Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue
Abstract
:1. Introduction
2. Sources of H2S and SO2
2.1. Endogenous Generation of H2S and SO2
2.2. H2S and SO2 Donors
3. H2S for the Prevention and Treatment of ALI
3.1. Lipopolysaccharide-Induced ALI
3.2. Gas Inhalation-Induced ALI
3.3. Oleic Acid-Induced ALI
3.4. Other ALI Models
4. SO2 for the Prevention and Treatment of ALI
5. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3-NT | 3-nitrotyrosine |
ASC | Apoptosis-associated speck-like protein containing a CARD |
CCL2 | Chemokine (C-C motif) ligand 2 |
COX-2 | Cyclooxygenase-2 |
CXCL-2 | Chemokine (C-X-C motif) ligand 2 |
CXCR2 | C-X-C motif-chemokine receptor 2 |
eIF2α | Eukaryotic translation initiation factor-2 |
GRP 78 | Glucose-regulated protein 78 |
GSK-3β | Glycogen synthase kinase 3β |
GSSG | Oxidative glutathione |
GST-A4 | Glutathione-s-transferase a4 |
H2O2 | Hydrogen peroxide |
HSP 70 | Heat shock protein 70 |
IFN-γ | Interferon-γ |
Keap1 | Kelch-like ECH-associated protein 1 |
MCP-1 | Macrophage chemoattractant protein-1 |
MEK | Mitogen-activated protein kinase |
mPTP | Mitochondrial permeability transition pore |
NQO1 | NAD(P)H: quinone oxidoreductase |
PARP-1 | Poly (ADP-ribose) polymerase-1 |
PDGFRβ | Platelet-derived growth factor Rβ-chain |
S6K | Ribosomal protein s6 kinase |
SLC7A11 | Solute carrier family 7 member 11 |
SnPP | Tin protoporphyrin |
T-AOC | Total antioxidant capacity |
Trx | Thioredoxin |
VCAM-1 | Vascular cell adhesion molecule-1 |
VEGF | Vascular endothelial growth factor |
VEGFR2 | Vascular endothelial growth factor receptor 2 |
γ-GCS | Gamma glutamylcysteine synthetase |
References
- Bernard, G.R.; Artigas, A.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; LeGall, J.R.; Morris, A.; Spragg, R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 1994, 149, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The berlin definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [PubMed]
- Nanchal, R.S.; Truwit, J.D. Recent advances in understanding and treating acute respiratory distress syndrome. F1000Research 2018, 7, F1000 Faculty Rev-1322. [Google Scholar] [CrossRef] [PubMed]
- Mortelliti, M.P.; Manning, H.L. Acute respiratory distress syndrome. Am. Fam. Physician 2002, 65, 1823–1830. [Google Scholar] [PubMed]
- Saharan, S.; Lodha, R.; Kabra, S.K. Management of acute lung injury/ARDS. Indian J. Pediatr. 2010, 77, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Calfee, C.S.; Janz, D.R.; Bernard, G.R.; May, A.K.; Kangelaris, K.N.; Matthay, M.A.; Ware, L.B. Distinct molecular phenotypes of direct vs indirect ards in single-center and multicenter studies. Chest 2015, 147, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, S.; Park, M.; Turrini, C.; Tunstall, T.; Thwaites, R.; Mauri, T.; Ragazzi, R.; Ruggeri, P.; Hansel, T.T.; Caramori, G.; et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J. Inflamm. 2019, 16, 1. [Google Scholar] [CrossRef]
- Neto, A.S.; Pereira, V.G.; Espósito, D.C.; Damasceno, M.C.; Schultz, M.J. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: A summary of the current evidence from three randomized controlled trials. Ann. Intensive Care 2012, 2, 33. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Mezière, G.A. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: The blue protocol. Chest 2008, 134, 117–125. [Google Scholar] [CrossRef]
- Haberthür, C.; Seeberger, M.D. Acute respiratory distress syndrome and mechanical ventilation: Ups and downs of an ongoing relationship trap. J. Thorac. Dis. 2016, 8, E1608–E1609. [Google Scholar] [CrossRef]
- Zhao, H.; Eguchi, S.; Alam, A.; Ma, D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2017, 312, L155–L162. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qu, Y.; Mao, C.; Zhang, R.; Jiang, D.; Sun, X. Post-translational modifications of keap1: The state of the art. Front. Cell Dev. Biol. 2024, 11, 1332049. [Google Scholar] [CrossRef]
- Kimura, H. Hydrogen sulfide: Its production, release and functions. Amino Acids 2011, 41, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Singer, T.P.; Kearney, E.B. Intermediary metabolism of L-cysteinesulfinic acid in animal tissues. Arch. Biochem. Biophys. 1956, 61, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Lu, M.; Hu, L.F.; Wong, P.T.; Webb, G.D.; Bian, J.S. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid. Redox Signal. 2012, 17, 141–185. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ding, L.; Xie, Z.Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 2019, 31, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat. Commun. 2013, 4, 1366. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Cirino, G.; Szabo, C.; Papapetropoulos, A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol. Rev. 2023, 103, 31–276. [Google Scholar] [CrossRef]
- Renieris, G.; Droggiti, D.E.; Katrini, K.; Koufargyris, P.; Gkavogianni, T.; Karakike, E.; Antonakos, N.; Damoraki, G.; Karageorgos, A.; Sabracos, L.; et al. Host cystathionine-γ lyase derived hydrogen sulfide protects against Pseudomonas aeruginosa sepsis. PLoS. Pathog. 2021, 17, e1009473. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, P.; Yang, G.; Cao, Q.; Wang, R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am. J. Pathol. 2013, 182, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Y.; Rivett, A.; Li, H.; Wu, L.; Wang, R.; Yang, G. Deficiency of cystathionine gamma-lyase promotes aortic elastolysis and medial degeneration in aged mice. J. Mol. Cell. Cardiol. 2022, 171, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Jiang, Y.; Wu, B.Q.; Duan, Y.F.; Sun, Z.D.; Luo, G.H. Cystathionine-gamma-lyase inhibitor attenuates acute lung injury induced by acute pancreatitis in rats. Arch. Med. Sci. 2014, 10, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Morán, J.M.; Ortiz-Ortiz, M.A.; Ruiz-Mesa, L.M.; Fuentes, J.M. Nitric oxide in paraquat-mediated toxicity: A review. J. Biochem. Mol. Toxicol. 2010, 24, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.F.; Ji, C.; Guan, J.; Yu, Y.M.; Song, W. The effect of diallyl sulfide on the lung tissue of rats poisoned by paraquat. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2021, 39, 438–441. [Google Scholar] [PubMed]
- Shapiro, R. Genetic effects of bisulfite (sulfur dioxide). Mutat. Res. 1977, 39, 149–175. [Google Scholar] [CrossRef]
- Mitsuhashi, H.; Yamashita, S.; Ikeuchi, H.; Kuroiwa, T.; Kaneko, Y.; Hiromura, K.; Ueki, K.; Nojima, Y. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock 2005, 24, 529–534. [Google Scholar] [CrossRef]
- Luo, L.; Chen, S.; Jin, H.; Tang, C.; Du, J. Endogenous generation of sulfur dioxide in rat tissues. Biochem. Biophys. Res. Commun. 2011, 415, 61–67. [Google Scholar] [CrossRef]
- Powell, C.R.; Dillon, K.M.; Matson, J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol. 2018, 149, 110–123. [Google Scholar] [CrossRef]
- Zhao, Y.; Pacheco, A.; Xian, M. Medicinal chemistry: Insights into the development of novel H2S donors. Handb. Exp. Pharmacol. 2015, 230, 365–388. [Google Scholar]
- Whiteman, M.; Li, L.; Rose, P.; Tan, C.H.; Parkinson, D.B.; Moore, P.K. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid. Redox Signal. 2010, 12, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Magli, E.; Perissutti, E.; Santagada, V.; Caliendo, G.; Corvino, A.; Esposito, G.; Esposito, G.; Fiorino, F.; Migliaccio, M.; Scognamiglio, A.; et al. H2S donors and their use in medicinal chemistry. Biomolecules 2021, 11, 1899. [Google Scholar] [CrossRef] [PubMed]
- Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr. 2006, 136, 716S–725S. [Google Scholar] [CrossRef] [PubMed]
- Brodnitz, M.H.; Pascale, J.V.; Van Derslice, L. Flavor components of garlic extract. J. Agric. Food Chem. 1971, 19, 273–275. [Google Scholar] [CrossRef]
- De Cicco, P.; Panza, E.; Ercolano, G.; Armogida, C.; Sessa, G.; Pirozzi, G.; Cirino, G.; Wallace, J.L.; Ianaro, A. Atb-346, a novel hydrogen sulfide-releasing anti-inflammatory drug, induces apoptosis of human melanoma cells and inhibits melanoma development in vivo. Pharmacol. Res. 2016, 114, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Rossoni, G.; Hotston, M.; Sparatore, A.; Del Soldato, P.; Tazzari, V.; Persad, R.; Angelini, G.D.; Jeremy, J.Y. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int. 2009, 103, 1522–1529. [Google Scholar] [CrossRef] [PubMed]
- Bigagli, E.; Luceri, C.; De Angioletti, M.; Chegaev, K.; D’Ambrosio, M.; Riganti, C.; Gazzano, E.; Saponara, S.; Longini, M.; Luceri, F.; et al. New no- and H2S-releasing doxorubicins as targeted therapy against chemoresistance in castration-resistant prostate cancer: In vitro and in vivo evaluations. Investig. New Drugs 2018, 36, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, B. So2 donors and prodrugs, and their possible applications: A review. Front. Chem. 2018, 6, 559. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Xu, S.; Lam, T.Y.W.; Liao, W.; Wong, W.S.F.; Ge, R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol. Med. 2022, 28, 72. [Google Scholar] [CrossRef]
- Kolomaznik, M.; Nova, Z.; Calkovska, A. Pulmonary surfactant and bacterial lipopolysaccharide: The interaction and its functional consequences. Physiol. Res. 2017, 66, S147–S157. [Google Scholar] [CrossRef]
- Zhou, X.H.; Huang, X.L.; Wei, P.; Tian, F.J.; Ling, Y.L. Role of hydrogen sulfide/cystathionine-gamma-lyase system in acute lung injury induced by lipopolysaccharide in rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2009, 21, 199–202. [Google Scholar]
- Zhou, X.; Wei, P.; Huang, X.; Ling, Y. Role of endogenous and exogenous hydrogen sulfide in acute lung injury induced by LPS in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2009, 25, 289–294. [Google Scholar] [PubMed]
- Wang, P.; Zhang, J.; Gong, J.; Li, L.; Jin, P.; Ding, C. Effects of hydrogen sulfide on pulmonary surfactant in rats with acute lung injury induced by lipopolysccharide. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2011, 27, 485–489. [Google Scholar] [PubMed]
- Du, Q.; Wang, C.; Zhang, N.; Li, G.; Zhang, M.; Li, L.; Zhang, Q.; Zhang, J. In vivo study of the effects of exogenous hydrogen sulfide on lung mitochondria in acute lung injury in rats. BMC Anesthesiol. 2014, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhang, M.; Li, G.; Wang, C.; Zhang, N.; Zhang, J. Effects of hydrogen sulfide on mitochondria of lung in rats with ali induced by lipopolysaccharide. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2017, 29, 30–33. [Google Scholar] [PubMed]
- Duan, J.; Xiang, L.; Yang, Z.; Chen, L.; Gu, J.; Lu, K.; Ma, D.; Zhao, H.; Yi, B.; Zhao, H.; et al. Methionine restriction prevents lipopolysaccharide-induced acute lung injury via modulating CSE/H2S pathway. Nutrients 2022, 14, 322. [Google Scholar] [CrossRef] [PubMed]
- Faller, S.; Hausler, F.; Goeft, A.; von Itter, M.A.; Gyllenram, V.; Hoetzel, A.; Spassov, S.G. Hydrogen sulfide limits neutrophil transmigration, inflammation, and oxidative burst in lipopolysaccharide-induced acute lung injury. Sci. Rep. 2018, 8, 14676. [Google Scholar] [CrossRef]
- Zimmermann, K.K.; Spassov, S.G.; Strosing, K.M.; Ihle, P.M.; Engelstaedter, H.; Hoetzel, A.; Faller, S. Hydrogen sulfide exerts anti-oxidative and anti-inflammatory effects in acute lung injury. Inflammation 2018, 41, 249–259. [Google Scholar] [CrossRef]
- Zhang, H.X.; Liu, S.J.; Tang, X.L.; Duan, G.L.; Ni, X.; Zhu, X.Y.; Liu, Y.J.; Wang, C.N. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell. Physiol. Biochem. 2016, 40, 1603–1612. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Chen, C.; Guo, Y.; Meng, X.; Kan, C. Allicin attenuates lipopolysaccharide-induced acute lung injury in neonatal rats via the PI3K/Akt pathway. Mol. Med. Rep. 2018, 17, 6777–6783. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, X.; Dong, Z.; Ling, Y. Hydrogen sulfide reduces lipopolysaccharide-induced acute lung injury and inhibits expression of phosphorylated p38 MAPK in rats. Sheng Li Xue Bao 2012, 64, 666–672. [Google Scholar] [PubMed]
- Shen, N.; Cheng, A.; Qiu, M.; Zang, G. Allicin improves lung injury induced by sepsis via regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/nuclear factor kappa b (NF-κB) pathway. Med. Sci. Monit. 2019, 25, 2567–2576. [Google Scholar] [CrossRef]
- Faller, S.; Zimmermann, K.K.; Strosing, K.M.; Engelstaedter, H.; Buerkle, H.; Schmidt, R.; Spassov, S.G.; Hoetzel, A. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Med. Gas Res. 2012, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, H.; Gong, Y.; Zheng, H.; Zhao, D. Hydrogen sulfide ameliorated lipopolysaccharide-induced acute lung injury by inhibiting autophagy through PI3K/AKT/mTOR pathway in mice. Biochem. Biophys. Res. Commun. 2018, 507, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Liu, J.; Yu, Z.; Zhang, Y.; Hu, Z. Effect of diallyl trisulfide on tumor necrosis factor-alpha expression and nuclear factor-KappaB activity in mice with acute lung injury induced by lipopolysaccharide. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2007, 19, 205–208. [Google Scholar]
- Tian, F.; Ling, Y.; Chen, Y.; Wang, Z. Effects of CCK-8 and Cystathionine γ-Lyase/Hydrogen Sulfide System on Acute Lung Injury in Rats. Inflammation 2017, 40, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Zhou, X.H.; Zhou, J.L.; Ding, C.H.; Xian, X.H. Role of polymorphonuclear neutrophil in exogenous hydrogen sulfide attenuating endotoxin-induced acute lung injury. Sheng Li Xue Bao 2009, 61, 356–360. [Google Scholar]
- Huang, X.L.; Ma, H.J.; Zhou, X.H.; Fan, Y.M.; Xian, X.H.; Cao, H. Effect of exogenous hydrogen sulfide on polymorphonuclear neutrophil accumulation in acute lung injury rat induced by lipopolysaccharides and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2010, 26, 477–480. [Google Scholar] [PubMed]
- Jiang, L.; Jiang, Q.; Yang, S.; Huang, S.; Han, X.; Duan, J.; Pan, S.; Zhao, M.; Guo, S. Gyy4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm. Pharmacol. Ther. 2019, 54, 77–86. [Google Scholar] [CrossRef]
- Han, Z.; Jiang, Y.I.; Duan, Y.; Wang, X.; Huang, Y.; Fang, T. Protective effects of hydrogen sulfide inhalation on oxidative stress in rats with cotton smoke inhalation-induced lung injury. Exp. Ther. Med. 2015, 10, 164–168. [Google Scholar] [CrossRef]
- Esechie, A.; Kiss, L.; Olah, G.; Horváth, E.M.; Hawkins, H.; Szabo, C.; Traber, D.L. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin. Sci. 2008, 115, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Esechie, A.; Enkhbaatar, P.; Traber, D.L.; Jonkam, C.; Lange, M.; Hamahata, A.; Djukom, C.; Whorton, E.B.; Hawkins, H.K.; Traber, L.D.; et al. Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. Br. J. Pharmacol. 2009, 158, 1442–1453. [Google Scholar] [CrossRef]
- Liu, W.; Liu, K.; Ma, C.; Yu, J.; Peng, Z.; Huang, G.; Cai, Z.; Li, R.; Xu, W.; Sun, X.; et al. Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model. Undersea Hyperb. Med. 2014, 41, 573–578. [Google Scholar] [PubMed]
- Li, H.; Zhang, Z.; Zhang, Q.; Qin, Z.; He, D.; Chen, J. Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. Eur. J. Appl. Physiol. 2013, 113, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Faller, S.; Spassov, S.G.; Zimmermann, K.K.; Ryter, S.W.; Buerkle, H.; Loop, T.; Schmidt, R.; Strosing, K.M.; Hoetzel, A. Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Curr. Pharm. Des. 2013, 19, 2715–2721. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.C.; Vaporidi, K.; Bloch, K.D.; Ichinose, F.; Zapol, W.M. Protective and Detrimental Effects of Sodium Sulfide and Hydrogen Sulfide in Murine Ventilator-induced Lung Injury. Anesthesiology 2011, 115, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, Z.; Li, T.; Wang, C.; Zhao, B. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury. Chin. Med. J. 2013, 126, 494–499. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Guan, L.; Zhao, B. Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury. World J. Emerg. Med. 2015, 6, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, B.; Wang, C.; Wang, H.; Liu, Z.; Li, W.; Jin, H.; Tang, C.; Du, J. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp. Biol. Med. 2008, 233, 1081–1087. [Google Scholar] [CrossRef]
- Li, M.; Li, T.; Liu, Z.; Guan, L.; Jin, H.; Zhao, B.; Du, J. Effects of hydrogen sulfide on the expressions of nuclear factor-κB and intercellular adhesion molecule 1 in pulmonary tissue of rats with acute lung injury. Zhonghua Yi Xue Za Zhi 2011, 91, 3054–3057. [Google Scholar]
- Wang, C.; Wang, H.; Liu, Z.; Fu, Y.; Zhao, B. Effect of endogenous hydrogen sulfide on oxidative stress in oleic acid-induced acute lung injury in rats. Chin. Med. J. 2011, 124, 3476–3480. [Google Scholar] [PubMed]
- Zhao, G.; Yang, L.; Li, L.; Fan, Z. NaHS Alleviated Cell Apoptosis and Mitochondrial Dysfunction in Remote Lung Tissue after Renal Ischemia and Reperfusion via Nrf2 Activation-Mediated NLRP3 Pathway Inhibition. BioMed Res. Int. 2021, 2021, 5598869. [Google Scholar] [CrossRef]
- Tang, B.; Ma, L.; Yao, X.; Tan, G.; Han, P.; Yu, T.; Liu, B.; Sun, X. Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inflammation and angiopoietin 2 release. J. Vasc. Surg. 2017, 65, 501–508.e1. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.Y.C.; Chen, W.; Li, X.L.; Wang, Y.W.; Xie, X.H. H2S protecting against lung injury following limb ischemia-reperfusion by alleviating inflammation and water transport abnormality in rats. Biomed. Environ. Sci. 2014, 27, 410–418. [Google Scholar] [PubMed]
- Li, J.; Ma, J.; Li, M.; Tao, J.; Chen, J.; Yao, C.; Yao, S. GYY4137 alleviates sepsis-induced acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway. Life Sci. 2021, 271, 119192. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, S.; Liu, Z.; Tang, C.; Zhao, B.; Du, J.; Jin, H. Endogeous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats. Lab. Investig. 2015, 95, 142–156. [Google Scholar] [CrossRef]
- Sidhapuriwala, J.N.; Ng, S.W.; Bhatia, M. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis. J. Inflamm. 2009, 6, 35. [Google Scholar] [CrossRef]
- Li, J.; Li, M.; Li, L.; Ma, J.; Yao, C.; Yao, S. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury. Mol. Immunol. 2022, 141, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Gröger, M.; Hogg, M.; Abdelsalam, E.; Kress, S.; Hoffmann, A.; Stahl, B.; Saub, V.; Denoix, N.; McCook, O.; Calzia, E.; et al. Effects of Sodium Thiosulfate during Resuscitation from Trauma-and-Hemorrhage in Cystathionine Gamma Lyase (CSE) Knockout Mice. Shock 2022, 57, 131–139. [Google Scholar] [CrossRef]
- Datzmann, T.; Hoffmann, A.; McCook, O.; Merz, T.; Wachter, U.; Preuss, J.; Vettorazzi, S.; Calzia, E.; Gröger, M.; Kohn, F.; et al. Effects of sodium thiosulfate (Na2S2O3) during resuscitation from hemorrhagic shock in swine with preexisting atherosclerosis. Pharmacol. Res. 2020, 151, 104536. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, J.; Zhou, X.; Xian, X.; Ding, C. Ameliorative effects of exogenous sulfur dioxide on lipopolysaccharide-induced acute lung injury in rats. Acta Physiol. Sin. 2009, 61, 499–503. [Google Scholar]
- Ma, H.; Huang, X.; Liu, Y.; Fan, Y. Sulfur dioxide attenuates LPS-induced acute lung injury via enhancing polymorphonuclear neutrophil apoptosis. Acta Pharmacol. Sin. 2012, 33, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Huang, X.; Ma, H.; Zhou, X.; Zhou, J.; Fan, Y. Sulfur dioxide reduces lipopolysaccharide-induced acute lung injury in rats. Cent. Eur. J. Immunol. 2019, 44, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, Y.; Liu, Z.; Yu, W.; Zhang, H.; Li, K.; Yu, X.; Tang, C.; Zhao, B.; Du, J.; et al. Sulphur dioxide suppresses inflammatory response by sulphenylating NF-κB p65 at Cys38 in a rat model of acute lung injury. Clin. Sci. 2017, 131, 2655–2670. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Liu, Y.; Wang, D.; Lv, W.R.; Zhou, J.L. Effects of sulfur dioxide on alveolar macrophage apoptosis in acute lung injury induced by limb ischemia/reperfusion in rats. Beijing Da Xue Xue Bao Yi Xue Ban 2019, 51, 239–244. [Google Scholar]
- Zhou, T.; Liu, W.; Lai, H.; Liu, Y.; Su, W.; Xu, Z. Hydrogen sulfide promotes osteogenesis by modulating macrophage polarization. Int. Immunopharmacol. 2023, 115, 109564. [Google Scholar] [CrossRef]
- Miao, L.; Shen, X.; Whiteman, M.; Xin, H.; Shen, Y.; Xin, X.; Moore, P.K.; Zhu, Y. Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid. Redox Signal. 2016, 25, 268–281. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.L.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res. 2021, 163, 105224. [Google Scholar] [CrossRef] [PubMed]
- Ryter, S.W. Heme oxygenase-1: An anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders. Antioxidants 2022, 11, 555. [Google Scholar] [CrossRef]
- Shi, J.; Yu, J.; Zhang, Y.; Wu, L.; Dong, S.; Wu, L.; Wu, L.; Du, S.; Zhang, Y.; Ma, D. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. Lab. Investig. 2019, 99, 1795–1809. [Google Scholar] [CrossRef]
- Rowe, S.J.; Allen, L.; Ridger, V.C.; Hellewell, P.G.; Whyte, M.K. Caspase-1-deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J. Immunol. 2002, 169, 6401–6407. [Google Scholar] [CrossRef] [PubMed]
- Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, J.; Wu, Y.F.; Lou, J.; Mao, Y.Y.; Shen, H.H.; Chen, Z.H. mTOR and autophagy in regulation of acute lung injury: A review and perspective. Microbes Infect. 2014, 16, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Heras-Sandoval, D.; Pérez-Rojas, J.M.; Hernández-Damián, J.; Pedraza-Chaverri, J. The role of PI3K/Akt/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell. Signal. 2014, 26, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Hine, C.; Harputlugil, E.; Zhang, Y.; Ruckenstuhl, C.; Lee, B.C.; Brace, L.; Longchamp, A.; Treviño-Villarreal, J.H.; Mejia, P.; Ozaki, C.K.; et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 2015, 160, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Jiang, Y.; Duan, Y.; Wang, X.; Huang, Y.; Fang, T. Oxidative stress in a rat model of cotton smoke inhalation-induced pulmonary injury. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 132–138. [Google Scholar] [CrossRef]
- Jiang, K.Y. Experimental study on combined treatment in smoke inhalation injury. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 1991, 7, 278–281, 319. [Google Scholar] [PubMed]
- Corsonello, A.; Pedone, C.; Scarlata, S.; Zito, A.; Laino, I.; Antonelli-Incalzi, R. The oxygen therapy. Curr. Med. Chem. 2013, 20, 1103–1126. [Google Scholar] [CrossRef] [PubMed]
- Kallet, R.H.; Matthay, M.A. Hyperoxic acute lung injury. Respir. Care 2013, 58, 123–141. [Google Scholar] [CrossRef]
- Chen, L.; Xia, H.; Shang, Y.; Yao, S. Molecular Mechanisms of Ventilator-Induced Lung Injury. Chin. Med. J. 2018, 131, 1225–1231. [Google Scholar] [CrossRef]
- Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 2007, 6, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Milby, T.H.; Baselt, R.C. Hydrogen sulfide poisoning: Clarification of some controversial issues. Am. J. Ind. Med. 1999, 35, 192–195. [Google Scholar] [CrossRef]
- Faller, S.; Ryter, S.W.; Choi, A.M.K.; Loop, T.; Schmidt, R.; Hoetzel, A. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 2010, 113, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-de-Albuquerque, C.F.; Silva, A.R.; Burth, P.; Castro-Faria, M.V.; Castro-Faria-Neto, H.C. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediat. Inflamm. 2015, 2015, 260465. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, A.B.; Raijmakers, P.G.; Rauwerda, J.A.; Hack, C.E. The inflammatory response to vascular surgery-associated ischaemia and reperfusion in man: Effect on postoperative pulmonary function. Eur. J. Vasc. Endovasc. Surg. 1997, 14, 351–359. [Google Scholar] [CrossRef]
- Garbaisz, D.; Turoczi, Z.; Fulop, A.; Rosero, O.; Aranyi, P.; Onody, P.; Lotz, G.; Rakonczay, Z.; Balla, Z.; Harsanyi, L.; et al. Therapeutic option for managing lung injury induced by infrarenal aortic cross-clamping. J. Surg. Res. 2013, 185, 469–476. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J.; Duarte, J.A.; Sánchez-Navarro, A.; Remião, F.; Bastos, M.L.; Carvalho, F. Paraquat poisonings: Mechanisms of lung toxicity, clinical features, and treatment. Crit. Rev. Toxicol. 2008, 38, 13–71. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, J.; Ou, Z.; Yin, Z.; Chen, X.; Han, Y.; Song, W. Inhibition of pulmonary nuclear factor-κB and tumor necrosis factor-α expression by diallyl sulfide in rats with paraquat poisoning. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2015, 27, 274–279. [Google Scholar]
- Bhatia, M.; Sidhapuriwala, J.N.; Sparatore, A.; Moore, P.K. Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury. Shock 2008, 29, 84–88. [Google Scholar] [CrossRef]
- Demling, R.H.; Smith, M.; Gunther, R.; Wandzilak, T. Endotoxin-induced lung injury in unanesthetized sheep: Effect of methylprednisolone. Circ. Shock 1981, 8, 351–360. [Google Scholar]
- Merz, T.; Stenzel, T.; Nußbaum, B.; Wepler, M.; Szabo, C.; Wang, R.; Radermacher, P.; McCook, O. Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H2S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Med. Exp. 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C.; Papapetropoulos, A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol. Rev. 2017, 69, 497–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183. [Google Scholar]
- Cheng, P.; Li, S.; Chen, H. Macrophages in lung injury, repair, and fibrosis. Cells 2021, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Van den Bossche, J.; Baardman, J.; Otto, N.A.; van der Velden, S.; Neele, A.E.; van den Berg, S.M.; Luque-Martin, R.; Chen, H.J.; Boshuizen, M.C.; Ahmed, M.; et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016, 17, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Yetik-Anacak, G.; Dereli, M.V.; Sevin, G.; Ozzayım, O.; Erac, Y.; Ahmed, A. Resveratrol Stimulates Hydrogen Sulfide (H2S) Formation to Relax Murine Corpus Cavernosum. J. Sex. Med. 2015, 12, 2004–2012. [Google Scholar] [CrossRef]
- Zhong, L.; Ding, W.; Zeng, Q.; He, B.; Zhang, H.; Wang, L.; Fan, J.; He, S.; Zhang, Y.; Wei, A. Sodium Tanshinone IIA Sulfonate Attenuates Erectile Dysfunction in Rats with Hyperlipidemia. Oxid. Med. Cell. Longev. 2020, 2020, 7286958. [Google Scholar] [PubMed]
- Huang, X.; Liu, Y.; Zhou, J.; Qin, Y.; Ren, X.; Zhou, X.; Cao, H. Role of sulfur dioxide in acute lung injury following limb ischemia/reperfusion in rats. J. Biochem. Mol. Toxicol. 2013, 27, 389–397. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Liu, Y.; Shan, L.; Zhou, J. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats. J. Physiol. Sci. 2016, 66, 229–239. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Ye, X.; Wang, C.; Zhao, B. Endogenous sulfur dioxide improves the survival rate of sepsis by improving the oxidative stress response during lung injury. Oxid. Med. Cell. Longev. 2022, 2022, 6339355. [Google Scholar] [CrossRef] [PubMed]
ALI Models | Donors | Mechanisms | Effects | Reference |
---|---|---|---|---|
LPS-induced ALI | NaHS | Regulating the composition and secretion of PS | SP-A mRNA expression↑ | [43] |
NaHS | - | IL-1β, MDA and mitochondrial swelling↓; | [44] | |
ATP enzyme, SOD and GPx activity↑ | [45] | |||
GYY4137 | Inhibiting TLR4/NF-κB/NLRP3 pathway | IL-1β, IL-6 and TNF-α↓ | [46] | |
GYY4137 | Inhibiting Hoxb8 neutrophil pro-inflammatory signaling and oxidative burst | MIP-2, CXCR2 and IL-1β↓ | [47] | |
H2S gas | Inhibiting Nox2 and p38 MAPK pathway | HSP70, p-p38 MAPK, Nox2, IL-1β and ROS↓ | [48] | |
GYY4137 | - | MDA, H2O2, 3-NT, iNOS, NO, IL-6, IL-8 and MPO↓; GSH/GSSG, T-AOC, catalase and SOD↑ | [49] | |
Allicin | Promoting PI3K/Akt pathway | PI3K, p-Akt and Bcl-2↑; caspase-3/-9 activity↓ | [50] | |
NaHS | Inhibiting p38 MAPK pathway | PMN, MPO, MDA, ICAM-1 and p-p38 MAPK↓; SOD activity↑ | [51] | |
Allicin | Inhibiting TLR4/MyD88/NF-κB pathway | TNF-α, IL-6 and IL-1β↓ | [52] | |
H2S gas | Inhibiting neutrophil migration and pro-inflammatory cytokine release | IL-1β, MIP-2 and MPO↓ | [53] | |
GYY4137 | Promoting PI3K/Akt/mTOR pathway | TNF-α, IL-1β and protein content in BALF↓ | [54] | |
DATS | Down-regulating NF-κB expression | NF-κB activity and TNF-α mRNA expression ↓ | [55] | |
NaHS | - | PMN, MDA and MPO↓ | [56] | |
NaHS | - | iNOS and NO↓ | [41,42] | |
NaHS | Inhibiting NF-κB pathway | PMN, ICAM-1 and NF-κB↓ | [57,58] | |
GYY4137 | Up-regulating HO-1 expression | iNOS and COX-2↓ | [59] | |
Inhalation-induced ALI | H2S gas | Inhibiting the activation of NF-κB p65 | MDA, NO, NF-κB p65, iNOS and iNOS mRNA expression↓ | [60] |
Na2S | - | IL-6 and IL-8↓; IL-10↑ | [61] | |
Na2S | - | iNOS, MPO and PARP-1↓ | [62] | |
Hyperbaric hyperoxia-induced ALI | NaHS | - | TUNEL positive cells, protein in BALF and IL-13↓ | [63] |
NaHS | - | Ang2, MDA, ROS, IL-1β, MCP-1, MIP-2, NF-κB, iNOS, Nox, VEGF and VEGFR2↓ | [64] | |
NaHS | - | Ang2, MDA, ROS, IL-1β, MCP-1 and MIP-2 | [65] | |
Ventilator-induced ALI | Na2S | - | CXCL-2, CD11b and IL-6↓; NQO1, GPx2 and GST-A4↑ | [66] |
OA-induced ALI | NaHS | - | Fas protein expression↓ | [67] |
NaHS | Up-regulating endoplasmic reticulum stress proteins | GRP78 and eIF2α↑ | [68] | |
NaHS | - | IL-6 and IL-8↓; IL-10↑ | [69] | |
NaHS | - | PMN, NF-κB and ICAM-1↓ | [70] | |
NaHS | - | MDA↑; SOD and GSH↓ | [71] | |
RIR-induced ALI | NaHS | Promoting NRF2 activation-mediated inhibition of NLRP3 pathway | HO-1, NQO1 and Trx↑; NLRP3, caspase-1 and IL-1β↓ | [72] |
IAC-induced ALI | GYY4137 | Promoting p-Akt and the activation of GSK-3β and S6K | Ang2, MPO, TNF-α, IL-6 and IL-1β↓ | [73] |
LIR-induced ALI | NaHS | Inhibiting TLR4/MyD88/NF-κB pathway and AQP1/AQP5 | TLR4, MyD88, p-NF-κB, AQP1 and AQP5↓ | [74] |
PQ-induced ALI | DAS | - | NO and iNOS mRNA expression↓ | [75] |
DAS | - | NF-κB p65 and TNF-α mRNA↓ | [76] | |
CLP-induced ALI | GYY4137 | Inhibiting PDGFRβ/Akt/NF-κB/NLRP3 pathway | p-PDGFRβ, p-NF-κB, ASC, NLRP3, caspase-1 and p-Akt↓ | [77] |
CLP-/LPS-induced ALI | GYY4137 | Promoting PI3K/Akt/mTOR pathway | p-mTOR and Beclin1↓; LC3II/LC3I, GPx4 and SLC7A11↑ | [78] |
Caerulein-induced acute pancreatitis-related ALI | NaHS | - | MPO, CCL2, CXCL1, ICAM-1, VCAM-1↓ | [25] |
ACS15 | - | MPO activity↓ | [24] | |
Blunt chest trauma and bleeding-induced ALI | Na2S2O3 | - | GCR and iNOS↑ | [79] |
Hemorrhagic shock-induced ALI | Na2S2O3 | - | GCR expression↑ | [80] |
LPS-induced ALI | Na2SO3/ NaHSO3 | - | PMN, ICAM-1, IL-1, IL-6↓; IL-10↑ | [81] |
SO2 saline | - | caspase-3 and Bax↑; Bcl-2↓ | [82] | |
SO2 saline | Up-regulating SO2/AAT pathway | IL-1β, IL-6, ICAM-1, CD11b, Raf-1, MEK-1, p-ERK↓; IL-10↑ | [83] | |
OA-induced ALI | Na2SO3/ NaHSO3 | Up-regulating SO2/AAT1/AAT2 pathway and enhancing sulphenylation of NF-κB p65 at cysteine 38 | SOD, GPx, GSH↑; OH− and O2−↓ | [76,84] |
LIR-induced ALI | Na2SO3/ NaHSO3 | Inhibiting opening of mPTP | AM apoptosis and Caspase-3 expression↓; Bcl-2↑ | [85] |
Na2SO3/ NaHSO3 | - | IL-1β, IL-6 and MPO↓; IL-10 and AAT activity↑ | [86] | |
Na2SO3/ NaHSO3 | Inhibiting JAK2/STAT3 and promoting PI3K/Akt and p38MAPK pathway | p-Akt, p-p38 ↑; p-STAT3 ↓ | [87] | |
CLP-induced ALI in SD rats | Na2SO3/ NaHSO3 | - | H2O2, MDA, NO, MPO and TNF-α↓; SOD and GPx↑ | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Mao, C.; Wang, J.; Wu, S.; Qu, Y.; Xie, Y.; Sun, F.; Jiang, D.; Song, Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Curr. Issues Mol. Biol. 2024, 46, 7147-7168. https://doi.org/10.3390/cimb46070426
Sun X, Mao C, Wang J, Wu S, Qu Y, Xie Y, Sun F, Jiang D, Song Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Current Issues in Molecular Biology. 2024; 46(7):7147-7168. https://doi.org/10.3390/cimb46070426
Chicago/Turabian StyleSun, Xutao, Caiyun Mao, Jiaxin Wang, Siyu Wu, Ying Qu, Ying Xie, Fengqi Sun, Deyou Jiang, and Yunjia Song. 2024. "Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue" Current Issues in Molecular Biology 46, no. 7: 7147-7168. https://doi.org/10.3390/cimb46070426
APA StyleSun, X., Mao, C., Wang, J., Wu, S., Qu, Y., Xie, Y., Sun, F., Jiang, D., & Song, Y. (2024). Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Current Issues in Molecular Biology, 46(7), 7147-7168. https://doi.org/10.3390/cimb46070426