Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity
Abstract
:1. Mechanobiology
2. Mechanosensing from the Extracellular Matrix to the Nucleus
2.1. The Extracellular Matrix
2.2. The Cytoskeleton
2.3. Novel Roles for the Intermediate Filament Vimentin
3. Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatohepatitis
4. The Liver and Hepatocytes
5. Mechanobiology in MASLD
6. Adipose Tissue and Adipocytes
7. Mechanobiology in Obesity
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeomans, J.M. Mechanobiology. In Oxford Research Encyclopedia of Physics; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Kim, T.J. Mechanobiology: A New Frontier in Biology. Biology 2021, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Uroz, M.; Bays, J.L.; Chen, C.S. Harnessing Mechanobiology for Tissue Engineering. Dev. Cell 2021, 56, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Mitten, E.K.; Baffy, G. Mechanobiology in the Development and Progression of Nonalcoholic Fatty Liver Disease: An Updated Review. Metab. Target Organ Damage 2023, 3, 2. [Google Scholar] [CrossRef]
- Walma, D.A.C.; Yamada, K.M. The Extracellular Matrix in Development. Development 2020, 147, dev175596. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.M.; Doyle, A.D.; Lu, J. Cell–3D Matrix Interactions: Recent Advances and Opportunities. Trends. Cell Biol. 2022, 32, 883–895. [Google Scholar] [CrossRef]
- Pompili, S.; Latella, G.; Gaudio, E.; Sferra, R.; Vetuschi, A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Front. Med. 2021, 8, 610189. [Google Scholar] [CrossRef]
- Hohmann, T.; Dehghani, F. The Cytoskeleton—A Complex Interacting Meshwork. Cells 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, F.; Peterson, M.; Caldeira Araújo, H.; Lautenschläger, F.; Gad, A. Vimentin Diversity in Health and Disease. Cells 2018, 7, 147. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Cooper-White, J.; Janmey, P.A.; Mooney, D.J.; Shenoy, V.B. Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature 2020, 584, 535–546. [Google Scholar] [CrossRef]
- Paulin, D.; Lilienbaum, A.; Kardjian, S.; Agbulut, O.; Li, Z. Vimentin: Regulation and Pathogenesis. Biochimie 2022, 197, 96–112. [Google Scholar] [CrossRef]
- Murray, M.E.; Mendez, M.G.; Janmey, P.A. Substrate Stiffness Regulates Solubility of Cellular Vimentin. Mol. Biol. Cell 2014, 25, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Franke, W.W.; Hergt, M.; Grund, C. Rearrangement of the Vimentin Cytoskeleton during Adipose Conversion: Formation of an Intermediate Filament Cage around Lipid Globules. Cell 1987, 49, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Lecoutre, S.; Lambert, M.; Drygalski, K.; Dugail, I.; Maqdasy, S.; Hautefeuille, M.; Clément, K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022, 11, 2310. [Google Scholar] [CrossRef] [PubMed]
- Swoger, M.; Gupta, S.; Charrier, E.E.; Bates, M.; Hehnly, H.; Patteson, A.E. Vimentin Intermediate Filaments Mediate Cell Morphology on Viscoelastic Substrates. ACS Appl. Bio Mater. 2022, 5, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Thalla, D.G.; Lautenschläger, F. Extracellular Vimentin: Battle between the Devil and the Angel. Curr. Opin. Cell Biol. 2023, 85, 102265. [Google Scholar] [CrossRef]
- Martinez-Vargas, M.; Cebula, A.; Brubaker, L.S.; Seshadri, N.; Lam, F.W.; Loor, M.; Rosengart, T.K.; Yee, A.; Rumbaut, R.E.; Cruz, M.A. A Novel Interaction between Extracellular Vimentin and Fibrinogen in Fibrin Formation. Thromb. Res. 2023, 221, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Suprewicz, Ł.; Swoger, M.; Gupta, S.; Piktel, E.; Byfield, F.J.; Iwamoto, D.V.; Germann, D.; Reszeć, J.; Marcińczyk, N.; Carroll, R.J.; et al. Extracellular Vimentin as a Target Against SARS-CoV-2 Host Cell Invasion. Small 2022, 18, e2105640. [Google Scholar] [CrossRef] [PubMed]
- Bastounis, E.E.; Yeh, Y.T.; Theriot, J.A. Matrix Stiffness Modulates Infection of Endothelial Cells by Listeria Monocytogenes via Expression of Cell Surface Vimentin. Mol. Biol. Cell 2018, 29, 1571–1589. [Google Scholar] [CrossRef]
- Garg, A.; Barnes, P.F.; Porgador, A.; Roy, S.; Wu, S.; Nanda, J.S.; Griffith, D.E.; Girard, W.M.; Rawal, N.; Shetty, S.; et al. Vimentin Expressed on Mycobacterium Tuberculosis-Infected Human Monocytes Is Involved in Binding to the NKp46 Receptor. J. Immunol. 2006, 177, 6192–6198. [Google Scholar] [CrossRef] [PubMed]
- Carse, S.; Lang, D.; Katz, A.A.; Schäfer, G. Exogenous Vimentin Supplementation Transiently Affects Early Steps during HPV16 Pseudovirus Infection. Viruses 2021, 13, 2471. [Google Scholar] [CrossRef]
- Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to NASH. Transplantation 2019, 103, E1–E13. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Carr, R.M. A New Perspective on NAFLD: Focusing on Lipid Droplets. J. Hepatol. 2022, 76, 934–945. [Google Scholar] [CrossRef]
- Francque, S.M.; Marchesini, G.; Kautz, A.; Walmsley, M.; Dorner, R.; Lazarus, J.V.; Zelber-Sagi, S.; Hallsworth, K.; Busetto, L.; Frühbeck, G.; et al. Non-Alcoholic Fatty Liver Disease: A Patient Guideline. JHEP Rep. 2021, 3, 100322. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; De, A.; Chowdhury, A. Epidemiology of Non-Alcoholic and Alcoholic Fatty Liver Diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, I.; Cho, W.; Oh, G.T.; Park, Y.M. Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Diabetes Metab. J. 2021, 45, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Sahini, N.; Borlak, J. Recent Insights into the Molecular Pathophysiology of Lipid Droplet Formation in Hepatocytes. Prog. Lipid Res. 2014, 54, 86–112. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, J.; Teixeira, J. Cytoskeleton Alterations in Non-Alcoholic Fatty Liver Disease. Metabolism 2022, 128, 155115. [Google Scholar] [CrossRef] [PubMed]
- Chin, L.; Theise, N.D.; Loneker, A.E.; Janmey, P.A.; Wells, R.G. Lipid Droplets Disrupt Mechanosensing in Human Hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, 11–22. [Google Scholar] [CrossRef]
- Schott, M.B.; Weller, S.G.; Schulze, R.J.; Krueger, E.W.; Drizyte-Miller, K.; Casey, C.A.; McNiven, M.A. Lipid Droplet Size Directs Lipolysis and Lipophagy Catabolism in Hepatocytes. J. Cell Biol. 2019, 218, 3320–3335. [Google Scholar] [CrossRef]
- Hoffmann, C.; Djerir, N.E.H.; Danckaert, A.; Fernandes, J.; Roux, P.; Charrueau, C.; Lachagès, A.M.; Charlotte, F.; Brocheriou, I.; Clément, K.; et al. Hepatic Stellate Cell Hypertrophy Is Associated with Metabolic Liver Fibrosis. Sci. Rep. 2020, 10, 3850. [Google Scholar] [CrossRef] [PubMed]
- Ceci, L.; Gaudio, E.; Kennedy, L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. CMGH 2024, 17, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Baldini, F.; Bartolozzi, A.; Ardito, M.; Voci, A.; Portincasa, P.; Vassalli, M.; Vergani, L. Biomechanics of Cultured Hepatic Cells during Different Steatogenic Hits. J. Mech. Behav. Biomed. Mater 2019, 97, 296–305. [Google Scholar] [CrossRef]
- Scavo, M.P.; Negro, R.; Arrè, V.; Depalo, N.; Carrieri, L.; Rizzi, F.; Mastrogiacomo, R.; Serino, G.; Notarnicola, M.; De Nunzio, V.; et al. The Oleic/Palmitic Acid Imbalance in Exosomes Isolated from NAFLD Patients Induces Necroptosis of Liver Cells via the Elongase-6/RIP-1 Pathway. Cell Death Dis. 2023, 14, 635. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, R.; Li, X.; Zhang, W.; Zhan, Y.; Lang, Z.; Tao, Q.; Yu, J.; Yu, S.; Yu, Z.; et al. Circular RNA CVIM Promotes Hepatic Stellate Cell Activation in Liver Fibrosis via MiR-122-5p/MiR-9-5p-Mediated TGF-β Signaling Cascade. Commun. Biol. 2024, 7, 113. [Google Scholar] [CrossRef]
- Pagan, R.; Llobera, M.; Vilaró, S. Epithelial-Mesenchymal Transition in Cultured Neonatal Hepatocytes. Hepatology 1995, 21, 820–831. [Google Scholar]
- Guixé-Muntet, S.; Ortega-Ribera, M.; Wang, C.; Selicean, S.; Andreu, I.; Kechagia, J.Z.; Fondevila, C.; Roca-Cusachs, P.; Dufour, J.F.; Bosch, J.; et al. Nuclear Deformation Mediates Liver Cell Mechanosensing in Cirrhosis. JHEP Rep. 2020, 2, 100145. [Google Scholar] [CrossRef]
- Wang, P.-W.; Wu, T.-H.; Lin, T.-Y.; Chen, M.-H.; Yeh, C.-T.; Pan, T.-L. Characterization of the Roles of Vimentin in Regulating the Proliferation and Migration of HSCs during Hepatic Fibrogenesis. Cells 2019, 8, 1184. [Google Scholar] [CrossRef]
- Mehrzad, R.; Tyszkowski, R. Inflammation and Obesity, Mehrzad, R., Ed.; 1st ed.; Elsevier Inc.: Providence, RI, USA, 2023; Volume 1. [Google Scholar]
- Held, N.M.; Buijink, M.R.; Elfrink, H.L.; Kooijman, S.; Janssens, G.E.; Luyf, A.C.M.; Pras-Raves, M.L.; Vaz, F.M.; Michel, S.; Houtkooper, R.H.; et al. Aging Selectively Dampens Oscillation of Lipid Abundance in White and Brown Adipose Tissue. Sci. Rep. 2021, 11, 5932. [Google Scholar] [CrossRef]
- Weidlich, D.; Honecker, J.; Boehm, C.; Ruschke, S.; Junker, D.; Van, A.T.; Makowski, M.R.; Holzapfel, C.; Claussnitzer, M.; Hauner, H.; et al. Lipid Droplet–Size Mapping in Human Adipose Tissue Using a Clinical 3T System. Magn. Reason. Med. 2021, 86, 1256–1270. [Google Scholar] [CrossRef]
- Lustig, M.; Feng, Q.; Payan, Y.; Gefen, A.; Benayahu, D. Noninvasive Continuous Monitoring of Adipocyte Differentiation: From Macro to Micro Scales. Microsc. Microanal. 2019, 25, 119–128. [Google Scholar] [CrossRef]
- Liu, F.; He, J.; Wang, H.; Zhu, D.; Bi, Y. Adipose Morphology: A Critical Factor in Regulation of Human Metabolic Diseases and Adipose Tissue Dysfunction. Obes. Surg. 2020, 30, 5086–5100. [Google Scholar] [CrossRef] [PubMed]
- Holmer, M.; Hagström, H.; Chen, P.; Danielsson, O.; Aouadi, M.; Rydén, M.; Stål, P. Associations between Subcutaneous Adipocyte Hypertrophy and Nonalcoholic Fatty Liver Disease. Sci. Rep. 2022, 12, 20519. [Google Scholar] [CrossRef] [PubMed]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and Metabolic Health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, T.; Esfahani, A.M.; Safa, B.T.; Kim, E.; Saraswathi, V.; Kim, J.K.; Yang, R.; Lim, J.Y. Rho/ROCK Mechanosensor in Adipocyte Stiffness and Traction Force Generation. Biochem. Biophys. Res. Commun. 2022, 606, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Koliaki, C.; Dalamaga, M.; Liatis, S. Update on the Obesity Epidemic: After the Sudden Rise, Is the Upward Trajectory Beginning to Flatten? Curr. Obes. Rep. 2023, 12, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Di Caprio, N.; Bellas, E. Collagen Stiffness and Architecture Regulate Fibrotic Gene Expression in Engineered Adipose Tissue. Adv. Biosyst. 2020, 4, e1900286. [Google Scholar] [CrossRef] [PubMed]
- Anvari, G.; Bellas, E. Hypoxia Induces Stress Fiber Formation in Adipocytes in the Early Stage of Obesity. Sci. Rep. 2021, 11, 21473. [Google Scholar] [CrossRef]
- Berger, A.J.; Anvari, G.; Bellas, E. Mechanical Memory Impairs Adipose-Derived Stem Cell (ASC) Adipogenic Capacity After Long-Term In Vitro Expansion. Cell Mol. Bioeng. 2021, 14, 397–408. [Google Scholar] [CrossRef]
- Chen, H.j.; Yan, X.y.; Sun, A.; Zhang, L.; Zhang, J.; Yan, Y.e. Adipose Extracellular Matrix Deposition Is an Indicator of Obesity and Metabolic Disorders. J. Nutr. Biochem. 2023, 111, 109159. [Google Scholar] [CrossRef]
- Roh, H.C.; Kumari, M.; Taleb, S.; Tenen, D.; Jacobs, C.; Lyubetskaya, A.; Tsai, L.T.Y.; Rosen, E.D. Adipocytes Fail to Maintain Cellular Identity during Obesity Due to Reduced PPARγ Activity and Elevated TGFβ-SMAD Signaling. Mol. Metab. 2020, 42, 101086. [Google Scholar] [CrossRef] [PubMed]
- Hansson, B.; Morén, B.; Fryklund, C.; Vliex, L.; Wasserstrom, S.; Albinsson, S.; Berger, K.; Stenkula, K.G. Adipose Cell Size Changes Are Associated with a Drastic Actin Remodeling. Sci. Rep. 2019, 9, 12941. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.P.; Shi, Y.; Li, R.; Günther, S.; Ong, Y.T.; Potente, M.; Yuan, Z.; Liu, E.; Offermanns, S. YAP and TAZ Protect against White Adipocyte Cell Death during Obesity. Nat. Commun. 2020, 11, 5455. [Google Scholar] [CrossRef]
- Lorthongpanich, C.; Thumanu, K.; Tangkiettrakul, K.; Jiamvoraphong, N.; Laowtammathron, C.; Damkham, N.; U-Pratya, Y.; Issaragrisil, S. YAP as a Key Regulator of Adipo-Osteogenic Differentiation in Human MSCs. Stem Cell Res. Ther. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Takahashi, N.; Kimura, A.P.; Ohmura, K.; Naito, S.; Yoshida, M.; Ieko, M. Knockdown of Long Noncoding RNA Dreh Facilitates Cell Surface GLUT4 Expression and Glucose Uptake through the Involvement of Vimentin in 3T3-L1 Adipocytes. Gene 2020, 735, 144404. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Kwon, S.; Park, Y.M. Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy. Diabetes Metab. J. 2023, 48, 215–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudolph, E.L.; Chin, L. Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity. Curr. Issues Mol. Biol. 2024, 46, 7134-7146. https://doi.org/10.3390/cimb46070425
Rudolph EL, Chin L. Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity. Current Issues in Molecular Biology. 2024; 46(7):7134-7146. https://doi.org/10.3390/cimb46070425
Chicago/Turabian StyleRudolph, Emily L., and LiKang Chin. 2024. "Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity" Current Issues in Molecular Biology 46, no. 7: 7134-7146. https://doi.org/10.3390/cimb46070425
APA StyleRudolph, E. L., & Chin, L. (2024). Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity. Current Issues in Molecular Biology, 46(7), 7134-7146. https://doi.org/10.3390/cimb46070425