Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Proliferation Assay and Drug Preparation
2.3. Protein Extraction and Western Blot
2.4. Semiquantitative Real-Time PCR (qPCR)
2.5. Flow Cytometry
2.6. Statistical Analysis
3. Results
3.1. AKT Inhibitor MK2206 Effectively Reduces Proliferation in ICC Cell Lines
3.2. MEK Inhibitor Selumetinib Significantly Reduces Proliferation of HuH28 and RBE but Less in SSP25
3.3. Dual Inhibition Shows Additive Effects as Compared with Single Treatments
3.4. MK2206 Alone or in Combination Effectively Inhibits Phosphorylation of AKT (Ser473)
3.5. Selumetinib Alone or in Combination Effectively Inhibits ERK1/2 Phosphorylation (Thr202/Tyr204)
3.6. Dual Inhibition with MK2206 and Selumetinib Causes Cell Cycle Arrest in ICC Cell Lines
4. Discussion
4.1. Dual Inhibition of MAPK/ERK and PI3K/AKT/mTOR Is Highly Effective in ICC
4.2. Dual Inhibition of MAPK/ERK and PI3K/AKT/mTOR Does Not Induce Apoptosis in ICC
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Adenomatosis Polyposis Coli |
AIFM1 | Apoptosis-inducing factor mitochondria-associated 1 |
AKT | Protein kinase B |
CCA | Cholangiocellular carcinoma |
DMSO | Dimethyl sulfoxide |
ECC | Extrahepatic cholangiocellular carcinoma |
EMT | Epithelial–mesenchymal transition |
ERK | Extracellular signal-regulated kinase |
FGFR2 | Fibroblast growth factor receptor 2 |
ICC | Intrahepatic cholangiocellular carcinoma |
IDH1 | Isocitrate dehydrogenase-1 |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
MAPK | Mitogen-activated protein kinase |
MEK | Mitogen-activated protein kinase kinase |
MLKL | Mixed Lineage Kinase Domain Like |
mTOR | Mammalian target of rapamycin |
PBS | Phosphate-buffered saline |
PI3K | Phosphatidylinositol-3-kinase |
SMAD4 | Smad family member 4 |
TP53 | Tumor protein P53 |
References
- Turati, F.; Bertuccio, P.; Negri, E.; Vecchia, C.L. Epidemiology of cholangiocarcinoma. Hepatoma Res. 2022, 8, 19. [Google Scholar] [CrossRef]
- Poultsides, G.A.; Zhu, A.X.; Choti, M.A.; Pawlik, T.M. Intrahepatic cholangiocarcinoma. Surg. Clin. N. Am. 2010, 90, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Wege, H.; Caca, K.; Nashan, B.; Neumann, U. The diagnosis and treatment of cholangiocarcinoma. Dtsch. Arzteblatt Int. 2014, 111, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Sia, D.; Tovar, V.; Moeini, A.; Llovet, J. Intrahepatic cholangiocarcinoma: Pathogenesis and rationale for molecular therapies. Oncogene 2013, 32, 4861–4870. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Gores, G.J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013, 145, 1215–1229. [Google Scholar] [CrossRef]
- Gupta, A.; Dixon, E. Epidemiology and risk factors: Intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 101–104. [Google Scholar] [CrossRef]
- Kaewpitoon, N.; Kaewpitoon, S.J.; Pengsaa, P.; Sripa, B. Opisthorchis viverrini: The carcinogenic human liver fluke. World J. Gastroenterol. WJG 2008, 14, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Saborowski, A. Cholangiocellular Carcinoma. Digestion 2017, 95, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Bridgewater, J.; Galle, P.R.; Khan, S.A.; Llovet, J.M.; Park, J.-W.; Patel, T.; Pawlik, T.M.; Gores, G.J. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol. 2014, 60, 1268–1289. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Guo, P.; Wang, Y.; Chen, G. Therapy for advanced cholangiocarcinoma: Current knowledge and future potential. J. Cell. Mol. Med. 2021, 25, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int. J. Mol. Sci. 2020, 21, 1102. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.J.; Lang, H.; Wohlschlaeger, J.; Sotiropoulos, G.C.; Reis, H.; Schmid, K.W.; Baba, H.A. AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. World J. Gastroenterol. 2007, 13, 6470–6477. [Google Scholar] [CrossRef] [PubMed]
- Ewald, F.; Nörz, D.; Grottke, A.; Hofmann, B.T.; Nashan, B.; Jücker, M. Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-inhibitors. Investig. New Drugs 2014, 32, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Pappas, L.; Baiev, I.; Maurer, J.; Bocobo, A.G.; Zhang, K.; Jain, A.; De Armas, A.D.; Reyes, S.; Le, T.M.; et al. Molecular profiling and treatment pattern differences between intrahepatic and extrahepatic cholangiocarcinoma. JNCI J. Natl. Cancer Inst. 2023, 115, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Strazzabosco, M.; Fabris, L. Development of the bile ducts: Essentials for the clinical hepatologist. J. Hepatol. 2012, 56, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Muntean, A.; Davenport, M. Biliary atresia & choledochal malformation—Embryological and anatomical considerations. Semin. Pediatr. Surg. 2022, 31, 151235. [Google Scholar] [CrossRef] [PubMed]
- EMA Pemazyre. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/pemazyre (accessed on 29 June 2023).
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef]
- Rychahou, P.G.; Jackson, L.N.; Silva, S.R.; Rajaraman, S.; Evers, B.M. Targeted Molecular Therapy of the PI3K Pathway: Therapeutic Significance of PI3K Subunit Targeting in Colorectal Carcinoma. Ann. Surg. 2006, 243, 833. [Google Scholar] [CrossRef]
- Kusaka, Y.; Muraoka, A.; Tokiwa, T.; Sato, J. Establishment and characterization of a human cholangiocellular carcinoma cell line. Hum. Cell 1988, 1, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Takamura, M.; Yamagiwa, S.; Wakai, T.; Tamura, Y.; Kamimura, H.; Kato, T.; Tsuchiya, A.; Matsuda, Y.; Shirai, Y.; Ichida, T.; et al. Loss of liver-intestine cadherin in human intrahepatic cholangiocarcinoma promotes angiogenesis by up-regulating metal-responsive transcription factor-1 and placental growth factor. Int. J. Oncol. 2010, 36, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-R.; Wu, C.-E.; Jung, S.-M.; Huang, S.-C.; Lin, S.-H.; Chou, W.-C.; Chang, Y.-C.; Chen, M.-H.; Hung, T.-H.; Yu, A.L.; et al. Mucin 4 Confers Gemcitabine Resistance and an Unfavorable Prognosis in Patients with Cholangiocarcinoma via AKT Activation. Int. J. Biol. Sci. 2023, 19, 2772–2786. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Shen, W.; Davis, M.I.; Kong, K.; Vu, P.; Saha, S.K.; Adil, R.; Kreuzer, J.; Egan, R.; Lee, T.D.; et al. SULT1A1-dependent sulfonation of alkylators is a lineage-dependent vulnerability of liver cancers. Nat. Cancer 2023, 4, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Luk, I.S.; Bridgwater, C.M.; Yu, A.; Boila, L.D.; Yáñez-Bartolomé, M.; Lampano, A.E.; Hulahan, T.S.; Boukhali, M.; Kathiresan, M.; Macarulla, T.; et al. SRC inhibition enables formation of a growth suppressive MAGI1-PP2A complex in isocitrate dehydrogenase-mutant cholangiocarcinoma. Sci. Transl. Med. 2024, 16, eadj7685. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Erdlenbruch, B.; Noskova, I.; Schramm, A.; Aumailley, M.; Schorderet, D.F.; Schweigerer, L. Keratoepithelin suppresses the progression of experimental human neuroblastomas. Cancer Res. 2006, 66, 5314–5321. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Malik, I.A.; Rajput, M.; Werner, R.; Fey, D.; Salehzadeh, N.; von Arnim, C.A.F.; Wilting, J. Differential in vitro effects of targeted therapeutics in primary human liver cancer: Importance for combined liver cancer. BMC Cancer 2022, 22, 1193. [Google Scholar] [CrossRef] [PubMed]
- Belmokhtar, C.A.; Hillion, J.; Ségal-Bendirdjian, E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 2001, 20, 3354–3362. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Wang, M.; Sun, D.; Zhu, P.; Zhang, P.; Tan, X.; Shi, G. Tanshinone IIA affects the malignant growth of Cholangiocarcinoma cells by inhibiting the PI3K-Akt-mTOR pathway. Sci. Rep. 2021, 11, 19268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Liu, R.; Meng, Y.; Tian, G.; Cao, Q. Downregulation of microRNA-425-5p suppresses cervical cancer tumorigenesis by targeting AIFM1. Exp. Ther. Med. 2019, 17, 4032–4038. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, U.; Kuntz, S.; Brendel, M.D.; Daniel, H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 2000, 60, 3823–3831. [Google Scholar] [PubMed]
- Silvestri, M.; Nghia Vu, T.; Nichetti, F.; Niger, M.; Di Cosimo, S.; De Braud, F.; Pruneri, G.; Pawitan, Y.; Calza, S.; Cappelletti, V. Comprehensive transcriptomic analysis to identify biological and clinical differences in cholangiocarcinoma. Cancer Med. 2023, 12, 10156–10168. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Britten, C.D. PI3K and MEK inhibitor combinations: Examining the evidence in selected tumor types. Cancer Chemother. Pharmacol. 2013, 71, 1395–1409. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Liao, Q.; Su, M.; Huang, K.; Jin, J.; Cao, D. AKT and ERK dual inhibitors: The way forward? Cancer Lett. 2019, 459, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Kunnimalaiyaan, S.; Kunnimalaiyaan, M.; Gamblin, T.C. Inhibition of the AKT pathway in cholangiocarcinoma by MK2206 reduces cellular viability via induction of apoptosis. Cancer Cell Int. 2015, 15, 13. [Google Scholar] [CrossRef]
- Nicholson, D.W.; Ali, A.; Thornberry, N.A.; Vaillancourt, J.P.; Ding, C.K.; Gallant, M.; Gareau, Y.; Griffin, P.R.; Labelle, M.; Lazebnik, Y.A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995, 376, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; Taghizadeh, S.; Kaviani, E.; Vakili, O.; Taheri-Anganeh, M.; Tahamtan, M.; Savardashtaki, A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 2022, 69, 1633–1645. [Google Scholar] [CrossRef]
- Slee, E.A.; Adrain, C.; Martin, S.J. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 2001, 276, 7320–7326. [Google Scholar] [CrossRef] [PubMed]
- Odle, R.I.; Florey, O.; Ktistakis, N.T.; Cook, S.J. CDK1, the Other “Master Regulator” of Autophagy. Trends Cell Biol. 2021, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; He, Z.; Kitazato, K.; Wang, Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics 2019, 9, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Tolcher, A.W.; Baird, R.D.; Patnaik, A.; Moreno Garcia, V.; Papadopoulos, K.P.; Garrett, C.R.; Olmos, D.; Shannon, K.A.; Zazulina, V.; Rubin, E.H.; et al. A phase I dose-escalation study of oral MK-2206 (allosteric AKT inhibitor) with oral selumetinib (AZD6244; MEK inhibitor) in patients with advanced or metastatic solid tumors. J. Clin. Oncol. 2011, 29, 3004. [Google Scholar] [CrossRef]
- Do, K.; Speranza, G.; Bishop, R.; Khin, S.; Rubinstein, L.; Kinders, R.J.; Datiles, M.; Eugeni, M.; Lam, M.H.; Doyle, L.A.; et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Investig. New Drugs 2015, 33, 720–728. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.S.; Massi, D.; Teng, M.W.L.; Mandala, M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin. Cancer Biol. 2018, 48, 91–103. [Google Scholar] [CrossRef]
- De Wispelaere, W.; Annibali, D.; Tuyaerts, S.; Messiaen, J.; Antoranz, A.; Shankar, G.; Dubroja, N.; Herreros-Pomares, A.; Baiden-Amissah, R.E.M.; Orban, M.-P.; et al. PI3K/mTOR inhibition induces tumour microenvironment remodelling and sensitises pS6high uterine leiomyosarcoma to PD-1 blockade. Clin. Transl. Med. 2024, 14, e1655. [Google Scholar] [CrossRef]
Primary Antibody | Manufacturer |
---|---|
β-actin—HRP conjugated | CellSignaling (Cambridge, UK) |
phospho-AKT (Ser473) | CellSignaling (Cambridge, UK) |
AKT | CellSignaling (Cambridge, UK) |
anti-MLKL (Phospho S358) [ERP9514] | Abcam (Cambridge, UK) |
anti-MLKL [ERP17514] | Abcam (Cambridge, UK) |
cleaved caspase-3 (Asp175) | CellSignaling (Cambridge, UK) |
phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) | CellSignaling (Cambridge, UK) |
p44/42 MAPK (ERK1/2) | CellSignaling (Cambridge, UK) |
α-tubulin—HRP conjugated | CellSignaling (Cambridge, UK) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schüler, J.; Vockerodt, M.; Salehzadeh, N.; Becker, J.; Wilting, J. Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis. Curr. Issues Mol. Biol. 2024, 46, 7395-7410. https://doi.org/10.3390/cimb46070439
Schüler J, Vockerodt M, Salehzadeh N, Becker J, Wilting J. Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis. Current Issues in Molecular Biology. 2024; 46(7):7395-7410. https://doi.org/10.3390/cimb46070439
Chicago/Turabian StyleSchüler, Jessica, Martina Vockerodt, Niloofar Salehzadeh, Jürgen Becker, and Jörg Wilting. 2024. "Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis" Current Issues in Molecular Biology 46, no. 7: 7395-7410. https://doi.org/10.3390/cimb46070439
APA StyleSchüler, J., Vockerodt, M., Salehzadeh, N., Becker, J., & Wilting, J. (2024). Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis. Current Issues in Molecular Biology, 46(7), 7395-7410. https://doi.org/10.3390/cimb46070439