Assessing the Efficacy of Acanthoic Acid Isolated from Acanthopanax koreanum Nakai in Male Infertility: An In Vivo and In Silico Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Acanthoic Acid
2.3. Drosophila Egg-Hatching Rate Analysis
2.4. Molecular Docking
2.5. MD Simulations
2.6. Calculation of Interaction Energies
3. Results
3.1. Drosophila Egg-Hatching Rate with Acanthoic Acid
3.2. Molecular Docking
3.3. MD Simulations
3.4. Total Binding Energy and Its Decomposition Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jahangeer, M.; Mustafa, G.; Munir, N.; Ahmed, S.; Al-Anazi, K.M. Exploring the potential of plant bioactive compounds against male infertility: An in silico and in vivo study. Molecules 2023, 28, 7693. [Google Scholar] [CrossRef] [PubMed]
- Vockel, M.; Riera-Escamilla, A.; Tüttelmann, F.; Krausz, C. The X chromosome and male infertility. Hum. Genet. 2021, 140, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Plunk, E.C.; Richards, S.M. Endocrine-disrupting air pollutants and their effects on the hypothalamus-pituitary-gonadal axis. Int. J. Mol. Sci. 2020, 21, 9191. [Google Scholar] [CrossRef] [PubMed]
- Krzastek, S.C.; Farhi, J.; Gray, M.; Smith, R.P. Impact of environmental toxin exposure on male fertility potential. Transl. Androl. Urol. 2020, 9, 2797–2813. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, B.; Yang, H.; Zhang, L.; Lou, H.; Zheng, S. The emergence of natural products as potential therapeutics for male infertility. Andrology, 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.W.; Wong, A.S.T. Ginseng and male reproductive function. Spermatogenesis 2013, 3, e26391. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.M.; Marques-Silva, M.H.; Gonçalves, E.; Mathias, A.C.; Aguiar, J.G.; Wolff, P. Effect of oral administration of Tribulus terrestris extract on semen quality and body fat index of infertile men. Andrologia 2017, 49, e12655. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Lee, H.W.; You, S.; Ha, K.T. The use of maca (Lepidium meyenii) to improve semen quality: A systematic review. Maturitas 2016, 92, 64–69. [Google Scholar] [CrossRef]
- Mustofa, I.; Susilowati, S.; Wurlina, W.; Hernawati, T.; Oktanella, Y. Green tea extract increases the quality and reduced DNA mutation of post-thawed Kacang buck sperm. Heliyon 2021, 7, e06372. [Google Scholar] [CrossRef]
- Mongioì, L.M.; Perelli, S.; Condorelli, R.A.; Barbagallo, F.; Crafa, A.; Cannarella, R.; La Vignera, S.; Calogero, A.E. The role of resveratrol in human male fertility. Molecules 2021, 26, 2495. [Google Scholar] [CrossRef]
- Liu, S.J.; Hu, S.Q.; Chen, Y.C.; Guo, J. Uncovering the mechanism of quercetin for treating spermatogenesis impairment by a network pharmacology approach. All Life 2021, 14, 699–708. [Google Scholar] [CrossRef]
- Dou, J.Y.; Jiang, Y.C.; Cui, Z.Y.; Lian, L.H.; Nan, J.X.; Wu, Y.L. Acanthoic acid, unique potential pimaradiene diterpene isolated from Acanthopanax koreanum Nakai (Araliaceae): A review on its pharmacology, molecular mechanism, and structural modification. Phytochemistry 2022, 200, 113247. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.M.; Park, S.J.; Lee, Y.W.; Lee, H.E.; Hong, S.I.; Lew, J.H.; Hong, E.; Shim, J.S.; Cheong, J.H.; Ryu, J.H. The effects of a standardized Acanthopanax koreanum extract on stress-induced behavioral alterations in mice. J. Ethnopharmacol. 2013, 148, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Nan, J.X.; Jin, X.J.; Lian, L.H.; Cai, X.F.; Jiang, Y.Z.; Jin, H.R.; Lee, J.J. A diterpenoid acanthoic acid from Acanthopanax koreanum protects against D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice. Biol. Pharm. Bull. 2008, 31, 738–742. [Google Scholar] [CrossRef]
- Na, M.; Oh, W.K.; Kim, Y.H.; Cai, X.F.; Kim, S.; Kim, B.Y.; Ahn, J.S. Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorg. Med. Chem. Lett. 2006, 16, 3061–3064. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.L.; Han, X.; Li, Z.M.; Lian, L.H.; Nan, J.X.; Wu, Y.L. Acanthoic acid can partially prevent alcohol exposure-induced liver lipid deposition and inflammation. Front. Pharmacol. 2017, 8, 134. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.S.; Yu, J.L. Acanthoic acid inhibits LPS-induced inflammatory response by activating LXRα in human umbilical vein endothelial cells. Int. Immunopharmacol. 2016, 32, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Kang, O.H.; Kim, D.K.; Cai, X.F.; Kim, Y.H.; Lee, Y.M. Attenuation of experimental murine colitis by acanthoic acid from Acanthopanax koreanum. Arch. Pharm. Res. 2010, 33, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.M.; de Oliveira, C.M.S.C.; Silva-Silva, J.V.; de Jesus, S.C.A.; Siqueira, J.E.S.; de Oliveira, L.C.; Auzier, J.F.; Soares, L.N.; Pinheiro, M.L.; Silva, S.C.; et al. Antimicrobial activity and molecular docking studies of the biotransformation of diterpene acanthoic acid using the fungus Xylaria sp. Antibiotics 2023, 12, 1331. [Google Scholar] [CrossRef]
- Bai, T.; Yao, Y.l.; Jin, X.J.; Lian, L.h.; Li, Q.; Yang, N.; Jin, Q.; Wu, Y.l.; Nan, J.x. Acanthoic acid, a diterpene in Acanthopanax koreanum, ameliorates the development of liver fibrosis via LXRs signals. Chem. Biol. Interact. 2014, 218, 63–70. [Google Scholar] [CrossRef]
- Paqui, G.T.; Sonsoles, H.; Miriam, Z.; Ta-Hsiang, C.; Thanh, L.; Saskia, T.N.; Emmanuel, A.T.; Michael, A.P.; Antonio, C.; Lisardo, B. Selective activation of liver X receptors by acanthoic acid-related diterpenes. Mol. Pharmacol. 2007, 71, 1545. [Google Scholar]
- Komati, R.; Spadoni, D.; Zheng, S.; Sridhar, J.; Riley, K.E.; Wang, G. Ligands of therapeutic utility for the Liver X receptors. Molecules 2017, 22, 88. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Trang, N.M.; Vinh, L.B.; Thanh, N.V.; Phong, N.V. Inhibition of PTP1B by isosinensetin, a polymethoxylated flavone isolated from trifoliate orange peel: Kinetic studies, molecular docking, and molecular dynamics simulation. Chem. Pap. 2023, 77, 1751–1757. [Google Scholar] [CrossRef]
- Grishkovskaya, I.; Avvakumov, G.V.; Hammond, G.L.; Muller, Y.A. Resolution of a disordered region at the entrance of the human sex hormone-binding globulin steroid-binding site. J. Mol. Biol. 2002, 318, 621–626. [Google Scholar] [CrossRef]
- Condon, J.S.; Joseph-McCarthy, D.; Levin, J.I.; Lombart, H.G.; Lovering, F.E.; Sun, L.; Wang, W.; Xu, W.; Zhang, Y. Identification of potent and selective TACE inhibitors via the S1 pocket. Bioorg. Med. Chem. Lett. 2007, 17, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Parsiegla, G.; Noguere, C.; Santell, L.; Lazarus, R.A.; Bourne, Y. The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily. Biochemistry 2012, 51, 10250–10258. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Lima, L.R.; Bastos, R.S.; Ferreira, E.F.B.; Leão, R.P.; Araújo, P.H.F.; Pita, S.S.d.R.; De Freitas, H.F.; Espejo-Román, J.M.; Dos Santos, E.L.V.S.; Ramos, R.d.S.; et al. Identification of potential new Aedes aegypti juvenile hormone inhibitors from N-acyl piperidine derivatives: A bioinformatics approach. Int. J. Mol. Sci. 2022, 23, 9927. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Phong, N.V.; Van Cong, P.; Min, B.S.; Yang, S.Y.; Kim, J.A. Inhibitory effects of phenylpropanoids and lignans isolated from the bark of Cinnamomum cassia L. on soluble epoxide hydrolase: Spectroscopic, kinetic, molecular docking, and molecular dynamics studies. J. Mol. Struct. 2024, 1301, 137376. [Google Scholar] [CrossRef]
- Khoa, N.M.; Phong, N.V.; Yang, S.Y.; Min, B.S.; Kim, J.A. Spectroscopic analysis, kinetic mechanism, computational docking, and molecular dynamics of active metabolites from the aerial parts of Astragalus membranaceus Bunge as tyrosinase inhibitors. Bioorg. Chem. 2023, 134, 106464. [Google Scholar]
- van der Spoel, D.; van Maaren, P.J.; Larsson, P.; Tîmneanu, N. Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J. Phys. Chem. B 2006, 110, 4393–4398. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.E.B.; da Silva, A.W.S.; Lins, R.D.; Pascutti, P.G.; Soares, T.A. HbMap2grace. Available online: https://github.com/LMDM/hbmap2grace/tree/main/ (accessed on 3 July 2024).
- Gomes, D.E.B.; Sousa, G.L.S.C.; Silva, A.W.S.D.; Pascutti, P.G. SurfinMD–Version 1.06p4. Available online: https://github.com/LMDM/surfinmd/ (accessed on 3 July 2024).
- Silva, R.C.; Freitas, H.F.; Campos, J.M.; Kimani, N.M.; Silva, C.H.T.P.; Borges, R.S.; Pita, S.S.R.; Santos, C.B.R. Natural products-based drug design against SARS-CoV-2 Mpro 3CLpro. Int. J. Mol. Sci. 2021, 22, 11739. [Google Scholar] [CrossRef]
- Jeon, Y.M.; Kwon, Y.; Lee, S.; Kim, S.; Jo, M.; Lee, S.; Kim, S.R.; Kim, K.; Kim, H.J. Vitamin B12 reduces TDP-43 toxicity by alleviating oxidative stress and mitochondrial dysfunction. Antioxidants 2022, 11, 82. [Google Scholar] [CrossRef]
- Wang, M.; Ren, J.; Chen, X.; Liu, J.; Xu, X.; Li, X.; Zhao, D.; Sun, L. 20(S)-ginsenoside Rg3 promotes myoblast differentiation and protects against myotube atrophy via regulation of the Akt/mTOR/FoxO3 pathway. Biochem. Pharmacol. 2020, 180, 114145. [Google Scholar] [CrossRef]
- Grishkovskaya, I.; Avvakumov, G.V.; Sklenar, G.; Dales, D.; Hammond, G.L.; Muller, Y.A. Crystal structure of human sex hormone-binding globulin: Steroid transport by a laminin G-like domain. EMBO J. 2000, 19, 504–512. [Google Scholar] [CrossRef]
- Round, P.; Das, S.; Wu, T.S.; Wähälä, K.; Van Petegem, F.; Hammond, G.L. Molecular interactions between sex hormone–binding globulin and nonsteroidal ligands that enhance androgen activity. J. Biol. Chem. 2020, 295, 1202–1211. [Google Scholar] [CrossRef]
- Maskos, K.; Fernandez-Catalan, C.; Huber, R.; Bourenkov, G.P.; Bartunik, H.; Ellestad, G.A.; Reddy, P.; Wolfson, M.F.; Rauch, C.T.; Castner, B.J.; et al. Crystal structure of the catalytic domain of human tumor necrosis factor-α-converting enzyme. Proc. Natl. Acad. Sci. USA 1998, 95, 3408–3412. [Google Scholar] [CrossRef]
- Caescu, C.I.; Jeschke, G.R.; Turk, B.E. Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem. J. 2009, 424, 79–88. [Google Scholar] [CrossRef]
- Ulmer, J.S.; Herzka, A.; Toy, K.J.; Baker, D.L.; Dodge, A.H.; Sinicropi, D.; Shak, S.; Lazarus, R.A. Engineering actin-resistant human DNase I for treatment of cystic fibrosis. Proc. Natl. Acad. Sci. USA 1996, 93, 8225–8229. [Google Scholar] [CrossRef] [PubMed]
- Phong, N.V.; Yang, S.Y.; Min, B.S.; Kim, J.A. Insights into the inhibitory activity and mechanism of action of flavonoids from the stems and branches of Acer mono Maxim. against α-glucosidase via kinetic analysis, molecular docking, and molecular dynamics simulations. J. Mol. Struct. 2023, 1282, 135188. [Google Scholar] [CrossRef]
- Oyewusi, H.A.; Wahab, R.A.; Akinyede, K.A.; Albadrani, G.M.; Al-Ghadi, M.Q.; Abdel-Daim, M.M.; Ajiboye, B.O.; Huyop, F. Bioinformatics analysis and molecular dynamics simulations of azoreductases (AzrBmH2) from Bacillus megaterium H2 for the decolorization of commercial dyes. Environ. Sci. Eur. 2024, 36, 31. [Google Scholar] [CrossRef]
- Bastos, R.S.; de Aguiar, C.P.O.; Cruz, J.N.; Ramos, R.S.; Kimani, N.M.; de Souza, J.S.N.; Chaves, M.H.; de Freitas, H.F.; Pita, S.S.R.; Santos, C.B.R.D. Rational approach toward COVID-19’s main protease inhibitors: A hierarchical biochemoinformatics analysis. Int. J. Mol. Sci. 2024, 25, 6715. [Google Scholar] [CrossRef]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef]
- Touw, W.G.; Baakman, C.; Black, J.; Te Beek, T.A.H.; Krieger, E.; Joosten, R.P.; Vriend, G. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015, 43, D364–D368. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Minhas, S.; Dhillo, W.S.; Jayasena, C.N. Male infertility due to testicular disorders. J. Clin. Endocrinol. Metab. 2021, 106, e442–e459. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef]
- Xu, K.; Fu, Y.; Cao, B.; Zhao, M. Association of sex hormones and sex hormone-binding globulin levels with bone mineral density in adolescents aged 12–19 years. Front. Endocrinol. 2022, 13, 891217. [Google Scholar] [CrossRef] [PubMed]
- Narinx, N.; David, K.; Walravens, J.; Vermeersch, P.; Claessens, F.; Fiers, T.; Lapauw, B.; Antonio, L.; Vanderschueren, D. Role of sex hormone-binding globulin in the free hormone hypothesis and the relevance of free testosterone in androgen physiology. Cell. Mol. Life Sci. 2022, 79, 543. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.R.; Guo, Y.H.; Qiao, S.D.; Leng, L.F.; Xie, Z.H.; Chen, H.; Wang, X.L. Correlation between SHBG gene polymorphism and male infertility in Han population of Henan province of China: A STROBE-compliant article. Medicine 2017, 96, e7753. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Mita, M.A.; Afrose, S.; Hasan, M.R.; Islam, M.T.; Rahman, M.A.; Ara, M.J.; Chowdhury, M.B.A.; Meem, H.N.; Mamunuzzaman, M.; et al. Integrated computational approaches for inhibiting sex hormone-binding globulin in male infertility by screening potent phytochemicals. Life 2023, 13, 476. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Rose-John, S. ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119141. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Rose-John, S. ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers 2019, 11, 1736. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, D.I.; Abou-Bakr, D.A.; Ezzat, S.F.; El-Kareem, H.F.A.; Nahas, H.H.A.; Saad, H.A.; Mehana, A.E.; Saied, E.M. Vitamin D3 prevents the deleterious effects of testicular torsion on testis by targeting miRNA-145 and ADAM17: In silico and in vivo study. Pharmaceuticals 2021, 14, 1222. [Google Scholar] [CrossRef] [PubMed]
- Errami, Y.; Naura, A.S.; Kim, H.; Ju, J.; Suzuki, Y.; El-Bahrawy, A.H.; Ghonim, M.A.; Hemeida, R.A.; Mansy, M.S.; Zhang, J.; et al. Apoptotic DNA fragmentation may be a cooperative activity between caspase-activated deoxyribonuclease and the poly(ADP-ribose) polymerase-regulated DNAS1L3, an endoplasmic reticulum-localized endonuclease that translocates to the nucleus during apoptosis. J. Biol. Chem. 2013, 288, 3460–3468. [Google Scholar] [CrossRef]
- Gosálvez, J.; Fernández, C.L.; Johnston, S.D.; Bartolomé-Nebreda, J. Role of DNase activity in human sperm DNA fragmentation. Biomolecules 2024, 14, 304. [Google Scholar] [CrossRef]
- Dorado-Silva, M.; Bartolomé-Nebreda, J.; Sánchez-Martín, P.; Johnston, S.; Gosálvez, J. Co-incubation of spermatozoa with human follicular fluid reduces sperm DNA fragmentation by mitigating DNase activity in the seminal plasma. J. Assist. Reprod. Genet. 2020, 37, 63–69. [Google Scholar] [CrossRef]
- Ma, M.; Ju, B.; Li, X.; Yao, J.; Li, L.; Zhang, Y.; Tang, S.; Zhang, C. Clinical study on the treatment of male infertility with Wuwei Fuzheng Yijing decoction based on microplastics: Study protocol for a randomized controlled trial. Medicine 2022, 101, e31265. [Google Scholar] [CrossRef] [PubMed]
Repeat | 25 °C Controls | 28 °C Controls | DMSO (28 °C) | Acanthoic Acid (28 °C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 μM | 10 μM | |||||||||
Eggs | Hatched | Eggs | Hatched | Eggs | Hatched | Eggs | Hatched | Eggs | Hatched | |
1 | 73 | 57 | 81 | 0 | 17 | 0 | 32 | 6 | 130 | 8 |
2 | 47 | 47 | 28 | 0 | 68 | 3 | 44 | 17 | 63 | 17 |
3 | 18 | 16 | 59 | 0 | 18 | 1 | 46 | 15 | 102 | 74 |
4 | 26 | 18 | 15 | 0 | 51 | 0 | 36 | 8 | 37 | 17 |
5 | 15 | 10 | 15 | 0 | 43 | 6 | 15 | 7 | 20 | 9 |
Target Protein | Binding Energy (kcal/mol) | Hydrogen Bonds | van der Waals Interactions | Hydrophobic Interactions |
---|---|---|---|---|
SHBG | −10.2 | Asp65 Asn82 Lys134 | Thr40, Ser41, Ser42, Phe56, Gly58, Asp59, Thr60, Trp66, Trp84, Lys106, Ser128, Leu131, Ile141 | Leu80 (alkyl) Val112 (alkyl) Met139 (alkyl) Leu171 (alkyl) Phe67 (π–alkyl) Val105 (π–alkyl) Met107 (π–alkyl) |
ADAM17 | −6.8 | Thr347, Gly349, Glu406, Tyr436, Pro437, Ile438 | Leu348 (alkyl) Val402 (alkyl) Ala439 (alkyl) His405 (π–σ) His415 (π–alkyl) | |
DNase I | −5.8 | Arg41 Tyr76 Glu78 Arg111 | Glu39, Asn170 | Pro137 (alkyl) His134 (π–alkyl) Tyr175 (π–alkyl) Tyr211 (π–alkyl) His252 (π–alkyl) |
Complex | Binding Energy (kcal/mol) | MM-GBSA Energy (kcal/mol) |
---|---|---|
SHBG–acanthoic acid | −10.2 | −27.65 |
ADAM17–acanthoic acid | −6.8 | −16.48 |
DNase I–acanthoic acid | −5.8 | −6.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phong, N.V.; Kim, H.-S.; Park, H.-J.; Yeom, E.; Yang, S.Y. Assessing the Efficacy of Acanthoic Acid Isolated from Acanthopanax koreanum Nakai in Male Infertility: An In Vivo and In Silico Approach. Curr. Issues Mol. Biol. 2024, 46, 7411-7429. https://doi.org/10.3390/cimb46070440
Phong NV, Kim H-S, Park H-J, Yeom E, Yang SY. Assessing the Efficacy of Acanthoic Acid Isolated from Acanthopanax koreanum Nakai in Male Infertility: An In Vivo and In Silico Approach. Current Issues in Molecular Biology. 2024; 46(7):7411-7429. https://doi.org/10.3390/cimb46070440
Chicago/Turabian StylePhong, Nguyen Viet, Hyo-Sung Kim, Hyun-Jung Park, Eunbyul Yeom, and Seo Young Yang. 2024. "Assessing the Efficacy of Acanthoic Acid Isolated from Acanthopanax koreanum Nakai in Male Infertility: An In Vivo and In Silico Approach" Current Issues in Molecular Biology 46, no. 7: 7411-7429. https://doi.org/10.3390/cimb46070440
APA StylePhong, N. V., Kim, H. -S., Park, H. -J., Yeom, E., & Yang, S. Y. (2024). Assessing the Efficacy of Acanthoic Acid Isolated from Acanthopanax koreanum Nakai in Male Infertility: An In Vivo and In Silico Approach. Current Issues in Molecular Biology, 46(7), 7411-7429. https://doi.org/10.3390/cimb46070440