.; Asari, T.; Matsuta, R.; Ota, S.; Kimura, Y.; Sasaki, S.; Ishibashi, K.; Yamamoto, Y.; Kami, K.; et al. Metabolomics with Severity of Radiographic Knee Osteoarthritis and Early Phase Synovitis in Middle-Aged Women from the Iwaki Health Promotion Project: A Cross-Sectional Study. Arthritis Res. Ther. 2022, 24, 145. [Google Scholar] [CrossRef] [PubMed]
- Cuéllar, V.G.; Cuéllar, J.M.; Kirsch, T.; Strauss, E.J. Correlation of Synovial Fluid Biomarkers with Cartilage Pathology and Associated Outcomes in Knee Arthroscopy. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-W.; Chen, L.; Hao, X.-R.; Qu, Z.-A.; Huang, S.-B.; Ma, X.-J.; Wang, J.-C.; Wang, W.-M. Elevated Levels of Interleukin-1β, Interleukin-6, Tumor Necrosis Factor-α and Vascular Endothelial Growth Factor in Patients with Knee Articular Cartilage Injury. World J. Clin. Cases 2019, 7, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wei, S.; Xu, F.; Cai, X.; Wang, H.; Ding, R. MicroRNA-532-5p Is Implicated in the Regulation of Osteoporosis by Forkhead Box O1 and Osteoblast Differentiation. BMC Musculoskelet. Disord. 2020, 21, 296. [Google Scholar] [CrossRef]
- Stanczyk, J.; Pedrioli, D.M.L.; Brentano, F.; Sanchez-Pernaute, O.; Kolling, C.; Gay, R.E.; Detmar, M.; Gay, S.; Kyburz, D. Altered Expression of MicroRNA in Synovial Fibroblasts and Synovial Tissue in Rheumatoid Arthritis. Arthritis Rheum. 2008, 58, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Pertusa, C.; Tarín, J.J.; Cano, A.; García-Pérez, M.Á.; Mifsut, D. Serum MicroRNAs in Osteoporotic Fracture and Osteoarthritis: A Genetic and Functional Study. Sci. Rep. 2021, 11, 19372. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, R.; Hunter, M.; Liu, S.; Jadeja, R.N.; Pundkar, C.; Mondal, A.K.; Mendhe, B.; Drewry, M.; Rojiani, M.V.; Liu, Y.; et al. Gender-Specific Differential Expression of Exosomal MiRNA in Synovial Fluid of Patients with Osteoarthritis. Sci. Rep. 2017, 7, 2029. [Google Scholar] [CrossRef]
- Li, Q.; Amano, K.; Link, T.M.; Ma, C.B. Advanced Imaging in Osteoarthritis. Sports Health A Multidiscip. Approach 2016, 8, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial Inflammation in Osteoarthritis Progression. Nat. Rev. Rheumatol. 2022, 18, 258–275. [Google Scholar] [CrossRef]
- Kaeley, G.S.; Bakewell, C.; Deodhar, A. The Importance of Ultrasound in Identifying and Differentiating Patients with Early Inflammatory Arthritis: A Narrative Review. Arthritis Res. Ther. 2020, 22, 1. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Sangha, O. Epidemiology of Rheumatic Diseases. Rheumatology 2000, 39, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.S.; Yon, C.-J.; Lee, D.; Lee, J.J.; Kang, C.H.; Kang, S.-B.; Lee, N.-K.; Chang, C.B. Assessment of a Novel Deep Learning-Based Software Developed for Automatic Feature Extraction and Grading of Radiographic Knee Osteoarthritis. BMC Musculoskelet. Disord. 2023, 24, 869. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.; McGuinness, K.; Moran, K.; O’Connor, N.E. Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity Using Convolutional Neural Networks. In Machine Learning and Data Mining in Pattern Recognition. MLDM 2017. Lecture Notes in Computer Science; Perner, P., Ed.; Springer: Cham, Switzerland, 2017; pp. 376–390. ISBN 978-3-319-62415-0. [Google Scholar]
- Cueva, J.H.; Castillo, D.; Espinós-Morató, H.; Durán, D.; Díaz, P.; Lakshminarayanan, V. Detection and Classification of Knee Osteoarthritis. Diagnostics 2022, 12, 2362. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.D.; Sassoon, A.A.; Fernando, N.D. Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin. Orthop. Relat. Res. 2016, 474, 1886–1893. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, R. The Atlas of Standard Radiographs of Arthritis. Rheumatology 2005, 44, iv43–iv72. [Google Scholar] [CrossRef]
- Kondal, S.; Kulkarni, V.; Gaikwad, A.; Kharat, A.; Pant, A. Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale from Radiographs Using Convolutional Neural Networks. In Advances in Deep Learning, Artificial Intelligence and Robotics. Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; pp. 163–173. [Google Scholar]
- Park, H.-J.; Kim, S.S.; Lee, S.-Y.; Park, N.-H.; Park, J.-Y.; Choi, Y.-J.; Jeon, H.-J. A Practical MRI Grading System for Osteoarthritis of the Knee: Association with Kellgren–Lawrence Radiographic Scores. Eur. J. Radiol. 2013, 82, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Niinimäki, E.; Paloneva, J.; Pölönen, I.; Heinonen, A.; Äyrämö, S. Validation of Knee KL-Classifying Deep Neural Network with Finnish Patient Data. In Computational Sciences and Artificial Intelligence in Industry; Springer: Cham, Switzerland, 2022; pp. 177–188. [Google Scholar]
- Field, R.E.; Blakey, C.; Malagelada, F. Anatomy: Capsule and Synovium. In Hip Joint Restoration; Springer: New York, NY, USA, 2017; pp. 27–33. [Google Scholar]
- Wang, W.; Ye, R.; Xie, W.; Zhang, Y.; An, S.; Li, Y.; Zhou, Y. Roles of the Calcified Cartilage Layer and Its Tissue Engineering Reconstruction in Osteoarthritis Treatment. Front. Bioeng. Biotechnol. 2022, 10, 911281. [Google Scholar] [CrossRef] [PubMed]
- Fawns, H.T.; Landells, J.W. Histochemical Studies of Rheumatic Conditions: I. Observations on the Fine Structures of the Matrix of Normal Bone and Cartilage. Ann. Rheum. Dis. 1953, 12, 105–113. [Google Scholar] [CrossRef]
- Ralphs, J.R.; Benjamin, M. The Joint Capsule: Structure, Composition, Ageing and Disease. J. Anat. 1994, 184 Pt 3, 503–509. [Google Scholar]
- Coaccioli, S.; Sarzi-Puttini, P.; Zis, P.; Rinonapoli, G.; Varrassi, G. Osteoarthritis: New Insight on Its Pathophysiology. J. Clin. Med. 2022, 11, 6013. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.B.; Gallant, M.A. Bone Remodelling in Osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral Bone Microenvironment in Osteoarthritis and Pain. Bone Res. 2021, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Woodell-May, J.E.; Sommerfeld, S.D. Role of Inflammation and the Immune System in the Progression of Osteoarthritis. J. Orthop. Res. 2020, 38, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Uchida, K.; Fukushima, K.; Inoue, G.; Takaso, M. Mechanisms of Peripheral and Central Sensitization in Osteoarthritis Pain. Cureus 2023, 15, e35331. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Korntner, S.; Mullen, A.; Zeugolis, D. Collagen Type II: From Biosynthesis to Advanced Biomaterials for Cartilage Engineering. Biomater. Biosyst. 2021, 4, 100030. [Google Scholar] [CrossRef] [PubMed]
- Roughley, P.J.; Mort, J.S. The Role of Aggrecan in Normal and Osteoarthritic Cartilage. J. Exp. Orthop. 2014, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tan, X.-N.; Hu, S.; Liu, R.-Q.; Peng, L.-H.; Li, Y.-M.; Wu, P. Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front. Cell Dev. Biol. 2021, 9, 664168. [Google Scholar] [CrossRef]
- Lin, W.; Liu, Z.; Kampf, N.; Klein, J. The Role of Hyaluronic Acid in Cartilage Boundary Lubrication. Cells 2020, 9, 1606. [Google Scholar] [CrossRef]
- Alcaide-Ruggiero, L.; Cugat, R.; Domínguez, J.M. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int. J. Mol. Sci. 2023, 24, 10824. [Google Scholar] [CrossRef]
- Mobasheri, A.; Batt, M. An Update on the Pathophysiology of Osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 333–339. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Sheng, P.; Mobasheri, A. The Role of Metabolism in Chondrocyte Dysfunction and the Progression of Osteoarthritis. Ageing Res. Rev. 2021, 66, 101249. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.R.; Beaupré, G.S.; Wong, M.; Smith, R.L.; Andriacchi, T.P.; Schurman, D.J. The Mechanobiology of Articular Cartilage Development and Degeneration. Clin. Orthop. Relat. Res. 2004, 427, S69–S77. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.A. Review. Articular Cartilage Chondrons: Form, Function and Failure. J. Anat. 1997, 191, 1–13. [Google Scholar] [CrossRef]
- Amr, M.; Mallah, A.; Yasmeen, S.; Van Wie, B.; Gozen, A.; Mendenhall, J.; Abu-Lail, N.I. From Chondrocytes to Chondrons, Maintenance of Phenotype and Matrix Production in a Composite 3D Hydrogel Scaffold. Gels 2022, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.K.; Deng, W.-P. 20—Polymeric Gels for Cartilage Tissue Engineering. In Polymeric Gels; Kunal, P., Indranil, B., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 505–525. [Google Scholar]
- Alexopoulos, L.G.; Haider, M.A.; Vail, T.P.; Guilak, F. Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix with Osteoarthritis. J. Biomech. Eng. 2003, 125, 323–333. [Google Scholar] [CrossRef]
- Dieterle, M.P.; Husari, A.; Rolauffs, B.; Steinberg, T.; Tomakidi, P. Integrins, Cadherins and Channels in Cartilage Mechanotransduction: Perspectives for Future Regeneration Strategies. Expert. Rev. Mol. Med. 2021, 23, e14. [Google Scholar] [CrossRef]
- Song, F.; Mao, X.; Dai, J.; Shan, B.; Zhou, Z.; Kang, Y. Integrin AVβ3 Signaling in the Progression of Osteoarthritis Induced by Excessive Mechanical Stress. Inflammation 2023, 46, 739–751. [Google Scholar] [CrossRef]
- Tang, X.; Muhammad, H.; McLean, C.; Miotla-Zarebska, J.; Fleming, J.; Didangelos, A.; Önnerfjord, P.; Leask, A.; Saklatvala, J.; Vincent, T.L. Connective Tissue Growth Factor Contributes to Joint Homeostasis and Osteoarthritis Severity by Controlling the Matrix Sequestration and Activation of Latent TGFβ. Ann. Rheum. Dis. 2018, 77, 1372–1380. [Google Scholar] [CrossRef]
- Huck, L.; Pontier, S.M.; Zuo, D.M.; Muller, W.J. Β1-Integrin Is Dispensable for the Induction of ErbB2 Mammary Tumors but Plays a Critical Role in the Metastatic Phase of Tumor Progression. Proc. Natl. Acad. Sci. USA 2010, 107, 15559–15564. [Google Scholar] [CrossRef]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Yamamoto, K.; Wilkinson, D.; Bou-Gharios, G. Targeting Dysregulation of Metalloproteinase Activity in Osteoarthritis. Calcif. Tissue Int. 2021, 109, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.; Nam, J. The Role of Changes in Extracellular Matrix of Cartilage in the Presence of Inflammation on the Pathology of Osteoarthritis. Biomed. Res. Int. 2013, 2013, 284873. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, H.; Bunpetch, V.; Koh, Y.; Wen, Y.; Wu, D.; Ouyang, H. The Regulation of Cartilage Extracellular Matrix Homeostasis in Joint Cartilage Degeneration and Regeneration. Biomaterials 2021, 268, 120555. [Google Scholar] [CrossRef]
- Werb, Z.; Tremble, P.M.; Behrendtsen, O.; Crowley, E.; Damsky, C.H. Signal Transduction through the Fibronectin Receptor Induces Collagenase and Stromelysin Gene Expression. J. Cell Biol. 1989, 109, 877–889. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Chanalaris, A.; Troeberg, L. ADAMTS and ADAM Metalloproteinases in Osteoarthritis—Looking beyond the ‘Usual Suspects’. Osteoarthr. Cartil. 2017, 25, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Sporn, M.B. Transforming Growth Factor—β. JAMA 1989, 262, 938. [Google Scholar] [CrossRef] [PubMed]
- Finnson, K.W.; Chi, Y.; Bou-Gharios, G.; Leask, A.; Philip, A. TGF-Beta Signaling in Cartilage Homeostasis and Osteoarthritis. Front. Biosci. 2012, S4, 251. [Google Scholar] [CrossRef]
- Schaffner, F.; Ray, A.M.; Dontenwill, M. Integrin A5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers 2013, 5, 27–47. [Google Scholar] [CrossRef]
- Ramage, L. Integrins and Extracellular Matrix in Mechanotransduction. Cell Health Cytoskelet. 2011, 2012, 1–9. [Google Scholar] [CrossRef]
- Pang, C.; Wen, L.; Lu, X.; Luo, S.; Qin, H.; Zhang, X.; Zhu, B.; Luo, S. Ruboxistaurin Maintains the Bone Mass of Subchondral Bone for Blunting Osteoarthritis Progression by Inhibition of Osteoclastogenesis and Bone Resorption Activity. Biomed. Pharmacother. 2020, 131, 110650. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Wen, L.; Qin, H.; Zhu, B.; Lu, X.; Luo, S. Sotrastaurin, a PKC Inhibitor, Attenuates RANKL-induced Bone Resorption and Attenuates Osteochondral Pathologies Associated with the Development of OA. J. Cell Mol. Med. 2020, 24, 8452–8465. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Jiang, S.; Wang, R.; Zhang, Y.; Dong, J.; Li, Y. Mechanistic Insight Into the Roles of Integrins in Osteoarthritis. Front. Cell Dev. Biol. 2021, 9, 693484. [Google Scholar] [CrossRef] [PubMed]
- Jimi, E.; Huang, F.; Nakatomi, C. NF-ΚB Signaling Regulates Physiological and Pathological Chondrogenesis. Int. J. Mol. Sci. 2019, 20, 6275. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-ΚB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduct. Target. Ther. 2020, 5, 209. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.C.; Jo, J.; Park, J.; Kang, H.K.; Park, Y. Park NF-B Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019, 8, 734. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhao, L.-J.; Liao, T.; Li, Z.-C.; Wang, L.-L.; Lin, P.-Y.; Jiang, R.; Wei, Q.-J. Ononin Ameliorates Inflammation and Cartilage Degradation in Rat Chondrocytes with IL-1β-Induced Osteoarthritis by Downregulating the MAPK and NF-ΚB Pathways. BMC Complement. Med. Ther. 2022, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, S.; Lu, J.; Jin, J.; Zhu, G.; Wang, L.; Yan, Y.; He, L.; Wang, B.; Wang, X.; et al. α-Cyperone (CYP) down-Regulates NF-ΚB and MAPKs Signaling, Attenuating Inflammation and Extracellular Matrix Degradation in Chondrocytes, to Ameliorate Osteoarthritis in Mice. Aging 2021, 13, 17690–17706. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Li, W.; Zhang, Y.; Wu, X.; Song, Y.; Kang, L.; Liu, W.; Wang, K.; Li, S.; Hua, W.; et al. Simvastatin Inhibits IL-1β-Induced Apoptosis and Extracellular Matrix Degradation by Suppressing the NF-KB and MAPK Pathways in Nucleus Pulposus Cells. Inflammation 2017, 40, 725–734. [Google Scholar] [CrossRef]
- Huang, B.-P.; Lin, C.-H.; Chen, H.-M.; Lin, J.-T.; Cheng, Y.-F.; Kao, S.-H. AMPK Activation Inhibits Expression of Proinflammatory Mediators Through Downregulation of PI3K/P38 MAPK and NF-ΚB Signaling in Murine Macrophages. DNA Cell Biol. 2015, 34, 133–141. [Google Scholar] [CrossRef]
- Scotece, M.; Conde, J.; Abella, V.; López, V.; Francisco, V.; Ruiz, C.; Campos, V.; Lago, F.; Gomez, R.; Pino, J.; et al. Oleocanthal Inhibits Catabolic and Inflammatory Mediators in LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF-ΚB Pathways. Cell. Physiol. Biochem. 2018, 49, 2414–2426. [Google Scholar] [CrossRef] [PubMed]
- Thummuri, D.; Jeengar, M.K.; Shrivastava, S.; Nemani, H.; Ramavat, R.N.; Chaudhari, P.; Naidu, V.G.M. Thymoquinone Prevents RANKL-Induced Osteoclastogenesis Activation and Osteolysis in an In Vivo Model of Inflammation by Suppressing NF-KB and MAPK Signalling. Pharmacol. Res. 2015, 99, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, C.; Lu, Y.; Yuan, F. The Molecular Mechanism Research of Cartilage Calcification Induced by Osteoarthritis. Bioengineered 2022, 13, 13082–13088. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, R.; Hou, S.; He, F.; Ma, Y.; Ye, T.; Yu, S.; Chen, H.; Wang, H.; Zhang, M. Chondrocyte-Derived Exosomes Promote Cartilage Calcification in Temporomandibular Joint Osteoarthritis. Arthritis Res. Ther. 2022, 24, 44. [Google Scholar] [CrossRef] [PubMed]
- Shen, G. The Role of Type X Collagen in Facilitating and Regulating Endochondral Ossification of Articular Cartilage. Orthod. Craniofac Res. 2005, 8, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Alcaide-Ruggiero, L.; Molina-Hernández, V.; Granados, M.M.; Domínguez, J.M. Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects. Int. J. Mol. Sci. 2021, 22, 13329. [Google Scholar] [CrossRef] [PubMed]
- Krasnokutsky, S.; Attur, M.; Palmer, G.; Samuels, J.; Abramson, S.B. Current Concepts in the Pathogenesis of Osteoarthritis. Osteoarthr. Cartil. 2008, 16, S1–S3. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Rothrauff, B.B.; Fritch, M.R.; Chang, A.; He, Y.; Yeung, M.; Liu, S.; Lipa, K.E.; Lei, G.; et al. Novel Role of Estrogen Receptor-α on Regulating Chondrocyte Phenotype and Response to Mechanical Loading. Osteoarthr. Cartil. 2022, 30, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tian, L.; Du, X.; Deng, Z. MiR-203 Regulates Estrogen Receptor α and Cartilage Degradation in IL-1β-Stimulated Chondrocytes. J. Bone Miner. Metab. 2020, 38, 346–356. [Google Scholar] [CrossRef]
- AKALTUN, M.S.; KOÇYİĞİT, B.F. Assessment of Foot Posture and Related Factors in Patients with Knee Osteoarthritis. Arch. Rheumatol. 2021, 36, 267–273. [Google Scholar] [CrossRef]
- Fu, S.; Duan, T.; Hou, M.; Yang, F.; Chai, Y.; Chen, Y.; Liu, B.; Ma, Y.; Liu, A.; Wang, X.; et al. Postural Balance in Individuals with Knee Osteoarthritis During Stand-to-Sit Task. Front. Hum. Neurosci. 2021, 15, 760960. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.Z.; Wong, J.; Hussain, S.M.; Estee, M.M.; Zolio, L.; Page, M.J.; Harrison, C.L.; Wluka, A.E.; Wang, Y.; Cicuttini, F.M. Recommendations for Weight Management in Osteoarthritis: A Systematic Review of Clinical Practice Guidelines. Osteoarthr. Cartil. Open 2022, 4, 100298. [Google Scholar] [CrossRef] [PubMed]
- Biederman, R.E. Pharmacology in Rehabilitation: Nonsteroidal Anti-Inflammatory Agents. J. Orthop. Sports Phys. Ther. 2005, 35, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Magni, A.; Agostoni, P.; Bonezzi, C.; Massazza, G.; Menè, P.; Savarino, V.; Fornasari, D. Management of Osteoarthritis: Expert Opinion on NSAIDs. Pain. Ther. 2021, 10, 783–808. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Goh, S.-L.; Wu, J.; Persson, M.S.M.; Wei, J.; Sarmanova, A.; Li, X.; Hall, M.; Doherty, M.; Jiang, T.; et al. Comparative Efficacy of Exercise Therapy and Oral Non-Steroidal Anti-Inflammatory Drugs and Paracetamol for Knee or Hip Osteoarthritis: A Network Meta-Analysis of Randomised Controlled Trials. Br. J. Sports Med. 2023, 57, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, A.; Chan, J.J.; Claessen, F.M.A.P.; Ring, D.; Chen, N.C. Corticosteroid Injections Give Small and Transient Pain Relief in Rotator Cuff Tendinosis: A Meta-Analysis. Clin. Orthop. Relat. Res. 2017, 475, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Ferrillo, M.; Bernetti, A.; Finamore, N.; Mangone, M.; Giudice, A.; Paoloni, M.; de Sire, A. Hyaluronic Acid Injections for Pain Relief and Functional Improvement in Patients with Temporomandibular Disorders: An Umbrella Review of Systematic Reviews. J. Oral. Rehabil. 2023, 50, 1518–1534. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Mishra, A.; Maiti, R.; Sahoo, J.; Thakur, K.B.; Sasidharan, S.K. Can Platelet-Rich Plasma Injections Provide Better Pain Relief and Functional Outcomes in Persons with Common Shoulder Diseases: A Meta-Analysis of Randomized Controlled Trials. Clin. Shoulder Elb. 2022, 25, 73–89. [Google Scholar] [CrossRef]
- Stubbs, B.; Aluko, Y.; Myint, P.K.; Smith, T.O. Prevalence of Depressive Symptoms and Anxiety in Osteoarthritis: A Systematic Review and Meta-Analysis. Age Ageing 2016, 45, 228–235. [Google Scholar] [CrossRef]
- Wang, S.-T.; Ni, G.-X. Depression in Osteoarthritis: Current Understanding. Neuropsychiatr. Dis. Treat. 2022, 18, 375–389. [Google Scholar] [CrossRef]
- Uritani, D.; Koda, H.; Sugita, S. Effects of Self-Management Education Programmes on Self-Efficacy for Osteoarthritis of the Knee: A Systematic Review of Randomised Controlled Trials. BMC Musculoskelet. Disord. 2021, 22, 515. [Google Scholar] [CrossRef]
- Diener, I. Physiotherapy Support for Self-Management of Persisting Musculoskeletal Pain Disorders. S. Afr. J. Physiother. 2021, 77, 1564. [Google Scholar] [CrossRef] [PubMed]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020, 72, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-A.; Oh, J.W. Effects of Aquatic Exercises for Patients with Osteoarthritis: Systematic Review with Meta-Analysis. Healthcare 2022, 10, 560. [Google Scholar] [CrossRef]
- Guo, G.; Wu, B.; Xie, S.; Xu, J.; Zhou, X.; Wu, G.; Lu, P. Effectiveness and Safety of Tai Chi for Chronic Pain of Knee Osteoarthritis. Medicine 2022, 101, e28497. [Google Scholar] [CrossRef] [PubMed]
- Lauche, R.; Hunter, D.J.; Adams, J.; Cramer, H. Yoga for Osteoarthritis: A Systematic Review and Meta-Analysis. Curr. Rheumatol. Rep. 2019, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.C.; Ramos, P.d.S.; Dias, A.G.; Martins, E.A. The Effects of Physical Exercise on Pain Management in Patients with Knee Osteoarthritis: A Systematic Review with Metanalysis. Rev. Bras. Ortop. 2020, 55, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Rouzer, C.A.; Marnett, L.J. Cyclooxygenases: Structural and Functional Insights. J. Lipid Res. 2009, 50, S29–S34. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Amin, A.R.; Attur, M.; Patel, R.N.; Thakker, G.D.; Marshall, P.J.; Rediske, J.; Stuchin, S.A.; Patel, I.R.; Abramson, S.B. Superinduction of Cyclooxygenase-2 Activity in Human Osteoarthritis-Affected Cartilage. Influence of Nitric Oxide. J. Clin. Investig. 1997, 99, 1231–1237. [Google Scholar] [CrossRef]
- Li, W.; Hu, S.; Chen, X.; Shi, J. The Antioxidant Resveratrol Protects against Chondrocyte Apoptosis by Regulating the COX-2/NF-ΚB Pathway in Created Temporomandibular Osteoarthritis. Biomed. Res. Int. 2021, 2021, 9978651. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Amagase, K. Roles of Cyclooxygenase, Prostaglandin E2 and EP Receptors in Mucosal Protection and Ulcer Healing in the Gastrointestinal Tract. Curr. Pharm. Des. 2018, 24, 2002–2011. [Google Scholar] [CrossRef] [PubMed]
- Flower, R.J. The Development of COX2 Inhibitors. Nat. Rev. Drug Discov. 2003, 2, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; Yu, Y.; Grosser, T.; FitzGerald, G.A. COX-2, the Dominant Source of Prostacyclin. Proc. Natl. Acad. Sci. USA 2013, 110, E183. [Google Scholar] [CrossRef] [PubMed]
- Morita, I. Distinct Functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat. 2002, 68–69, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Dragani, A.; Pascale, S.; Recchiuti, A.; Mattoscio, D.; Lattanzio, S.; Petrucci, G.; Mucci, L.; Ferrante, E.; Habib, A.; Ranelletti, F.O.; et al. The Contribution of Cyclooxygenase-1 and -2 to Persistent Thromboxane Biosynthesis in Aspirin-Treated Essential Thrombocythemia: Implications for Antiplatelet Therapy. Blood 2010, 115, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Spektor, G.; Fuster, V. Drug Insight: Cyclo-Oxygenase 2 Inhibitors and Cardiovascular Risk—Where Are We Now? Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 290–300. [Google Scholar] [CrossRef]
- Pennick, G.; Robinson-Miller, A.; Cush, I. Topical NSAIDs for Acute Local Pain Relief: In Vitro Characterization of Drug Delivery Profiles into and through Human Skin. Drug Dev. Ind. Pharm. 2021, 47, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Klinge, S.A.; Sawyer, G.A. Effectiveness and Safety of Topical versus Oral Nonsteroidal Anti-Inflammatory Drugs: A Comprehensive Review. Phys. Sportsmed. 2013, 41, 64–74. [Google Scholar] [CrossRef]
- Rannou, F.; Pelletier, J.-P.; Martel-Pelletier, J. Efficacy and Safety of Topical NSAIDs in the Management of Osteoarthritis: Evidence from Real-Life Setting Trials and Surveys. Semin. Arthritis Rheum. 2016, 45, S18–S21. [Google Scholar] [CrossRef]
- Cruz-Topete, D.; Cidlowski, J.A. Glucocorticoids: Molecular Mechanisms of Action. In Immunopharmacology and Inflammation; Springer International Publishing: Cham, Switzerland, 2018; pp. 249–266. [Google Scholar]
- Barnes, P.J. Corticosteroid Effects on Cell Signalling. Eur. Respir. J. 2006, 27, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-Term Systemic Corticosteroid Exposure: A Systematic Literature Review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-X.; Cummins, C.L. Fresh Insights into Glucocorticoid-Induced Diabetes Mellitus and New Therapeutic Directions. Nat. Rev. Endocrinol. 2022, 18, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Grennan, D.; Wang, S. Steroid Side Effects. JAMA 2019, 322, 282. [Google Scholar] [CrossRef]
- Conklin, A.I.; Hong, J. Obesity Prevention in Corticosteroid-treated Patients: Use and Effectiveness of Strategies for Weight Management. Clin. Obes. 2019, 9, e12312. [Google Scholar] [CrossRef] [PubMed]
- Estee, M.M.; Cicuttini, F.M.; Page, M.J.; Butala, A.D.; Wluka, A.E.; Hussain, S.M.; Wang, Y. Efficacy of Corticosteroids for Hand Osteoarthritis—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Musculoskelet. Disord. 2022, 23, 665. [Google Scholar] [CrossRef] [PubMed]
- Wenham, C.Y.J.; Hensor, E.M.A.; Grainger, A.J.; Hodgson, R.; Balamoody, S.; Dore, C.J.; Emery, P.; Conaghan, P.G. A Randomized, Double-Blind, Placebo-Controlled Trial of Low-Dose Oral Prednisolone for Treating Painful Hand Osteoarthritis. Rheumatology 2012, 51, 2286–2294. [Google Scholar] [CrossRef]
- Hollander, J.L. Intra-Articular Hydrocortisone in Arthritis and Allied Conditions; a Summary of Two Years’ Clinical Experience. J. Bone Jt. Surg. Am. 1953, 35, 983–990. [Google Scholar] [CrossRef]
- Miller, J.H.; White, J.; Norton, T.H. The value of intra-articular injections in osteoarthritis of the knee. J. Bone Jt. Surg. Br. 1958, 40, 636–643. [Google Scholar] [CrossRef]
- Kroon, F.P.B.; Rubio, R.; Schoones, J.W.; Kloppenburg, M. Intra-Articular Therapies in the Treatment of Hand Osteoarthritis: A Systematic Literature Review. Drugs Aging 2016, 33, 119–133. [Google Scholar] [CrossRef]
- Parker, E.B.; Hering, K.A.; Chiodo, C.P.; Smith, J.T.; Bluman, E.M.; Martin, E.A. Intraarticular Injections in the Foot and Ankle: Medication Selection Patterns and Perceived Risk Of Chondrotoxicity. Foot Ankle Orthop. 2023, 8, 24730114231216990. [Google Scholar] [CrossRef] [PubMed]
- Metzger, C.M.; Farooq, H.; Merrell, G.A.; Kaplan, F.T.D.; Greenberg, J.A.; Crosby, N.E.; Peck, K.M.; Hoyer, R.W. Efficacy of a Single, Image-Guided Corticosteroid Injection for Glenohumeral Arthritis. J. Shoulder Elb. Surg. 2021, 30, 1128–1134. [Google Scholar] [CrossRef]
- Zhong, H.-M.; Zhao, G.-F.; Lin, T.; Zhang, X.-X.; Li, X.-Y.; Lin, J.-F.; Zhao, S.-Q.; Pan, Z.-J. Intra-Articular Steroid Injection for Patients with Hip Osteoarthritis: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2020, 2020, 6320154. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, T.E.; LaValley, M.P.; Harvey, W.F.; Price, L.L.; Driban, J.B.; Zhang, M.; Ward, R.J. Effect of Intra-Articular Triamcinolone vs Saline on Knee Cartilage Volume and Pain in Patients with Knee Osteoarthritis. JAMA 2017, 317, 1967. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.-P.; Raynauld, J.-P.; Abram, F.; Dorais, M.; Paiement, P.; Martel-Pelletier, J. Intra-Articular Corticosteroid Knee Injection Induces a Reduction in Meniscal Thickness with No Treatment Effect on Cartilage Volume: A Case–Control Study. Sci. Rep. 2020, 10, 13789. [Google Scholar] [CrossRef]
- Guermazi, A.; Neogi, T.; Katz, J.N.; Kwoh, C.K.; Conaghan, P.G.; Felson, D.T.; Roemer, F.W. Intra-Articular Corticosteroid Injections for the Treatment of Hip and Knee Osteoarthritis-Related Pain: Considerations and Controversies with a Focus on Imaging— Radiology Scientific Expert Panel. Radiology 2020, 297, 503–512. [Google Scholar] [CrossRef]
- Aaron, R.K.; Voisinet, A.; Racine, J.; Ali, Y.; Feller, E.R. Corticosteroid-associated Avascular Necrosis: Dose Relationships and Early Diagnosis. Ann. N. Y. Acad. Sci. 2011, 1240, 38–46. [Google Scholar] [CrossRef]
- McCormick, B.P.; Sequeira, S.B.; Hasenauer, M.D.; McKinstry, R.P.; Boucher, H.R. Cushing’s Syndrome Is Associated with Early Medical- and Surgical-Related Complications Following Total Joint Arthroplasty: A National Database Study. J. Arthroplast. 2023, 38, 2568–2572. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Sala, R.; Conaghan, P.G.; Habib, G.; Vo, Q.; Manning, R.; Kivitz, A.; Davis, Y.; Lufkin, J.; Johnson, J.R.; et al. Triamcinolone Acetonide Extended-Release in Patients with Osteoarthritis and Type 2 Diabetes: A Randomized, Phase 2 Study. Rheumatology 2018, 57, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Mader, R.; Lavi, I.; Luboshitzky, R. Evaluation of the Pituitary–Adrenal Axis Function Following Single Intraarticular Injection of Methylprednisolone. Arthritis Rheum. 2005, 52, 924–928. [Google Scholar] [CrossRef]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI Guidelines for the Non-Surgical Management of Knee, Hip, and Polyarticular Osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Pavone, V.; Vescio, A.; Turchetta, M.; Giardina, S.M.C.; Culmone, A.; Testa, G. Injection-Based Management of Osteoarthritis of the Knee: A Systematic Review of Guidelines. Front. Pharmacol. 2021, 12, 661805. [Google Scholar] [CrossRef] [PubMed]
- Bendele, A.M.; Neelagiri, M.; Neelagiri, V.; Sucholeiki, I. Development of a Selective Matrix Metalloproteinase 13 (MMP-13) Inhibitor for the Treatment of Osteoarthritis. Eur. J. Med. Chem. 2021, 224, 113666. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; O’Keefe, H.; DeLorey, J.L.; Israel, D.I.; Messer, J.A.; Chiu, C.H.; Skinner, S.R.; Matico, R.E.; Murray-Thompson, M.F.; Li, F.; et al. Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT). ACS Med. Chem. Lett. 2015, 6, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: Key Enzymes in Osteoarthritis. J. Cell Biochem. 2011, 112, 3507–3514. [Google Scholar] [CrossRef] [PubMed]
- Siebuhr, A.S.; Werkmann, D.; Bay-Jensen, A.-C.; Thudium, C.S.; Karsdal, M.A.; Serruys, B.; Ladel, C.; Michaelis, M.; Lindemann, S. The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo. Int. J. Mol. Sci. 2020, 21, 5992. [Google Scholar] [CrossRef] [PubMed]
- Briat, A.; Jacques, C.; Malige, M.; Sudre, L.; Nourissat, G.; Auzeloux, P.; Guehring, H.; Cachin, F.; Berenbaum, F.; Miot-Noirault, E. 99mTc-NTP 15-5 Is a Companion Radiotracer for Assessing Joint Functional Response to Sprifermin (RhFGF-18) in a Murine Osteoarthritis Model. Sci. Rep. 2022, 12, 8146. [Google Scholar] [CrossRef] [PubMed]
- Ladel, C. SP0089 Pre-Clinical Proof for Dmoad Activity of FGF-18 (Sprifermin). Ann. Rheum. Dis. 2013, 72, A21. [Google Scholar] [CrossRef]
- Moretti, A.; Paoletta, M.; Liguori, S.; Ilardi, W.; Snichelotto, F.; Toro, G.; Gimigliano, F.; Iolascon, G. The Rationale for the Intra-Articular Administration of Clodronate in Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 2693. [Google Scholar] [CrossRef]
- Goldring, M.B. Anticytokine Therapy for Osteoarthritis. Expert. Opin. Biol. Ther. 2001, 1, 817–829. [Google Scholar] [CrossRef]
- Cho, J.; Kim, T.; Park, Y.; Shin, J.; Kang, S.; Lee, B. InvossaTM(Tissuegene-C) in Patients with Osteoarthritis: A Phase III Trial. Osteoarthr. Cartil. 2016, 24, S190. [Google Scholar] [CrossRef]
- Hunter, D.J.; Pike, M.C.; Jonas, B.L.; Kissin, E.; Krop, J.; McAlindon, T. Phase 1 Safety and Tolerability Study of BMP-7 in Symptomatic Knee Osteoarthritis. BMC Musculoskelet. Disord. 2010, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Gasek, N.S.; Kuchel, G.A.; Kirkland, J.L.; Xu, M. Strategies for Targeting Senescent Cells in Human Disease. Nat. Aging 2021, 1, 870–879. [Google Scholar] [CrossRef]
- Yagi, M.; Endo, K.; Komori, K.; Sekiya, I. Comparison of the Effects of Oxidative and Inflammatory Stresses on Rat Chondrocyte Senescence. Sci. Rep. 2023, 13, 7697. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.N.; Fraser, D.G.; Wang, H.; Jaehn, K.; Ogrodnik, M.B.; Weivoda, M.M.; Drake, M.T.; Tchkonia, T.; LeBrasseur, N.K.; Kirkland, J.L.; et al. Identification of Senescent Cells in the Bone Microenvironment. J. Bone Miner. Res. 2016, 31, 1920–1929. [Google Scholar] [CrossRef]
- Sousa-Victor, P.; Gutarra, S.; García-Prat, L.; Rodriguez-Ubreva, J.; Ortet, L.; Ruiz-Bonilla, V.; Jardí, M.; Ballestar, E.; González, S.; Serrano, A.L.; et al. Geriatric Muscle Stem Cells Switch Reversible Quiescence into Senescence. Nature 2014, 506, 316–321. [Google Scholar] [CrossRef]
- Fang, H.; Huang, L.; Welch, I.; Norley, C.; Holdsworth, D.W.; Beier, F.; Cai, D. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis. Sci. Rep. 2018, 8, 2855. [Google Scholar] [CrossRef]
- Cuollo, L.; Antonangeli, F.; Santoni, A.; Soriani, A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology 2020, 9, 485. [Google Scholar] [CrossRef]
- O’Reilly, L.A.; Huang, D.C.; Strasser, A. The Cell Death Inhibitor Bcl-2 and Its Homologues Influence Control of Cell Cycle Entry. EMBO J. 1996, 15, 6979–6990. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, S.; Wang, X.; Zhou, J.; Cao, Y.; Wang, F.; Duan, E. The PI3K-Akt Pathway Inhibits Senescence and Promotes Self-renewal of Human Skin-derived Precursors In Vitro. Aging Cell 2011, 10, 661–674. [Google Scholar] [CrossRef]
- Velletri, T.; Huang, Y.; Wang, Y.; Li, Q.; Hu, M.; Xie, N.; Yang, Q.; Chen, X.; Chen, Q.; Shou, P.; et al. Loss of P53 in Mesenchymal Stem Cells Promotes Alteration of Bone Remodeling through Negative Regulation of Osteoprotegerin. Cell Death Differ. 2021, 28, 156–169. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; et al. Identification of a Novel Senolytic Agent, Navitoclax, Targeting the Bcl-2 Family of Anti-apoptotic Factors. Aging Cell 2016, 15, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Georget, M.; Defois, A.; Guiho, R.; Bon, N.; Allain, S.; Boyer, C.; Halgand, B.; Waast, D.; Grimandi, G.; Fouasson-Chailloux, A.; et al. Development of a DNA Damage-Induced Senescence Model in Osteoarthritic Chondrocytes. Aging 2023, 15, 8576–8593. [Google Scholar] [CrossRef] [PubMed]
- Malaise, O.; Tachikart, Y.; Constantinides, M.; Mumme, M.; Ferreira-Lopez, R.; Noack, S.; Krettek, C.; Noël, D.; Wang, J.; Jorgensen, C.; et al. Mesenchymal Stem Cell Senescence Alleviates Their Intrinsic and Seno-Suppressive Paracrine Properties Contributing to Osteoarthritis Development. Aging 2019, 11, 9128–9146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; He, S.-H.; Liang, X.; Li, W.; Li, T.-F.; Li, D.-F. Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Front. Pharmacol. 2021, 12, 728100. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.; Im, S.-H. Transcriptional Regulation of MMP13 by Lef1 in Chondrocytes. Biochem. Biophys. Res. Commun. 2007, 364, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, H.; Jia, S.; Wang, Q.; Yao, W.; Yang, Y.; Bai, L. Senomorphic Agent Pterostilbene Ameliorates Osteoarthritis through the PI3K/AKT/NF-ΚB Axis: An In Vitro and In Vivo Study. Am. J. Transl. Res. 2022, 14, 5243–5262. [Google Scholar] [PubMed]
- Yang, X.-D.; Corvalan, J.R.F.; Wang, P.; Roy, C.M.-N.; Davis, C.G. Fully Human Anti-Interleukin-8 Monoclonal Antibodies: Potential Therapeutics for the Treatment of Inflammatory Disease States. J. Leukoc. Biol. 1999, 66, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Wiegertjes, R.; van de Loo, F.A.J.; Blaney Davidson, E.N. A Roadmap to Target Interleukin-6 in Osteoarthritis. Rheumatology 2020, 59, 2681–2694. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Liu, W.-X.; Lu, K.; Pan, H.; Wang, T.; Oh, C.; Yi, D.; Huang, J.; Zhao, L.; et al. Metformin Limits Osteoarthritis Development and Progression through Activation of AMPK Signalling. Ann. Rheum. Dis. 2020, 79, 635–645. [Google Scholar] [CrossRef]
- Miller, R.J.; Jung, H.; Bhangoo, S.K.; White, F.A. Cytokine and Chemokine Regulation of Sensory Neuron Function. In Sensory Nerves; Springer: Berlin/Heidelberg, Germany, 2009; pp. 417–449. [Google Scholar]
- Salvador, A.F.; de Lima, K.A.; Kipnis, J. Neuromodulation by the Immune System: A Focus on Cytokines. Nat. Rev. Immunol. 2021, 21, 526–541. [Google Scholar] [CrossRef] [PubMed]
- Julius, D.; Basbaum, A.I. Molecular Mechanisms of Nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, R.; Kenmoku, T.; Uchida, K.; Arendt-Nielsen, L.; Nagura, N.; Nakawaki, M.; Matsumoto, T.; Inoue, G.; Takeuchi, H.; Jimbo, T.; et al. Increased Nerve Growth Factor Expression in the Synovial Tissues of Patients with Rotator Cuff Tears. Mol. Pain. 2021, 17, 174480692110212. [Google Scholar] [CrossRef] [PubMed]
- Dakin, P.; DiMartino, S.J.; Gao, H.; Maloney, J.; Kivitz, A.J.; Schnitzer, T.J.; Stahl, N.; Yancopoulos, G.D.; Geba, G.P. The Efficacy, Tolerability, and Joint Safety of Fasinumab in Osteoarthritis Pain: A Phase IIb/III Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Arthritis Rheumatol. 2019, 71, 1824–1834. [Google Scholar] [CrossRef]
- Sanga, P.; Katz, N.; Polverejan, E.; Wang, S.; Kelly, K.M.; Haeussler, J.; Thipphawong, J. Efficacy, Safety, and Tolerability of Fulranumab, an Anti-Nerve Growth Factor Antibody, in the Treatment of Patients with Moderate to Severe Osteoarthritis Pain. Pain 2013, 154, 1910–1919. [Google Scholar] [CrossRef] [PubMed]
- Nencini, S.; Ringuet, M.; Kim, D.-H.; Chen, Y.-J.; Greenhill, C.; Ivanusic, J.J. Mechanisms of Nerve Growth Factor Signaling in Bone Nociceptors and in an Animal Model of Inflammatory Bone Pain. Mol. Pain. 2017, 13, 174480691769701. [Google Scholar] [CrossRef] [PubMed]
- Oo, W.M.; Hunter, D.J. Disease Modification in Osteoarthritis: Are We There Yet? Clin. Exp. Rheumatol. 2019, 37 (Suppl. S1), 135–140. [Google Scholar] [PubMed]
- Oo, W.M.; Yu, S.P.-C.; Daniel, M.S.; Hunter, D.J. Disease-Modifying Drugs in Osteoarthritis: Current Understanding and Future Therapeutics. Expert. Opin. Emerg. Drugs 2018, 23, 331–347. [Google Scholar] [CrossRef]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front. Vet. Sci. 2019, 6, 192. [Google Scholar] [CrossRef]
- Kogan, G.; Šoltés, L.; Stern, R.; Schiller, J.; Mendichi, R. Hyaluronic Acid: Its Function and Degradation in In Vivo Systems. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2008; pp. 789–882. [Google Scholar]
- Hemmati-Sadeghi, S.; Ringe, J.; Dehne, T.; Haag, R.; Sittinger, M. Hyaluronic Acid Influence on Normal and Osteoarthritic Tissue-Engineered Cartilage. Int. J. Mol. Sci. 2018, 19, 1519. [Google Scholar] [CrossRef]
- Lanza, V.; Greco, V.; Bocchieri, E.; Sciuto, S.; Inturri, R.; Messina, L.; Vaccaro, S.; Bellia, F.; Rizzarelli, E. Synergistic Effect of L-Carnosine and Hyaluronic Acid in Their Covalent Conjugates on the Antioxidant Abilities and the Mutual Defense against Enzymatic Degradation. Antioxidants 2022, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Žádníková, P.; Šínová, R.; Pavlík, V.; Šimek, M.; Šafránková, B.; Hermannová, M.; Nešporová, K.; Velebný, V. The Degradation of Hyaluronan in the Skin. Biomolecules 2022, 12, 251. [Google Scholar] [CrossRef] [PubMed]
- Rayahin, J.E.; Buhrman, J.S.; Zhang, Y.; Koh, T.J.; Gemeinhart, R.A. High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng. 2015, 1, 481–493. [Google Scholar] [CrossRef]
- Hu, L.; Nomura, S.; Sato, Y.; Takagi, K.; Ishii, T.; Honma, Y.; Watanabe, K.; Mizukami, Y.; Muto, J. Anti-Inflammatory Effects of Differential Molecular Weight Hyaluronic Acids on UVB-Induced Calprotectin-Mediated Keratinocyte Inflammation. J. Dermatol. Sci. 2022, 107, 24–31. [Google Scholar] [CrossRef]
- Luan, X.; Cong, Z.; Anastassiades, T.P.; Gao, Y. N-Butyrylated Hyaluronic Acid Achieves Anti-Inflammatory Effects In Vitro and in Adjuvant-Induced Immune Activation in Rats. Molecules 2022, 27, 3267. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S.; Awad, M.E.; Hamrick, M.W.; Hunter, M.; Fulzele, S. Recent Advances in Hyaluronic Acid Based Therapy for Osteoarthritis. Clin. Transl. Med. 2018, 7, e6. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Hsu, Y.; Chen, Y.; Lin, F.; Sadhasivam, S.; Loo, S.; Savitha, S. Anti-inflammatory Effects of Hydrophilic and Lipophilic Statins with Hyaluronic Acid against LPS-induced Inflammation in Porcine Articular Chondrocytes. J. Orthop. Res. 2014, 32, 557–565. [Google Scholar] [CrossRef]
- Lo, G.H.; LaValley, M.; McAlindon, T.; Felson, D.T. Intra-Articular Hyaluronic Acid in Treatment of Knee Osteoarthritis. JAMA 2003, 290, 3115. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, V.; Ciric, M.; Jovanovic, V.; Trandafilovic, M.; Stojanovic, P. Platelet-Rich Fibrin: Basics of Biological Actions and Protocol Modifications. Open Med. 2021, 16, 446–454. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, W.; Mao, W.; Shen, C. Platelet-Rich Plasma Inhibits Adriamycin-Induced Inflammation via Blocking the NF-ΚB Pathway in Articular Chondrocytes. Mol. Med. 2021, 27, 66. [Google Scholar] [CrossRef]
- van Buul, G.M.; Koevoet, W.L.M.; Kops, N.; Bos, P.K.; Verhaar, J.A.N.; Weinans, H.; Bernsen, M.R.; van Osch, G.J.V.M. Platelet-Rich Plasma Releasate Inhibits Inflammatory Processes in Osteoarthritic Chondrocytes. Am. J. Sports Med. 2011, 39, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.; Wang, H.; Yuan, F.; Ding, Y.; Pabelick, C. Platelet-Rich Plasma Combined with Alendronate Reduces Pain and Inflammation in Induced Osteoarthritis in Rats by Inhibiting the Nuclear Factor-Kappa B Signaling Pathway. Biomed. Res. Int. 2020, 2020, 8070295. [Google Scholar] [CrossRef] [PubMed]
- Asjid, R.; Faisal, T.; Qamar, K.; Khan, S.A.; Khalil, A.; Zia, M.S. Platelet-Rich Plasma-Induced Inhibition of Chondrocyte Apoptosis Directly Affects Cartilage Thickness in Osteoarthritis. Cureus 2019, 11, e6050. [Google Scholar] [CrossRef]
- Belk, J.W.; Kraeutler, M.J.; Houck, D.A.; Goodrich, J.A.; Dragoo, J.L.; McCarty, E.C. Platelet-Rich Plasma Versus Hyaluronic Acid for Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Sports Med. 2021, 49, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jin, S.; Yao, Y.; He, S.; He, J. Comparison of Clinical Efficiency between Intra-Articular Injection of Platelet-Rich Plasma and Hyaluronic Acid for Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. Ther. Adv. Musculoskelet. Dis. 2023, 15, 1759720X2311570. [Google Scholar] [CrossRef]
- Karasavvidis, T.; Totlis, T.; Gilat, R.; Cole, B.J. Platelet-Rich Plasma Combined with Hyaluronic Acid Improves Pain and Function Compared with Hyaluronic Acid Alone in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 1277–1287.e1. [Google Scholar] [CrossRef] [PubMed]
- Proffen, B.; Vavken, P.; Dorotka, R. Surgical Management of Osteoarthritis. Wien. Med. Wochenschr. 2013, 163, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Madry, H. Surgical Therapy in Osteoarthritis. Osteoarthr. Cartil. 2022, 30, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Deveza, L.A.; Hunter, D.J.; Wajon, A.; Bennell, K.L.; Vicenzino, B.; Hodges, P.; Eyles, J.P.; Jongs, R.; Riordan, E.A.; Duong, V.; et al. Efficacy of Combined Conservative Therapies on Clinical Outcomes in Patients with Thumb Base Osteoarthritis: Protocol for a Randomised, Controlled Trial (COMBO). BMJ Open 2017, 7, e014498. [Google Scholar] [CrossRef]
- Kerzner, B.; Fortier, L.M.; Swindell, H.W.; McCormick, J.R.; Kasson, L.B.; Hevesi, M.; LaPrade, R.F.; Mandelbaum, B.R.; Chahla, J. An Update on the Use of Orthobiologics Combined with Corrective Osteotomies for Osteoarthritis: Osteotomy Site and Intra-Articular Efficacy. Oper. Tech. Sports Med. 2022, 30, 150933. [Google Scholar] [CrossRef]
- Sabzevari, S.; Ebrahimpour, A.; Roudi, M.K.; Kachooei, A.R. High Tibial Osteotomy: A Systematic Review and Current Concept. Arch. Bone Jt. Surg. 2016, 4, 204–212. [Google Scholar] [PubMed]
- Peng, H.; Ou, A.; Huang, X.; Wang, C.; Wang, L.; Yu, T.; Zhang, Y.; Zhang, Y. Osteotomy Around the Knee: The Surgical Treatment of Osteoarthritis. Orthop. Surg. 2021, 13, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Komura, S.; Hirakawa, A.; Hirose, H.; Akiyama, H. Minimally Invasive Arthroscopy-Assisted Arthrodesis for Thumb Carpometacarpal Osteoarthritis. Arch. Orthop. Trauma. Surg. 2023, 144, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Pérez, M.; Valderrabano, V.; Godoy-Santos, A.L.; de César Netto, C.; González-Martín, D.; Tejero, S. Ankle Osteoarthritis: Comprehensive Review and Treatment Algorithm Proposal. EFORT Open Rev. 2022, 7, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Brumat, P.; Kunšič, O.; Novak, S.; Slokar, U.; Pšenica, J.; Topolovec, M.; Mihalič, R.; Trebše, R. The Surgical Treatment of Osteoarthritis. Life 2022, 12, 982. [Google Scholar] [CrossRef] [PubMed]
- Briggs, K.K.; Bolia, I.K. Hip Arthroscopy: An Evidence-Based Approach. Lancet 2018, 391, 2189–2190. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-M.; Kim, S.-H.; Ha, S.-K.; Kim, S.-D.; Lim, D.-J.; Cha, J.; Kim, B.-J. Paraspinal Muscle Changes after Single-Level Posterior Lumbar Fusion: Volumetric Analyses and Literature Review. BMC Musculoskelet. Disord. 2020, 21, 73. [Google Scholar] [CrossRef]
- Okuda, S.; Yamashita, T.; Matsumoto, T.; Nagamoto, Y.; Sugiura, T.; Takahashi, Y.; Maeno, T.; Iwasaki, M. Adjacent Segment Disease After Posterior Lumbar Interbody Fusion: A Case Series of 1000 Patients. Glob. Spine J. 2018, 8, 722–727. [Google Scholar] [CrossRef]
- Martinez-Catalan, N.; Sanchez-Sotelo, J. Primary Elbow Osteoarthritis: Evaluation and Management. J. Clin. Orthop. Trauma. 2021, 19, 67–74. [Google Scholar] [CrossRef]
- Zhu, S.L.; Chin, B.; Sarraj, M.; Wang, E.; Dunn, E.E.; McRae, M.C. Denervation as a Treatment for Arthritis of the Hands: A Systematic Review of the Current Literature. HAND 2023, 18, 183–191. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, S.J.; Kim, S.A.; Ju, G. Past, Present, and Future of Cartilage Restoration: From Localized Defect to Arthritis. Knee Surg. Relat. Res. 2022, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Tischer, T.; Paul, J.; Pape, D.; Hirschmann, M.T.; Imhoff, A.B.; Hinterwimmer, S.; Feucht, M.J. The Impact of Osseous Malalignment and Realignment Procedures in Knee Ligament Surgery: A Systematic Review of the Clinical Evidence. Orthop. J. Sports Med. 2017, 5, 232596711769728. [Google Scholar] [CrossRef] [PubMed]
- Rönn, K.; Reischl, N.; Gautier, E.; Jacobi, M. Current Surgical Treatment of Knee Osteoarthritis. Arthritis 2011, 2011, 454873. [Google Scholar] [CrossRef] [PubMed]
- Charnley, J. Anchorage Of The Femoral Head Prosthesis To The Shaft Of The Femur. J. Bone Jt. Surg. Br. 1960, 42, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Charnley, J. Arthroplasty Of The Hip: A New Operation. Lancet 1961, 277, 1129–1132. [Google Scholar] [CrossRef]
- Katz, J.N.; Earp, B.E.; Gomoll, A.H. Surgical Management of Osteoarthritis. Arthritis Care Res. 2010, 62, 1220–1228. [Google Scholar] [CrossRef]
- van Adrichem, R.A.; Nelissen, R.G.H.H.; Schipper, I.B.; Rosendaal, F.R.; Cannegieter, S.C. Risk of Venous Thrombosis after Arthroscopy of the Knee: Results from a Large Population-based Case–Control Study. J. Thromb. Haemost. 2015, 13, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Chavalparit, P.; Chuaychoosakoon, C.; Parinyakhup, W.; Boonriong, T. Deep Vein Thrombosis Following Arthroscopic Meniscal Root Repair: A Case Report. Int. J. Surg. Case Rep. 2021, 85, 106193. [Google Scholar] [CrossRef]
- Papavasiliou, A.V.; Bardakos, N.V. Complications of Arthroscopic Surgery of the Hip. Bone Jt. Res. 2012, 1, 131–144. [Google Scholar] [CrossRef]
- Friberger Pajalic, K.; Turkiewicz, A.; Englund, M. Update on the Risks of Complications after Knee Arthroscopy. BMC Musculoskelet. Disord. 2018, 19, 179. [Google Scholar] [CrossRef]
- Shin, J.J.; Popchak, A.J.; Musahl, V.; Irrgang, J.J.; Lin, A. Complications After Arthroscopic Shoulder Surgery: A Review of the American Board of Orthopaedic Surgery Database. JAAOS Glob. Res. Rev. 2018, 2, e093. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Gallo, J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, J.; Chen, F.; Chen, M. Worldwide Trends of Research on Periprosthetic Osteolysis: A Bibliometric Study Based on VOSviewer. Indian J. Orthop. 2021, 55, 1326–1334. [Google Scholar] [CrossRef]
- Evans, J.T.; Walker, R.W.; Evans, J.P.; Blom, A.W.; Sayers, A.; Whitehouse, M.R. How Long Does a Knee Replacement Last? A Systematic Review and Meta-Analysis of Case Series and National Registry Reports with More than 15 Years of Follow-Up. Lancet 2019, 393, 655–663. [Google Scholar] [CrossRef]
- Jones, M.D.; Buckle, C.L. How Does Aseptic Loosening Occur and How Can We Prevent It? Orthop. Trauma. 2020, 34, 146–152. [Google Scholar] [CrossRef]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why Are Total Knee Arthroplasties Failing Today—Has Anything Changed After 10 Years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, A.; Kamath, A.F. Aseptic Loosening—A US Perspective. In Essentials of Cemented Knee Arthroplasty; Springer: Berlin/Heidelberg, Germany, 2022; pp. 587–601. [Google Scholar]
- Feng, X.; Gu, J.; Zhou, Y. Primary Total Hip Arthroplasty Failure: Aseptic Loosening Remains the Most Common Cause of Revision. Am. J. Transl. Res. 2022, 14, 7080–7089. [Google Scholar] [PubMed]
- Sheth, N.P.; Rozell, J.C.; Paprosky, W.G. Evaluation and Treatment of Patients with Acetabular Osteolysis After Total Hip Arthroplasty. J. Am. Acad. Orthop. Surg. 2019, 27, e258–e267. [Google Scholar] [CrossRef]
- Kulkarni, P.G.; Paudel, N.; Magar, S.; Santilli, M.F.; Kashyap, S.; Baranwal, A.K.; Zamboni, P.; Vasavada, P.; Katiyar, A.; Singh, A.V. Overcoming Challenges and Innovations in Orthopedic Prosthesis Design: An Interdisciplinary Perspective. Biomed. Mater. Devices 2023, 2, 58–69. [Google Scholar] [CrossRef]
- Shah, R.; Gashi, B.; Hoque, S.; Marian, M.; Rosenkranz, A. Enhancing Mechanical and Biomedical Properties of Protheses—Surface and Material Design. Surf. Interfaces 2021, 27, 101498. [Google Scholar] [CrossRef]
- Neogi, T.; Li, S.; Peloquin, C.; Misra, D.; Zhang, Y. Effect of Bisphosphonates on Knee Replacement Surgery. Ann. Rheum. Dis. 2018, 77, 92–97. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.L.; Lemme, N.J.; Testa, E.J.; Aaron, R.; Hartnett, D.A.; Cohen, E.M. Bisphosphonates in Total Joint Arthroplasty: A Review of Their Use and Complications. Arthroplast. Today 2022, 14, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-N.; Wang, X.; Yang, M.; Chen, Y.-R.; Zhang, J.-Y.; Deng, R.-H.; Zhang, Z.-N.; Yu, J.-K.; Yuan, F.-Z. Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair. Front. Bioeng. Biotechnol. 2022, 9, 812383. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhou, Q.; Zhang, M.; Li, T.; Chen, H.; Xu, C.; Feng, Q.; Wang, X.; Yin, F.; Cheng, Y.; et al. Bioceramic Scaffolds with Antioxidative Functions for ROS Scavenging and Osteochondral Regeneration. Adv. Sci. 2022, 9, 2105727. [Google Scholar] [CrossRef] [PubMed]
- Donate, R.; Tamaddon, M.; Ribeiro, V.; Monzón, M.; Oliveira, J.M.; Liu, C. Translation through Collaboration: Practice Applied in BAMOS Project in In Vivo Testing of Innovative Osteochondral Scaffolds. Biomater. Transl. 2022, 3, 102–104. [Google Scholar] [PubMed]
- van Walsem, A.; Pandhi, S.; Nixon, R.M.; Guyot, P.; Karabis, A.; Moore, R.A. Relative Benefit-Risk Comparing Diclofenac to Other Traditional Non-Steroidal Anti-Inflammatory Drugs and Cyclooxygenase-2 Inhibitors in Patients with Osteoarthritis or Rheumatoid Arthritis: A Network Meta-Analysis. Arthritis Res. Ther. 2015, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; et al. Vascular and Upper Gastrointestinal Effects of Non-Steroidal Anti-Inflammatory Drugs: Meta-Analyses of Individual Participant Data from Randomised Trials. Lancet 2013, 382, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Donnan, P.T.; Bell, S.; Guthrie, B. Non-Steroidal Anti-Inflammatory Drug Induced Acute Kidney Injury in the Community Dwelling General Population and People with Chronic Kidney Disease: Systematic Review and Meta-Analysis. BMC Nephrol. 2017, 18, 256. [Google Scholar] [CrossRef]
- Curtis, E.; Fuggle, N.; Shaw, S.; Spooner, L.; Ntani, G.; Parsons, C.; Corp, N.; Honvo, G.; Baird, J.; Maggi, S.; et al. Safety of Cyclooxygenase-2 Inhibitors in Osteoarthritis: Outcomes of a Systematic Review and Meta-Analysis. Drugs Aging 2019, 36, 25–44. [Google Scholar] [CrossRef]
- Lanas, A.; Tornero, J.; Zamorano, J.L. Assessment of Gastrointestinal and Cardiovascular Risk in Patients with Osteoarthritis Who Require NSAIDs: The LOGICA Study. Ann. Rheum. Dis. 2010, 69, 1453–1458. [Google Scholar] [CrossRef]
- Bally, M.; Dendukuri, N.; Rich, B.; Nadeau, L.; Helin-Salmivaara, A.; Garbe, E.; Brophy, J.M. Risk of Acute Myocardial Infarction with NSAIDs in Real World Use: Bayesian Meta-Analysis of Individual Patient Data. BMJ 2017, 357, 1909. [Google Scholar] [CrossRef] [PubMed]
- Ungprasert, P.; Cheungpasitporn, W.; Crowson, C.S.; Matteson, E.L. Individual Non-Steroidal Anti-Inflammatory Drugs and Risk of Acute Kidney Injury: A Systematic Review and Meta-Analysis of Observational Studies. Eur. J. Intern. Med. 2015, 26, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.F.S.; Martins, J.T.; Duarte, C.M.M.; Vicente, A.A.; Pinheiro, A.C. Advances in Nutraceutical Delivery Systems: From Formulation Design for Bioavailability Enhancement to Efficacy and Safety Evaluation. Trends Food Sci. Technol. 2018, 78, 270–291. [Google Scholar] [CrossRef]
- Wang, Z.; Jones, G.; Blizzard, L.; Aitken, D.; Zhou, Z.; Wang, M.; Balogun, S.; Cicuttini, F.; Antony, B. Prevalence and Correlates of the Use of Complementary and Alternative Medicines among Older Adults with Joint Pain. Int. J. Rheum. Dis. 2023, 26, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, D.; Dolatkhah, N.; Bakhtiari, F.; Eslamian, F.; Hashemian, M. Nutraceutical Supplements in Management of Pain and Disability in Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Sci. Rep. 2020, 10, 20892. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Piccolella, S.; Nocera, P.; Tranquillo, E.; Dal Poggetto, F.; Catauro, M. New Insights into Phenol and Polyphenol Composition of Stevia Rebaudiana Leaves. J. Pharm. Biomed. Anal. 2019, 163, 45–57. [Google Scholar] [CrossRef]
- Sandoval-Acuña, C.; Ferreira, J.; Speisky, H. Polyphenols and Mitochondria: An Update on Their Increasingly Emerging ROS-Scavenging Independent Actions. Arch. Biochem. Biophys. 2014, 559, 75–90. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Castilho, P.C.M.F.; Gomila, A.S.; D’Onofrio, G.; Filosa, R.; Wang, F.; Nabavi, S.M.; Daglia, M.; Silva, A.S.; et al. Targeting NF-ΚB Signaling Pathway in Cancer by Dietary Polyphenols. Crit. Rev. Food Sci. Nutr. 2020, 60, 2790–2800. [Google Scholar] [CrossRef]
- Sharma, S.; Sahu, D.; Das, H.R.; Sharma, D. Amelioration of Collagen-Induced Arthritis by Salix Nigra Bark Extract via Suppression of pro-Inflammatory Cytokines and Oxidative Stress. Food Chem. Toxicol. 2011, 49, 3395–3406. [Google Scholar] [CrossRef]
- Blain, E.J.; Ali, A.Y.; Duance, V.C. Boswellia Frereana (Frankincense) Suppresses Cytokine-Induced Matrix Metalloproteinase Expression and Production of pro-Inflammatory Molecules in Articular Cartilage. Phytother. Res. 2010, 24, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Mülek, M.; Seefried, L.; Genest, F.; Högger, P. Distribution of Constituents and Metabolites of Maritime Pine Bark Extract (Pycnogenol®) into Serum, Blood Cells, and Synovial Fluid of Patients with Severe Osteoarthritis: A Randomized Controlled Trial. Nutrients 2017, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Clutterbuck, A.L.; Allaway, D.; Lodwig, E.M.; Harris, P.; Mathy-Hartert, M.; Shakibaei, M.; Mobasheri, A. Biological Actions of Curcumin on Articular Chondrocytes. Osteoarthr. Cartil. 2010, 18, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Kuptniratsaikul, V.; Dajpratham, P.; Taechaarpornkul, W.; Buntragulpoontawee, M.; Lukkanapichonchut, P.; Chootip, C.; Saengsuwan, J.; Tantayakom, K.; Laongpech, S. Efficacy and Safety of Curcuma domestica Extracts Compared with Ibuprofen in Patients with Knee Osteoarthritis: A Multicenter Study. Clin. Interv. Aging 2014, 9, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Malaise, M.; Wittoek, R.; de Vlam, K.; Brasseur, J.-P.; Luyten, F.P.; Jiangang, Q.; Van den Berghe, M.; Uhoda, R.; Bentin, J.; et al. Bio-Optimized Curcuma Longa Extract Is Efficient on Knee Osteoarthritis Pain: A Double-Blind Multicenter Randomized Placebo Controlled Three-Arm Study. Arthritis Res. Ther. 2019, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Gharbi, M.; Dierckxsens, Y.; Priem, F.; Marty, M.; Seidel, L.; Albert, A.; Heuse, E.; Bonnet, V.; Castermans, C. Decrease of a Specific Biomarker of Collagen Degradation in Osteoarthritis, Coll2-1, by Treatment with Highly Bioavailable Curcumin during an Exploratory Clinical Trial. BMC Complement. Altern. Med. 2014, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. J. Am. Coll. Nutr. 2017, 36, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Liczbiński, P.; Michałowicz, J.; Bukowska, B. Molecular Mechanism of Curcumin Action in Signaling Pathways: Review of the Latest Research. Phytother. Res. 2020, 34, 1992–2005. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From Ancient Medicine to Current Clinical Trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef]
- Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; et al. Curcumin Nanoformulation for Cervical Cancer Treatment. Sci. Rep. 2016, 6, 20051. [Google Scholar] [CrossRef]
- Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin Inhibits Proliferation and Promotes Apoptosis of Breast Cancer Cells. Exp. Ther. Med. 2018, 16, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.J.; Patel, V.; Sadikot, R.T. Curcumin and Lung Cancer—A Review. Target. Oncol. 2014, 9, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Liu, X.E.; Huang, D.S. Curcumin Reverses the Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells by Inhibiting the Hedgehog Signaling Pathway. Oncol. Rep. 2013, 29, 2401–2407. [Google Scholar] [CrossRef]
- Clutterbuck, A.L.; Mobasheri, A.; Shakibaei, M.; Allaway, D.; Harris, P. Interleukin-1β–Induced Extracellular Matrix Degradation and Glycosaminoglycan Release Is Inhibited by Curcumin in an Explant Model of Cartilage Inflammation. Ann. N. Y. Acad. Sci. 2009, 1171, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Csaki, C.; Mobasheri, A.; Shakibaei, M. Synergistic Chondroprotective Effects of Curcumin and Resveratrol in Human Articular Chondrocytes: Inhibition of IL-1β-Induced NF-ΚB-Mediated Inflammation and Apoptosis. Arthritis Res. Ther. 2009, 11, R165. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Mobasheri, A.; Matis, U.; Shakibaei, M. Curcumin Mediated Suppression of Nuclear Factor-ΚB Promotes Chondrogenic Differentiation of Mesenchymal Stem Cells in a High-Density Co-Culture Microenvironment. Arthritis Res. Ther. 2010, 12, R127. [Google Scholar] [CrossRef] [PubMed]
- Shakibaei, M.; Schulze-Tanzil, G.; John, T.; Mobasheri, A. Curcumin Protects Human Chondrocytes from IL-L1beta-Induced Inhibition of Collagen Type II and Beta1-Integrin Expression and Activation of Caspase-3: An Immunomorphological Study. Ann. Anat. 2005, 187, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Kloesch, B.; Becker, T.; Dietersdorfer, E.; Kiener, H.; Steiner, G. Anti-Inflammatory and Apoptotic Effects of the Polyphenol Curcumin on Human Fibroblast-like Synoviocytes. Int. Immunopharmacol. 2013, 15, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Anjomshoa, S.; Namazian, M.; Noorbala, M.R. Is Curcumin a Good Scavenger of Reactive Oxygen Species? A Computational Investigation. Theor. Chem. Acc. 2017, 136, 103. [Google Scholar] [CrossRef]
- Barzegar, A.; Moosavi-Movahedi, A.A. Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Curcumin. PLoS ONE 2011, 6, e26012. [Google Scholar] [CrossRef]
- Chen, B.; He, Q.; Chen, C.; Lin, Y.; Xiao, J.; Pan, Z.; Li, M.; Li, S.; Yang, J.; Wang, F.C.; et al. Combination of Curcumin and Catalase Protects against Chondrocyte Injury and Knee Osteoarthritis Progression by Suppressing Oxidative Stress. Biomed. Pharmacother. 2023, 168, 115751. [Google Scholar] [CrossRef]
- Crivelli, B.; Bari, E.; Perteghella, S.; Catenacci, L.; Sorrenti, M.; Mocchi, M.; Faragò, S.; Tripodo, G.; Prina-Mello, A.; Torre, M.L. Silk Fibroin Nanoparticles for Celecoxib and Curcumin Delivery: ROS-Scavenging and Anti-Inflammatory Activities in an In Vitro Model of Osteoarthritis. Eur. J. Pharm. Biopharm. 2019, 137, 37–45. [Google Scholar] [CrossRef]
- Zhang, Z.; Leong, D.J.; Xu, L.; He, Z.; Wang, A.; Navati, M.; Kim, S.J.; Hirsh, D.M.; Hardin, J.A.; Cobelli, N.J.; et al. Curcumin Slows Osteoarthritis Progression and Relieves Osteoarthritis-Associated Pain Symptoms in a Post-Traumatic Osteoarthritis Mouse Model. Arthritis Res. Ther. 2016, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cao, J.; Yang, E.; Liang, B.; Ding, J.; Liang, J.; Xu, J. Curcumin Improves Age-Related and Surgically Induced Osteoarthritis by Promoting Autophagy in Mice. Biosci. Rep. 2018, 38, 20171691. [Google Scholar] [CrossRef]
- Bannuru, R.R.; Osani, M.C.; Al-Eid, F.; Wang, C. Efficacy of Curcumin and Boswellia for Knee Osteoarthritis: Systematic Review and Meta-Analysis. Semin. Arthritis Rheum. 2018, 48, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and Safety of Curcumin and Its Combination with Boswellic Acid in Osteoarthritis: A Comparative, Randomized, Double-Blind, Placebo-Controlled Study. BMC Complement. Altern. Med. 2018, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Yabas, M.; Orhan, C.; Er, B.; Tuzcu, M.; Durmus, A.S.; Ozercan, I.H.; Sahin, N.; Bhanuse, P.; Morde, A.A.; Padigaru, M.; et al. A Next Generation Formulation of Curcumin Ameliorates Experimentally Induced Osteoarthritis in Rats via Regulation of Inflammatory Mediators. Front. Immunol. 2021, 12, 609629. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Ramírez-Suarez, J.C.; Yada, R.Y. Plant Proteases for Bioactive Peptides Release: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2147–2163. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Aluko, R.E.; Auty, M.A.E.; Hayes, M. Addition of an Enzymatic Hydrolysate of Bovine Globulins to Bread and Determination of Hypotensive Effects in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2016, 64, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Anwar, F.; Saari, N. Production of Defatted Palm Kernel Cake Protein Hydrolysate as a Valuable Source of Natural Antioxidants. Int. J. Mol. Sci. 2012, 13, 8097–8111. [Google Scholar] [CrossRef]
- Memarpoor-Yazdi, M.; Asoodeh, A.; Chamani, J.K. A Novel Antioxidant and Antimicrobial Peptide from Hen Egg White Lysozyme Hydrolysates. J. Funct. Foods 2012, 4, 278–286. [Google Scholar] [CrossRef]
- Gajanan, P.G.; Elavarasan, K.; Shamasundar, B.A. Bioactive and Functional Properties of Protein Hydrolysates from Fish Frame Processing Waste Using Plant Proteases. Environ. Sci. Pollut. Res. 2016, 23, 24901–24911. [Google Scholar] [CrossRef]
- Zhi, N.N.; Zong, K.; Jia, X.Y.; Wang, L.; Liang, J. Effect of High Pressure Processing on Fibrinolytic Activity of Fruit Bromelain In Vivo. J. Food Process Eng. 2019, 42, e13146. [Google Scholar] [CrossRef]
- Muhammad, Z.A.; Ahmad, T. Therapeutic Uses of Pineapple-Extracted Bromelain in Surgical Care—A Review. JPMA J. Pak. Med. Assoc. 2017, 67, 121–125. [Google Scholar] [PubMed]
- Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential Role of Bromelain in Clinical and Therapeutic Applications. Biomed. Rep. 2016, 5, 283. [Google Scholar] [CrossRef] [PubMed]
- Brien, S.; Lewith, G.; Walker, A.; Hicks, S.M.; Middleton, D. Bromelain as a Treatment for Osteoarthritis: A Review of Clinical Studies. Evid.-Based Complement. Altern. Med. 2004, 1, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Brien, S.; Lewith, G.; Walker, A.F.; Middleton, R.; Prescott, P.; Bundy, R. Bromelain as an Adjunctive Treatment for Moderate-to-Severe Osteoarthritis of the Knee: A Randomized Placebo-Controlled Pilot Study. QJM Int. J. Med. 2006, 99, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Kasemsuk, T.; Saengpetch, N.; Sibmooh, N.; Unchern, S. Improved WOMAC Score Following 16-Week Treatment with Bromelain for Knee Osteoarthritis. Clin. Rheumatol. 2016, 35, 2531–2540. [Google Scholar] [CrossRef]
- Conrozier, T.; Mathieu, P.; Bonjean, M.; Marc, J.; Renevier, J.; Balblanc, J. A Complex of Three Natural Anti-Inflammatory Agents Provides Relief of Osteoarthritis Pain. Altern. Ther. Health Med. 2014, 20 (Suppl. S1), 32–37. [Google Scholar]
- Italiano, G.; Raimondo, M.; Giannetti, G.; Gargiulo, A. Benefits of a Food Supplement Containing Boswellia Serrata and Bromelain for Improving the Quality of Life in Patients with Osteoarthritis: A Pilot Study. J. Altern. Complement. Med. 2020, 26, 123–129. [Google Scholar] [CrossRef]
- Jayachandran, S.; Khobre, P. Efficacy of Bromelain along with Trypsin, Rutoside Trihydrate Enzymes and Diclofenac Sodium Combination Therapy for the Treatment of TMJ Osteoarthritis—A Randomised Clinical Trial. J. Clin. Diagn. Res. 2017, 11, ZC09–ZC11. [Google Scholar] [CrossRef] [PubMed]
- Pothacharoen, P.; Chaiwongsa, R.; Chanmee, T.; Insuan, O.; Wongwichai, T.; Janchai, P.; Vaithanomsat, P. Bromelain Extract Exerts Antiarthritic Effects via Chondroprotection and the Suppression of TNF-α–Induced NF-ΚB and MAPK Signaling. Plants 2021, 10, 2273. [Google Scholar] [CrossRef] [PubMed]
- Brochard, S.; Pontin, J.; Bernay, B.; Boumediene, K.; Conrozier, T.; Baugé, C. The Benefit of Combining Curcumin, Bromelain and Harpagophytum to Reduce Inflammation in Osteoarthritic Synovial Cells. BMC Complement. Med. Ther. 2021, 21, 261. [Google Scholar] [CrossRef] [PubMed]
- Quarta, S.; Santarpino, G.; Carluccio, M.A.; Calabriso, N.; Scoditti, E.; Siculella, L.; Damiano, F.; Maffia, M.; Verri, T.; De Caterina, R.; et al. Analysis of the Anti-Inflammatory and Anti-Osteoarthritic Potential of Flonat Fast®, a Combination of Harpagophytum Procumbens DC. Ex Meisn., Boswellia Serrata Roxb., Curcuma Longa L., Bromelain and Escin (Aesculus hippocastanum), Evaluated in In Vitro Mo. Pharmaceuticals 2022, 15, 1263. [Google Scholar] [CrossRef] [PubMed]
- Ammon, H.P.T. Modulation of the Immune System by Boswellia Serrata Extracts and Boswellic Acids. Phytomedicine 2010, 17, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia Serrata: An Overall Assessment of In Vitro, Preclinical, Pharmacokinetic and Clinical Data. Clin. Pharmacokinet. 2011, 50, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, D.; Rancan, S.; Orso, G.; Dall’acqua, S.; Brun, P.; Giron, M.C.; Carrara, M.; Castagliuolo, I.; Ragazzi, E.; Caparrotta, L.; et al. Boswellia Serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage. PLoS ONE 2015, 10, e0125375. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Gupta, V.; Parihar, A.; Gupta, S.; Lüdtke, R.; Safayhi, H.; Ammon, H.P. Effects of Boswellia Serrata Gum Resin in Patients with Bronchial Asthma: Results of a Double-Blind, Placebo-Controlled, 6-Week Clinical Study. Eur. J. Med. Res. 1998, 3, 511–514. [Google Scholar] [PubMed]
- Streffer, J.R.; Bitzer, M.; Schabet, M.; Dichgans, J.; Weller, M. Response of Radiochemotherapy-Associated Cerebral Edema to a Phytotherapeutic Agent, H15. Neurology 2001, 56, 1219–1221. [Google Scholar] [CrossRef]
- Sengupta, K.; Alluri, K.V.; Satish, A.R.; Mishra, S.; Golakoti, T.; Sarma, K.V.S.; Dey, D.; Raychaudhuri, S.P. A Double Blind, Randomized, Placebo Controlled Study of the Efficacy and Safety of 5-Loxin® for Treatment of Osteoarthritis of the Knee. Arthritis Res. Ther. 2008, 10, R85. [Google Scholar] [CrossRef]
- Kimmatkar, N.; Thawani, V.; Hingorani, L.; Khiyani, R. Efficacy and Tolerability of Boswellia Serrata Extract in Treatment of Osteoarthritis of Knee—A Randomized Double Blind Placebo Controlled Trial. Phytomedicine 2003, 10, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Karlapudi, V.; Sunkara, K.B.; Konda, P.R.; Sarma, K.V.; Rokkam, M.P. Efficacy and Safety of Aflapin®, a Novel Boswellia Serrata Extract, in the Treatment of Osteoarthritis of the Knee: A Short-Term 30-Day Randomized, Double-Blind, Placebo-Controlled Clinical Study. J. Am. Nutr. Assoc. 2023, 42, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Majeed, S.; Narayanan, N.K.; Nagabhushanam, K. A Pilot, Randomized, Double-Blind, Placebo-Controlled Trial to Assess the Safety and Efficacy of a Novel Boswellia Serrata Extract in the Management of Osteoarthritis of the Knee. Phytother. Res. 2019, 33, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Khoramjouy, M.; Bayanati, M.; Noori, S.; Faizi, M.; Zarghi, A. Effects of Ziziphus Jujuba Extract Alone and Combined with Boswellia Serrata Extract on Monosodium Iodoacetate Model of Osteoarthritis in Mice. Iran. J. Pharm. Res. 2022, 21, 134338. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.R.; Kim, H.Y.; Choi, H.Y.; Park, K.S.; Choi, H.J.; Roh, S.S. Boswellia Serrata Extract, 5-Loxin®, Prevents Joint Pain and Cartilage Degeneration in a Rat Model of Osteoarthritis through Inhibition of Inflammatory Responses and Restoration of Matrix Homeostasis. Evid.-Based Complement. Altern. Med. 2022, 2022, 3067526. [Google Scholar] [CrossRef]
- Kulkarni, P.D.; Damle, N.D.; Singh, S.; Yadav, K.S.; Ghante, M.R.; Bhaskar, V.H.; Hingorani, L.; Gota, V.S. Double-Blind Trial of Solid Lipid Boswellia Serrata Particles (SLBSP) vs. Standardized Boswellia Serrata Gum Extract (BSE) for Osteoarthritis of Knee. Drug Metab. Pers. Ther. 2020, 35, 20200104. [Google Scholar] [CrossRef]
- Henrotin, Y.; Dierckxsens, Y.; Delisse, G.; Maes, N.; Albert, A. Curcuma Longa and Boswellia Serrata Extract Combination for Hand Osteoarthritis: An Open-Label Pre-Post Trial. Pharm. Biol. 2022, 60, 2295–2299. [Google Scholar] [CrossRef] [PubMed]
- Marefati, N.; Beheshti, F.; Memarpour, S.; Bayat, R.; Naser Shafei, M.; Sadeghnia, H.R.; Ghazavi, H.; Hosseini, M. The Effects of Acetyl-11-Keto-β-Boswellic Acid on Brain Cytokines and Memory Impairment Induced by Lipopolysaccharide in Rats. Cytokine 2020, 131, 155107. [Google Scholar] [CrossRef] [PubMed]
- Siemoneit, U.; Koeberle, A.; Rossi, A.; Dehm, F.; Verhoff, M.; Reckel, S.; Maier, T.J.; Jauch, J.; Northoff, H.; Bernhard, F.; et al. Inhibition of Microsomal Prostaglandin E2 Synthase-1 as a Molecular Basis for the Anti-Inflammatory Actions of Boswellic Acids from Frankincense. Br. J. Pharmacol. 2011, 162, 147–162. [Google Scholar] [CrossRef]
- Tausch, L.; Henkel, A.; Siemoneit, U.; Poeckel, D.; Kather, N.; Franke, L.; Hofmann, B.; Schneider, G.; Angioni, C.; Geisslinger, G.; et al. Identification of Human Cathepsin G As a Functional Target of Boswellic Acids from the Anti-Inflammatory Remedy Frankincense. J. Immunol. 2009, 183, 3433–3442. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Wu, Y.; Ai, Y.; Lee, D.Y.W.; Dai, R. Comparative Pharmacokinetic Study of Two Boswellic Acids in Normal and Arthritic Rat Plasma after Oral Administration of Boswellia Serrata Extract or Huo Luo Xiao Ling Dan by LC-MS. Biomed. Chromatogr. 2014, 28, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.H.W.; Tran, V.H.; Duke, R.K.; Tan, S.; Chrubasik, S.; Roufogalis, B.D.; Duke, C.C. Harpagoside Suppresses Lipopolysaccharide-Induced INOS and COX-2 Expression through Inhibition of NF-ΚB Activation. J. Ethnopharmacol. 2006, 104, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Tanzil, G.; Hansen, C.; Shakibaei, M. Wirkung Des Extraktes Aus Harpagophytum Procumbens DC Auf Matrix-Metalloproteinasen in Menschlichen Knorpelzellen In Vitro. Arzneimittelforschung 2011, 54, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Ncube, S.F.; McGaw, L.J.; Njoya, E.M.; Ndagurwa, H.G.T.; Mundy, P.J.; Sibanda, S. In Vitro Antioxidant Activity of Crude Extracts of Harpagophytum Zeyheri and Their Anti-Inflammatory and Cytotoxicity Activity Compared with Diclofenac. BMC Complement. Med. Ther. 2021, 21, 238. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Ansari, M.Y.; Haqqi, T.M. Harpagoside Suppresses IL-6 Expression in Primary Human Osteoarthritis Chondrocytes. J. Orthop. Res. 2017, 35, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Leigh, D.; Haqqi, T.M. A Small Molecule Harpagoside Inhibits IL-1beta-Induced Expression of IL-6 by Blocking the Expression of C-FOS in Primary Human Osteoarthritis Chondrocytes. Osteoarthr. Cartil. 2015, 23, A155–A156. [Google Scholar] [CrossRef]
- Mariano, A.; Di Sotto, A.; Leopizzi, M.; Garzoli, S.; Di Maio, V.; Gullì, M.; Vedova, P.D.; Ammendola, S.; D’Abusco, A.S. Antiarthritic Effects of a Root Extract from Harpagophytum Procumbens DC: Novel Insights into the Molecular Mechanisms and Possible Bioactive Phytochemicals. Nutrients 2020, 12, 2545. [Google Scholar] [CrossRef] [PubMed]
- Farpour, H.R.; Rajabi, N.; Ebrahimi, B. The Efficacy of Harpagophytum Procumbens (Teltonal) in Patients with Knee Osteoarthritis: A Randomized Active-Controlled Clinical Trial. Evid. Based Complement. Altern. Med. 2021, 2021, 5596892. [Google Scholar] [CrossRef] [PubMed]
- Żȩgota, Z.; Goździk, J.; Głogowska-Szeląg, J. Prospective, Multicenter Evaluation of a Polyherbal Supplement alongside Standard-of-Care Treatment for Mild Knee Osteoarthritis. Adv. Orthop. 2021, 2021, 5589597. [Google Scholar] [CrossRef]
- Akhtar, N.; Haqqi, T.M. Current Nutraceuticals in the Management of Osteoarthritis: A Review. Ther. Adv. Musculoskelet. Dis. 2012, 4, 181–207. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yuan, M.; Yu, Q.; Fu, F. Anti-Inflammatory and Gastroprotective Effects of Escin. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Wang, B.; Yang, R.; Ju, Q.; Liu, S.; Zhang, Y.; Ma, Y. Clinical Effects of Joint Application of β-Sodium Aescinate and Mannitol in Treating Early Swelling after Upper Limb Trauma Surgery. Exp. Ther. Med. 2016, 12, 3320–3322. [Google Scholar] [CrossRef] [PubMed]
- Idris, S.; Mishra, A.; Khushtar, M. Phytochemical, Ethanomedicinal and Pharmacological Applications of Escin from Aesculus hippocastanum L. Towards Future Medicine. J. Basic. Clin. Physiol. Pharmacol. 2020, 31, 20190115. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.; Li, B.; Xie, J.; Yang, X.; Zhao, K.; Wu, Y.; Ye, Z.; Chen, Z.; Qin, Z.; et al. Escin-Induced DNA Damage Promotes Escin-Induced Apoptosis in Human Colorectal Cancer Cells via P62 Regulation of the ATM/ΓH2AX Pathway. Acta Pharmacol. Sin. 2018, 39, 1645–1660. [Google Scholar] [CrossRef] [PubMed]
- Harikumar, K.B.; Sung, B.; Pandey, M.K.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Escin, a Pentacyclic Triterpene, Chemosensitizes Human Tumor Cells through Inhibition of Nuclear Factor-ΚB Signaling Pathway. Mol. Pharmacol. 2010, 77, 818–827. [Google Scholar] [CrossRef]
- Jiang, N.; Xin, W.; Wang, T.; Zhang, L.; Fan, H.; Du, Y.; Li, C.; Fu, F. Protective Effect of Aescin from the Seeds of Aesculus hippocastanum on Liver Injury Induced by Endotoxin in Mice. Phytomedicine 2011, 18, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Wang, S.J.; Zhou, Y.N.; Pan, S.H.; Sun, B. Escin Augments the Efficacy of Gemcitabine through Down-Regulation of Nuclear Factor-ΚB and Nuclear Factor-ΚB-Regulated Gene Products in Pancreatic Cancer Both In Vitro and In Vivo. J. Cancer Res. Clin. Oncol. 2012, 138, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Borisenko, O.V.; Belen’kiǐ, D.A. Impact of Combined Therapy Using Glucosamine Sulfate and Anti-Inflammatory Agent on Pain Severity in Patients with Osteoarthritis: Prospective, Non-Controlled Postmarketing Study. Klin. Med. 2013, 91, 65–71. [Google Scholar]
- Zeng, X.; Wang, B.; Li, L.; Lei, T.; Liu, H.; Sun, Y. Therapeutic Effect Analysis of Sodium Aescinate Tablets on Knee Osteoarthritis Combined with Synovitis. J. Clin. Nurs. Res. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Hallajzadeh, J.; Rezaeipour, M. Evaluation of the Effect of Polyphenol of Escin Compared with Ibuprofen and Dexamethasone in Synoviocyte Model for Osteoarthritis: An In Vitro Study. Clin. Rheumatol. 2018, 37, 2471–2478. [Google Scholar] [CrossRef]
- Fu, F.; Hou, Y.; Jiang, W.; Wang, R.; Liu, K. Escin: Inhibiting Inflammation and Promoting Gastrointestinal Transit to Attenuate Formation of Postoperative Adhesions. World J. Surg. 2005, 29, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Li, Y.; Yoshikawa, M. Possible Involvement of 5-HT and 5-HT2 Receptors in Acceleration of Gastrointestinal Transit by Escin Ib in Mice. Life Sci. 2000, 66, 2233–2238. [Google Scholar] [CrossRef] [PubMed]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M. Chamomile (Matricaria chamomilla L.): An Overview. Pharmacogn. Rev. 2011, 5, 82. [Google Scholar] [CrossRef]
- Ortiz, M.I.; Fernández-Martínez, E.; Soria-Jasso, L.E.; Lucas-Gómez, I.; Villagómez-Ibarra, R.; González-García, M.P.; Castañeda-Hernández, G.; Salinas-Caballero, M. Isolation, Identification and Molecular Docking as Cyclooxygenase (COX) Inhibitors of the Main Constituents of Matricaria chamomilla L. Extract and Its Synergistic Interaction with Diclofenac on Nociception and Gastric Damage in Rats. Biomed. Pharmacother. 2016, 78, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Gosztola, B.; Sárosi, S.; Németh, E. Variability of the Essential Oil Content and Composition of Chamomile (Matricaria recutita L.) Affected by Weather Conditions. Nat. Prod. Commun. 2010, 5, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Orav, A.; Raal, A.; Arak, E. Content and Composition of the Essential Oil of Chamomilla recutita (L.) Rauschert from Some European Countries. Nat. Prod. Res. 2010, 24, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Ahmed, S.; Rihan, M.; Arora, S.; Khalid, M.; Ahmad, S.; Ahmad, F.; Haque, S.; Vashishth, R. An Updated Comprehensive Review of the Therapeutic Properties of Chamomile (Matricaria chamomilla L.). Int. J. Food Prop. 2024, 27, 133–164. [Google Scholar] [CrossRef]
- Sah, A.; Naseef, P.P.; Kuruniyan, M.S.; Jain, G.K.; Zakir, F.; Aggarwal, G. A Comprehensive Study of Therapeutic Applications of Chamomile. Pharmaceuticals 2022, 15, 1284. [Google Scholar] [CrossRef] [PubMed]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative Analysis of Phenolic Composition of Six Commercially Available Chamomile (Matricaria chamomilla L.) Extracts: Potential Biological Implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef]
- Avonto, C.; Wang, M.; Chittiboyina, A.G.; Avula, B.; Zhao, J.; Khan, I.A. Hydroxylated Bisabolol Oxides: Evidence for Secondary Oxidative Metabolism in Matricaria chamomilla. J. Nat. Prod. 2013, 76, 1848–1853. [Google Scholar] [CrossRef]
- Asgharzade, S.; Rabiei, Z.; Rafieian-Kopaei, M. Effects of Matricaria chamomilla Extract on Motor Coordination Impairment Induced by Scopolamine in Rats. Asian Pac. J. Trop. Biomed. 2015, 5, 829–833. [Google Scholar] [CrossRef]
- Rafraf, M.; Zemestani, M.; Asghari-Jafarabadi, M. Effectiveness of Chamomile Tea on Glycemic Control and Serum Lipid Profile in Patients with Type 2 Diabetes. J. Endocrinol. Invest. 2015, 38, 163–170. [Google Scholar] [CrossRef]
- Bayliak, M.M.; Dmytriv, T.R.; Melnychuk, A.V.; Strilets, N.V.; Storey, K.B.; Lushchak, V.I. Chamomile as a Potential Remedy for Obesity and Metabolic Syndrome. EXCLI J. 2021, 20, 1261–1286. [Google Scholar] [CrossRef] [PubMed]
- Awaad, A.A.; El-Meligy, R.M.; Zain, G.M.; Safhi, A.A.; AL Qurain, N.A.; Almoqren, S.S.; Zain, Y.M.; Sesh Adri, V.D.; Al-Saikhan, F.I. Experimental and Clinical Antihypertensive Activity of Matricaria chamomilla Extracts and Their Angiotensin-converting Enzyme Inhibitory Activity. Phytother. Res. 2018, 32, 1564–1573. [Google Scholar] [CrossRef]
- Chandrashekhar, V.M.; Halagali, K.S.; Nidavani, R.B.; Shalavadi, M.H.; Biradar, B.S.; Biswas, D.; Muchchandi, I.S. Anti-Allergic Activity of German Chamomile (Matricaria recutita L.) in Mast Cell Mediated Allergy Model. J. Ethnopharmacol. 2011, 137, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Saidi, R.; Heidari, H.; Sedehi, M.; Safdarian, B. Evaluating the Effect of Matricaria chamomilla and Melissa Officinalis on Pain Intensity and Satisfaction with Pain Management in Patients after Orthopedic Surgery. J. Herbmed Pharmacol. 2020, 9, 339–345. [Google Scholar] [CrossRef]
- Jabri, M.-A.; Aissani, N.; Tounsi, H.; Sakly, M.; Marzouki, L.; Sebai, H. Protective Effect of Chamomile (Matricaria recutita L.) Decoction Extract against Alcohol-Induced Injury in Rat Gastric Mucosa. Pathophysiology 2017, 24, 1–8. [Google Scholar] [CrossRef]
- Afrigan, L.; Jafari Anarkooli, I.; Sohrabi, D.; Abdanipour, A.; Yazdinezhad, A.; Sayyar, Z.; Ghorbanlou, M.; Arianmanesh, M. The Effect of Hydroethanolic Extract of Matricaria chamomilla on the Reproductive System of Male Rats Exposed to Formaldehyde. Andrologia 2019, 51, e13362. [Google Scholar] [CrossRef]
- Zargaran, A.; Borhani-Haghighi, A.; Faridi, P.; Daneshamouz, S.; Kordafshari, G.; Mohagheghzadeh, A. Potential Effect and Mechanism of Action of Topical Chamomile (Matricaria chammomila L.) Oil on Migraine Headache: A Medical Hypothesis. Med. Hypotheses 2014, 83, 566–569. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Pandey, M.; Gupta, S. Chamomile, a Novel and Selective COX-2 Inhibitor with Anti-Inflammatory Activity. Life Sci. 2009, 85, 663–669. [Google Scholar] [CrossRef]
- Satyal, P.; Shrestha, S.; Setzer, W.N. Composition and Bioactivities of an (E)-β-Farnesene Chemotype of Chamomile (Matricaria chamomilla) Essential Oil from Nepal. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef]
- Sharifi, H.; Minaie, M.B.; Qasemzadeh, M.J.; Ataei, N.; Gharehbeglou, M.; Heydari, M. Topical Use of Matricaria recutita L (Chamomile) Oil in the Treatment of Monosymptomatic Enuresis in Children. J. Evid. Based Complement. Altern. Med. 2017, 22, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Pelissolo, A. Efficacité et Tolérance de l’escitalopram Dans Les Troubles Anxieux : Revue de La Littérature. Encephale 2008, 34, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam, J.D.; Li, Y.; Soeller, I.; Rockwell, K.; Mao, J.J.; Shults, J. A Randomized, Double-Blind, Placebo-Controlled Trial of Oral Matricaria recutita (Chamomile) Extract Therapy for Generalized Anxiety Disorder. J. Clin. Psychopharmacol. 2009, 29, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Miguel, F.G.; Cavalheiro, A.H.; Spinola, N.F.; Ribeiro, D.L.; Barcelos, G.R.M.; Antunes, L.M.G.; Hori, J.I.; Marquele-Oliveira, F.; Rocha, B.A.; Berretta, A.A. Validation of a RP-HPLC-DAD Method for Chamomile (Matricaria recutita) Preparations and Assessment of the Marker, Apigenin-7-Glucoside, Safety and Anti-Inflammatory Effect. Evid. -Based Complement. Altern. Med. 2015, 2015, 828437. [Google Scholar] [CrossRef] [PubMed]
- Mamalis, A.; Nguyen, D.-H.; Brody, N.; Jagdeo, J. The Active Natural Anti-Oxidant Properties of Chamomile, Milk Thistle, and Halophilic Bacterial Components in Human Skin In Vitro. J. Drugs Dermatol. 2013, 12, 780–784. [Google Scholar] [PubMed]
- Drummond, E.M.; Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D.; Gibney, E.R. An In Vivo Study Examining the Antiinflammatory Effects of Chamomile, Meadowsweet, and Willow Bark in a Novel Functional Beverage. J. Diet. Suppl. 2013, 10, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Shoara, R.; Hashempur, M.H.; Ashraf, A.; Salehi, A.; Dehshahri, S.; Habibagahi, Z. Efficacy and Safety of Topical Matricaria chamomilla L. (Chamomile) Oil for Knee Osteoarthritis: A Randomized Controlled Clinical Trial. Complement. Ther. Clin. Pract. 2015, 21, 181–187. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; et al. Therapeutical Properties of Apigenin: A Review on the Experimental Evidence and Basic Mechanisms. Int. J. Food Prop. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Lavanya, J.; Periyar Selvam, S.; Jeevitha Priya, M.; Preethi, J.; Aradana, M. Antioxidant and Antimicrobial Activity of Selected Medicinal Plants against Human Oral Pathogens. Int. J. Pharm. Pharm. Sci. 2016, 8, 71. [Google Scholar] [CrossRef]
- Nikseresht, M.; Kamali, A.; Rahimi, H.; Delaviz, H.; Toori, M.; Kashani, I.; Mahmoudi, R. The Hydroalcoholic Extract of Matricaria chamomilla Suppresses Migration and Invasion of Human Breast Cancer MDA-MB-468 and MCF-7 Cell Lines. Pharmacogn. Res. 2017, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Asadi, Z.; Ghazanfari, T.; Hatami, H. Anti-Inflammatory Effects of Matricaria chamomilla Extracts on BALB/c Mice Macrophages and Lymphocytes. Iran. J. Allergy Asthma Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Son, E.; Kim, S.-H.; Kim, D.-S. Protective Effects of Glycine Soja Leaf and Stem Extract against Chondrocyte Inflammation and Osteoarthritis. Int. J. Mol. Sci. 2023, 24, 4829. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-J.; Li, X.-H.; Zhang, J.-J.; Chen, H.; Zhang, Z.-L.; Yu, G.-D. Natural Introgression from Cultivated Soybean (Glycine Max) into Wild Soybean (Glycine Soja) with the Implications for Origin of Populations of Semi-Wild Type and for Biosafety of Wild Species in China. Genet. Resour. Crop Evol. 2010, 57, 747–761. [Google Scholar] [CrossRef]
- Wen, Z.; Ding, Y.; Zhao, T.; Gai, J. Genetic Diversity and Peculiarity of Annual Wild Soybean (G. Soja Sieb. et Zucc.) from Various Eco-Regions in China. Theor. Appl. Genet. 2009, 119, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Kaga, A.; Tomooka, N.; Yano, H.; Takada, Y.; Kato, S.; Vaughan, D. QTL Affecting Fitness of Hybrids between Wild and Cultivated Soybeans in Experimental Fields. Ecol. Evol. 2013, 3, 2150–2168. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, X.; Yuan, X.; Shi, J.; Zhang, C.; Yan, N.; Jing, C. Comparison of Phenolic and Flavonoid Compound Profiles and Antioxidant and α-Glucosidase Inhibition Properties of Cultivated Soybean (Glycine Max) and Wild Soybean (Glycine Soja). Plants 2021, 10, 813. [Google Scholar] [CrossRef]
- Jing, C.; Wen, Z.; Zou, P.; Yuan, Y.; Jing, W.; Li, Y.; Zhang, C. Consumption of Black Legumes Glycine Soja and Glycine Max Lowers Serum Lipids and Alters the Gut Microbiome Profile in Mice Fed a High-Fat Diet. J. Agric. Food Chem. 2018, 66, 7367–7375. [Google Scholar] [CrossRef]
- Loo, F.A.J.V.D.; Joosten, L.A.B.; Van Lent, P.L.E.M.; Arntz, O.J.; Van Den Berg, W.B. Role of Interleukin-1, Tumor Necrosis Factor α, and Interleukin-6 in Cartilage Proteoglycan Metabolism and Destruction Effect of in Situ Blocking in Murine Antigen- and Zymosan-induced Arthritis. Arthritis Rheum. 1995, 38, 164–172. [Google Scholar] [CrossRef]
- Dinarello, C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef]
- Marcu, K.B.; Otero, M.; Olivotto, E.; Maria Borzi, R.; Goldring, M.B. NF-KappaB Signaling: Multiple Angles to Target OA. Curr. Drug Targets 2010, 11, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical Aspects and Health Benefits of Ginger (Zingiber officinale) in Both Traditional Chinese Medicine and Modern Industry. Acta Agric. Scand. B Soil. Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Govindarajan, V.S.; Connell, D.W. Ginger—Chemistry, Technology, and Quality Evaluation: Part 1. C R C Crit. Rev. Food Sci. Nutr. 1983, 17, 1–96. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Sultan, M.T. Ginger and Its Health Claims: Molecular Aspects. Crit. Rev. Food Sci. Nutr. 2011, 51, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Young, H.-Y.; Luo, Y.-L.; Cheng, H.-Y.; Hsieh, W.-C.; Liao, J.-C.; Peng, W.-H. Analgesic and Anti-Inflammatory Activities of x-Gingerol. J. Ethnopharmacol. 2005, 96, 207–210. [Google Scholar] [CrossRef]
- Tripathi, S.; Maier, K.; Bruch, D.; Kittur, D. Ginger and Its Active Ingredient 6-Gingerol down Regulate pro-Inflammatory Cytokine Release by Macrophages. J. Surg. Res. 2006, 130, 318. [Google Scholar] [CrossRef]
- Al-Shibani, N.; Al-Kattan, R.; Alssum, L.; Allam, E. Effects of Ginger (Zingiber officinale) on Gingival Fibroblasts: An In Vitro Study. Clin. Exp. Dent. Res. 2022, 8, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M.; Al-Qattan, K.K.; Al-Sawan, S.M.; Alnaqeeb, M.A.; Khan, I.; Ali, M. The Use of Ginger (Zingiber officinale Rosc.) as a Potential Anti-Inflammatory and Antithrombotic Agent. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-L.; Hong, K.-J.; Kim, S.W. Effects of Ginger (Zingiber officinale Rosc.) on Decreasing the Production of Inflammatory Mediators in Sow Osteoarthrotic Cartilage Explants. J. Med. Food 2003, 6, 323–328. [Google Scholar] [CrossRef]
- Ballester, P.; Cerdá, B.; Arcusa, R.; Marhuenda, J.; Yamedjeu, K.; Zafrilla, P. Effect of Ginger on Inflammatory Diseases. Molecules 2022, 27, 7223. [Google Scholar] [CrossRef]
- Kim, S.O.; Kundu, J.K.; Shin, Y.K.; Park, J.-H.; Cho, M.-H.; Kim, T.-Y.; Surh, Y.-J. x-Gingerol Inhibits COX-2 Expression by Blocking the Activation of P38 MAP Kinase and NF-ΚB in Phorbol Ester-Stimulated Mouse Skin. Oncogene 2005, 24, 2558–2567. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Hariri, M.; Darvishi, L.; Mofid, M.R. Anti-Oxidative and Anti-Inflammatory Effects of Ginger in Health and Physical Activity: Review of Current Evidence. Int. J. Prev. Med. 2013, 4, S36–S42. [Google Scholar] [PubMed]
- Ippoushi, K.; Azuma, K.; Ito, H.; Horie, H.; Higashio, H. x-Gingerol Inhibits Nitric Oxide Synthesis in Activated J774.1 Mouse Macrophages and Prevents Peroxynitrite-Induced Oxidation and Nitration Reactions. Life Sci. 2003, 73, 3427–3437. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Hsieh, M.; Hsu, P.; Ho, S.; Lai, C.; Wu, H.; Sang, S.; Ho, C. 6-Shogaol Suppressed Lipopolysaccharide-induced Up-expression of INOS and COX-2 in Murine Macrophages. Mol. Nutr. Food Res. 2008, 52, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Naderi, Z.; Mozaffari-Khosravi, H.; Dehghan, A.; Nadjarzadeh, A.; Huseini, H.F. Effect of Ginger Powder Supplementation on Nitric Oxide and C-Reactive Protein in Elderly Knee Osteoarthritis Patients: A 12-Week Double-Blind Randomized Placebo-Controlled Clinical Trial. J. Tradit. Complement. Med. 2016, 6, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Piovezana Bossolani, G.D.; Silva, B.T.; Colombo Martins Perles, J.V.; Lima, M.M.; Vieira Frez, F.C.; Garcia de Souza, S.R.; Sehaber-Sierakowski, C.C.; Bersani-Amado, C.A.; Zanoni, J.N. Rheumatoid Arthritis Induces Enteric Neurodegeneration and Jejunal Inflammation, and Quercetin Promotes Neuroprotective and Anti-Inflammatory Actions. Life Sci. 2019, 238, 116956. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Sudhakaran, P.R.; Helen, A. Quercetin Attenuates Atherosclerotic Inflammation and Adhesion Molecule Expression by Modulating TLR-NF-ΚB Signaling Pathway. Cell Immunol. 2016, 310, 131–140. [Google Scholar] [CrossRef]
- Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin Alleviates Rat Osteoarthritis by Inhibiting Inflammation and Apoptosis of Chondrocytes, Modulating Synovial Macrophages Polarization to M2 Macrophages. Free Radic. Biol. Med. 2019, 145, 146–160. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.; Zhao, D.; Wang, C.; Zhang, Y.; Wang, Y.; Li, T. Therapeutic Effect and Mechanism of Action of Quercetin in a Rat Model of Osteoarthritis. J. Int. Med. Res. 2020, 48, 030006051987346. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin Attenuates Oxidative Stress-induced Apoptosis via SIRT1/AMPK-mediated Inhibition of ER Stress in Rat Chondrocytes and Prevents the Progression of Osteoarthritis in a Rat Model. J. Cell Physiol. 2019, 234, 18192–18205. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Y.; Tang, Y.; Lu, H.; Qi, Y.; Li, G.; He, H.; Lu, F.; Yang, Y.; Sun, H. Quercetin Alleviates Osteoarthritis Progression in Rats by Suppressing Inflammation and Apoptosis via Inhibition of IRAK1/NLRP3 Signaling. J. Inflamm. Res. 2021, 14, 3393–3403. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-P.; Xie, W.-P.; Bi, Y.-F.; Wang, B.-A.; Song, H.-B.; Wang, S.-L.; Bi, R.-X. Quercetin Suppresses Apoptosis of Chondrocytes Induced by IL-1β via Inactivation of P38 MAPK Signaling Pathway. Exp. Ther. Med. 2021, 21, 468. [Google Scholar] [CrossRef] [PubMed]
- Heydari Nasrabadi, M.; Parsivand, M.; Mohammadi, N.; Asghari Moghaddam, N. Comparison of Elaeagnus angustifolia L. Extract and Quercetin on Mouse Model of Knee Osteoarthritis. J. Ayurveda Integr. Med. 2022, 13, 100529. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization WHO Traditional Medicine Strategy World Health Organization. Available online: http://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (accessed on 7 February 2024).
- van Breemen, R.B.; Fong, H.H.S.; Farnsworth, N.R. The Role of Quality Assurance and Standardization in the Safety of Botanical Dietary Supplements. Chem. Res. Toxicol. 2007, 20, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, S.; Anklam, E.; Xu, A.; Ulberth, F.; Li, J.; Li, B.; Hugas, M.; Sarma, N.; Crerar, S.; Swift, S.; et al. Regulatory Landscape of Dietary Supplements and Herbal Medicines from a Global Perspective. Regul. Toxicol. Pharmacol. 2020, 114, 104647. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D. Nutraceuticals and Functional Foods Regulations in the United States and around the World. Toxicology 2006, 221, 1–3. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; World Health Organization, Ed.; WHO Press: Geneva, Switzerland, 2007; ISBN 9789241594448. [Google Scholar]
- Bailey, R.L. Current Regulatory Guidelines and Resources to Support Research of Dietary Supplements in the United States. Crit. Rev. Food Sci. Nutr. 2020, 60, 298–309. [Google Scholar] [CrossRef]
- Helal, N.A.; Eassa, H.A.; Amer, A.M.; Eltokhy, M.A.; Edafiogho, I.; Nounou, M.I. Nutraceuticals’ Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. Recent. Pat. Drug Deliv. Formul. 2019, 13, 105–156. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomed. Pharmacother. 2020, 129, 110452. [Google Scholar] [CrossRef] [PubMed]
- Colletti, A.; Cicero, A.F.G. Nutraceutical Approach to Chronic Osteoarthritis: From Molecular Research to Clinical Evidence. Int. J. Mol. Sci. 2021, 22, 12920. [Google Scholar] [CrossRef] [PubMed]
- D’Adamo, S.; Cetrullo, S.; Panichi, V.; Mariani, E.; Flamigni, F.; Borzì, R.M. Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020, 9, 1232. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Pandey, A.K. Improving Bioavailability of Nutrients Through Nanotechnology. In Sustainable Agriculture Reviews 55; Springer: Cham, Switzerland, 2021; pp. 135–170. [Google Scholar]
- Huang, H.; Lou, Z.; Zheng, S.; Wu, J.; Yao, Q.; Chen, R.; Kou, L.; Chen, D. Intra-Articular Drug Delivery Systems for Osteoarthritis Therapy: Shifting from Sustained Release to Enhancing Penetration into Cartilage. Drug Deliv. 2022, 29, 767–791. [Google Scholar] [CrossRef]
- Patil, P.; Nene, S.; Shah, S.; Singh, S.B.; Srivastava, S. Exploration of Novel Drug Delivery Systems in Topical Management of Osteoarthritis. Drug Deliv. Transl. Res. 2023, 13, 531–546. [Google Scholar] [CrossRef]
- Han, R.; Wu, Y.; Han, Y.; Liu, X.; Liu, H.; Su, J. Engineered Plant Extracellular Vesicles for Autoimmune Diseases Therapy. Nano Res. 2024, 17, 2857–2873. [Google Scholar] [CrossRef]
Grade | KL Scale |
---|---|
0 None | No pathophysiologic involvement of osteoarthritis |
1 Doubtful | Normal joint with only one tiny osteophyte |
2 Minimal | Clear osteophytes at two spots with slight hardening of the bone under the cartilage and possible hollow areas, but normal joint gap and no distortion |
3 Moderate | Moderate osteophytes presence, some bone malformation and shrinking of joint gap |
4 Severe | Large presence of osteophytes and bone end impairment, loss of joint space, densification, and cysts |
Molecule Class | Mechanisms of Action | Clinical Studies | ClinicalTrials.gov Identifier | Status | Outcome | Sponsor/ Collaborators |
---|---|---|---|---|---|---|
Curcumin | ||||||
Diarylheptanoid | Anti-inflammatory effect [243] | The Efficacy and Safety of Curcuma Domestica Extracts and Ibuprofen for Therapy of Patients with Knee Osteoarthritis | NCT00792818 | Phase 3—Completed N = 367 | Pain reduction and functional improvement comparable to ibuprofen but with lesser gastrointestinal side effects [297] | Mahidol University, Salaya, Thailand |
Evaluation of FLEXOFYTOL® Versus PLACEBO (COPRA) | NCT02909621 | Phase 2—Completed N = 150 | Pain reduction when used as adjuvant to paracetamol and/or NSAIDs in comparison to placebo; suitable safety profile and lower Patient Global Assessment of Disease Activity reported in comparison to placebo [298] | Tilman S.A., Baillonville, Belgium | ||
Comparative Study of Turmeric Extract in Patients with Arthrosis | NCT04500210 | Phase 3—Completed N = 120 | - | Kaj Winther Hansen | ||
Evaluation of the Efficacy of a Turmeric Extract (Arantal®) in Patients with Osteoarthritis of the Knee (Gonarthrosis) | NCT00992004 | Phase 2—Completed N = 280 | - | Bioxtract S.A., Gembloux, Belgium | ||
Exploratory Non-Comparative Study to Evaluate the Efficacy of Highly Bioavailable Curcumin (Flexofytol) in Patients with Knee Osteoarthritis | NCT01909037 | Early Phase 1—Completed N = 22 | Chondrogenic effect and inhibition of proinflammatory cytokines, prostanoids, and MMPs released by chondrocytes. Inhibition of TNF-α activity and production both in vitro and in vivo [299] | Tilman S.A., Baillonville, Belgium | ||
Effectiveness of Curcumin-based Food Supplement in Reducing Pain and Inflammatory Component in Osteoarthritis (FENOXI-1900) | NCT04207021 | Not Applicable N = 134 | - | KOS Care SRL—Istituto di Riabilitazione Santo Stefano | ||
Combination of Curcuminoid with Acupressure for Inflammation and Pain in the Elderly with Osteoarthritis Genu | NCT06105840 | Phase 2—Enrolling by invitation N = 70 | - | Gadjah Mada University, Sleman, Indonesia | ||
Randomized Trial of Regenexx Stem Cell Support Formula | NCT04661267 | Not Applicable N = 80 | - | Regenexx LLC, Des Moines, IA, USA | ||
Epigenorm Antivir Combined with Acupuncture for the Treatment of Osteoarthritis Patients Who Are Overweight or Obese | NCT03540186 | Not Applicable N = 15 | - | Epigenorm Antivir Combined with Acupuncture for the Treatment of Osteoarthritis Patients Who Are Overweight or Obese | ||
Bromelain | ||||||
Proteinase-peptidase | Anti-inflammatory, analgesic, anti-edematous, and fibrinolytic effects [244] | Study to Investigate the Mechanism of Action of an Oral Enzyme Treatment with Bromelain, Trypsin and Rutoside Versus Placebo in Subjects with OsTeoarthritis (WobeSmart) | NCT05038410 | Not Applicable N = 40 | - | Mucos Pharma GmbH & Co. KG, Berlin, Germany |
Harpagophytum procumbens (devil’s claw) | ||||||
Mix of phenolic acids and glycosides, triterpenes, phytosterols, iridoid glucosides like harpagoside and various flavonoids | Anti-rheumatic, anti-inflammatory, and analgesic effects [245] | Trial Evaluating Devil’s Claw for the Treatment of Hip and Knee Osteoarthritis | NCT00295490 | Phase 2—Completed N = 67 | - | University of Southampton, UK |
Clinical Efficacy and Safety of Loxacon Dietary Supplement Capsules at Patients with Knee Arthrosis | NCT05925725 | Phase 4—Completed N = 100 | - | Polyclinic of the Hospitaller Brothers of St. John of God, Budapest, Hungary | ||
Boswellia serrata | ||||||
Terpene | Anti-inflammatory effect [246] | Efficacy of Myalgesin™ to Support Joint Function in Patients with Knee Osteoarthritis | NCT00577330 | Phase 3—Not applicable N = 110 | - | ProThera, Inc., Reno, NV, USA |
A Study of the Feasibility of Using the Dietary Supplement “ARTNEO” in Patients with Osteoathritis | NCT05975879 | Not Applicable N = 212 | - | NPO Petrovax, Moscow, Russia | ||
Clinical Efficacy and Safety of Loxacon Dietary Supplement Capsules at Patients with Knee Arthrosis | NCT05925725 | Phase 4—Completed N = 100 | - | Polyclinic of the Hospitaller Brothers of St. John of God, Budapest, Hungary | ||
A Study to Assess Efficacy of Supporting Properties and Safety of ARTNEO in Patients with Knee Osteoarthritis | NCT06032442 | Not Applicable N = 70 | - | NPO Petrovax, Moscow, Russia | ||
Management of Joint Pain Associated with Osteoarthritis of the Knee with Association of Plant Extracts | NCT02977936 | Not Applicable N = 126 | - | PiLeJe, Paris, France | ||
To Assess the Lanconone® (E-OA-07) Efficacy in Physical Activity-related Pain-LEAP Study (LEAP) | NCT03262805 | Not Applicable N = 73 | - | Vedic Lifesciences Pvt. Ltd., Mumbai, India | ||
Effects of Glucosamine and Chondroitin Supplementation in Women with Knee Osteoarthritis Participating in an Exercise and Weight Loss Program | NCT01271218 | Phase 4—Completed N = 36 | - | Texas A&M University, College Station, TX, USA | ||
Quercetin | ||||||
Flavonoid | Antioxidant [300] | Effect of Natural Senolytic Agents & NLRP3 Inhibitors on Osteoarthritis | NCT05276895 | Not Applicable N = 60 | Ongoing | Assiut University, Assiut, Egypt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, C.; Greco, M.; Munir, A.; Musarò, D.; Quarta, S.; Massaro, M.; Lionetto, M.G.; Maffia, M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr. Issues Mol. Biol. 2024, 46, 4063-4105. https://doi.org/10.3390/cimb46050251
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Current Issues in Molecular Biology. 2024; 46(5):4063-4105. https://doi.org/10.3390/cimb46050251
Chicago/Turabian StyleCoppola, Chiara, Marco Greco, Anas Munir, Debora Musarò, Stefano Quarta, Marika Massaro, Maria Giulia Lionetto, and Michele Maffia. 2024. "Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts" Current Issues in Molecular Biology 46, no. 5: 4063-4105. https://doi.org/10.3390/cimb46050251
APA StyleCoppola, C., Greco, M., Munir, A., Musarò, D., Quarta, S., Massaro, M., Lionetto, M. G., & Maffia, M. (2024). Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Current Issues in Molecular Biology, 46(5), 4063-4105. https://doi.org/10.3390/cimb46050251