Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Genotyping
2.3. Quality Control and Statistical Analysis
2.4. In Silico ANALYSIS
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krausz, C.; Riera-Escamilla, A. Genetics of Male Infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, Z.; Kong, Y.; Jin, M.; Ma, L. Global, Regional and National Burden of Male Infertility in 204 Countries and Territories between 1990 and 2019: An Analysis of Global Burden of Disease Study. BMC Public Health 2023, 23, 2195. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; La, J.; Schubach, K.M.; Lantsberg, D.; Katz, D.J. Psychological, Social, and Sexual Challenges Affecting Men Receiving Male Infertility Treatment: A Systematic Review and Implications for Clinical Care. Asian J. Androl. 2023, 25, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Wosnitzer, M.; Goldstein, M.; Hardy, M.P. Review of Azoospermia. Spermatogenesis 2014, 4, e28218. [Google Scholar] [CrossRef] [PubMed]
- Shaw, W.; Padubidri, V.; Daftary, S.; Howkins, J.; Bourne, G. Infertility and Sterility. In Shaw’s Textbook of Gynaecology; Elsevier: New Delhi, India, 2015; pp. 237–262. [Google Scholar]
- Choy, J.T.; Amory, J.K. Nonsurgical Management of Oligozoospermia. J. Clin. Endocrinol. Metab. 2020, 105, e4194. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.J.; Salas-Huetos, A.; Oud, M.S.; Aston, K.I.; Veltman, J.A. Disease Gene Discovery in Male Infertility: Past, Present and Future. Hum. Genet. 2021, 140, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Aston, K.I. Defining New Genetic Etiologies of Male Infertility: Progress and Future Prospects. Transl. Androl. Urol. 2021, 10, 1486. [Google Scholar] [CrossRef] [PubMed]
- Greither, T.; Behre, H.M.; Herlyn, H. Genome-Wide Association Screening Determines Peripheral Players in Male Fertility Maintenance. Int. J. Mol. Sci. 2023, 24, 524. [Google Scholar] [CrossRef] [PubMed]
- Drevet, J.R. Sperm DNA Damage and Assisted Reproductive Technologies: Reasons to Be Cautious! Basic Clin. Androl. 2016, 26, 11. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Calabuig, M.J.; López-Cardona, A.P.; Fernández-González, R.; Ramos-Ibeas, P.; Balvís, N.F.; Laguna-Barraza, R.; Pericuesta, E.; Gutiérrez-Adán, A.; Bermejo-álvarez, P. Potential Health Risks Associated to ICSI: Insights from Animal Models and Strategies for a Safe Procedure. Front. Public Health 2014, 2, 122802. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and Manhattan Plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) Project. Nat. Genet. 2013, 45, 580. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Quan, C.; Ping, J.; Lu, H.; Zhou, G.; Lu, Y. 3DSNP 2.0: Update and Expansion of the Noncoding Genomic Variant Annotation Database. Nucleic Acids Res. 2022, 50, D950–D955. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Fu, X.; Xia, M.; Zhang, Q.; Gu, Z.; Guo, A.Y. MiRNASNP-v3: A Comprehensive Database for SNPs and Disease-Related Variations in MiRNAs and MiRNA Targets. Nucleic Acids Res. 2021, 49, D1276–D1281. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zuo, J.; De Jager, P.L.; Heintz, N. The Human Glutamate Receptor Delta 2 Gene (GRID2) Maps to Chromosome 4q22. Genomics 1998, 47, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Reiner, A.; Levitz, J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2018, 98, 1080–1098. [Google Scholar] [CrossRef] [PubMed]
- Thul, P.J.; Akesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al. A Subcellular Map of the Human Proteome. Science 2017, 356, eaal3321. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.M.; Busino, L. The Biology of F-Box Proteins: The SCF Family of E3 Ubiquitin Ligases. Adv. Exp. Med. Biol. 2020, 1217, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Chen, T.; Lai, B.; Zhang, W.; Luo, X.; Xia, D.; Fu, W.; Xu, J. FBXW2 Inhibits Prostate Cancer Proliferation and Metastasis via Promoting EGFR Ubiquitylation and Degradation. Cell. Mol. Life Sci. 2022, 79, 268. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, J.; Li, H.; Tan, M.; Xiong, X.; Sun, Y. FBXW2 Suppresses Migration and Invasion of Lung Cancer Cells via Promoting β-Catenin Ubiquitylation and Degradation. Nat. Commun. 2019, 10, 1382. [Google Scholar] [CrossRef] [PubMed]
- Barik, G.K.; Sahay, O.; Mukhopadhyay, A.; Manne, R.K.; Islam, S.; Roy, A.; Nath, S.; Santra, M.K. FBXW2 Suppresses Breast Tumorigenesis by Targeting AKT-Moesin-SKP2 Axis. Cell Death Dis. 2023, 14, 623. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Jin, Y.; Wang, G. The Role of SCF Ubiquitin-Ligase Complex at the Beginning of Life. Reprod. Biol. Endocrinol. 2019, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Kipreos, E.T.; Pagano, M. The F-Box Protein Family. Genome Biol. 2000, 1, reviews3002.1. [Google Scholar] [CrossRef] [PubMed]
- Nebert, D.W.; Wikvall, K.; Miller, W.L. Human Cytochromes P450 in Health and Disease. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120431. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.-S.; Yang, L.-P.; Li, X.-T.; Liu, J.-P.; Zhou, Z.-W.; Zhou, S.-F. Human CYP2C8: Structure, Substrate Specificity, Inhibitor Selectivity, Inducers and Polymorphisms. Curr. Drug Metab. 2009, 10, 1009–1047. [Google Scholar] [CrossRef] [PubMed]
- Aşır, F.; Duran, S.Ç.; Afşin, M.; Duran, E.; Korak, T.; Şahin, F. Investigation of Vitamin D Levels in Men with Suspected Infertility. Life 2024, 14, 273. [Google Scholar] [CrossRef] [PubMed]
- Sèdes, L.; Thirouard, L.; Maqdasy, S.; Garcia, M.; Caira, F.; Lobaccaro, J.M.A.; Beaudoin, C.; Volle, D.H. Cholesterol: A Gatekeeper of Male Fertility? Front. Endocrinol. 2018, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.; Chandler, J.D.; Clarke, A.L.; Petrou, S.; Best, J.D. Glucose Transporter GLUT12-Functional Characterization in Xenopus Laevis Oocytes. Biochem. Biophys. Res. Commun. 2003, 308, 422–426. [Google Scholar] [CrossRef]
- White, M.A.; Tsouko, E.; Lin, C.; Rajapakshe, K.; Spencer, J.M.; Wilkenfeld, S.R.; Vakili, S.S.; Pulliam, T.L.; Awad, D.; Nikolos, F.; et al. GLUT12 Promotes Prostate Cancer Cell Growth and Is Regulated by Androgens and CaMKK2 Signaling. Endocr. Relat. Cancer 2018, 25, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, L.; Cheng, X.; Li, L.; Tu, K. Hypoxia Promotes the Growth and Metastasis of Ovarian Cancer Cells by Suppressing Ferroptosis via Upregulating SLC2A12. Exp. Cell Res. 2023, 433, 113851. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Hiasa, M.; Omote, H. Functional Characterization and Tissue Localization of the Facilitative Glucose Transporter GLUT12. J. Biochem. 2020, 168, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Mueckler, M.; Thorens, B. The SLC2 (GLUT) Family of Membrane Transporters. Mol. Asp. Med. 2013, 34, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiafini, M.A.; Sarafidou, T.; Mamuris, Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. Biology 2022, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Ariyanfar, S.; Good, D.J. Analysis of SNHG14: A Long Non-Coding RNA Hosting SNORD116, Whose Loss Contributes to Prader-Willi Syndrome Etiology. Genes 2022, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Wang, Y.; Bao, G.; Yan, J.; Ji, S. LncRNA SNHG14 Promotes the Progression of Cervical Cancer by Regulating MiR-206/YWHAZ. Pathol. Res. Pract. 2019, 215, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Zhang, N.; Wu, W.; Yang, B.; Wang, J.; Huang, W.; Tang, D. SNHG14 Promotes the Tumorigenesis and Metastasis of Colorectal Cancer through MiR-32-5p/SKIL Axis. In Vitro Cell. Dev. Biol. Anim. 2019, 55, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.X.; Zhan, G.F.; Wu, J.C.; Fang, H.; Yang, S.L. LncRNA SNHG14 Sponges MiR-206 to Affect Proliferation, Apoptosis, and Metastasis of Hepatocellular Carcinoma Cells by Regulating SOX9. Dig. Dis. Sci. 2022, 67, 936–946. [Google Scholar] [CrossRef] [PubMed]
Normozoospermic (n = 280) | Azoospermic (n = 43) | Severe Oligozoospermic (n = 42) | p-Value | |
---|---|---|---|---|
Body Mass Index—BMI (m/kg2) mean, SD | 17.9–40.4 25.9 (3.7) | 21.5–47.6 28.4 (5.1) | 24.1–37.3 27.7 (3.4) | 0.905 |
Age (years) mean, SD | 21–48 38.7 (8.3) | 32–55 39.8 (5.5) | 24–58 40.5 (7.8) | 0.875 |
Smoking (Yes/No) | No, 56% Yes, 44% | No, 48.5% Yes, 51.5% | No, 50% Yes, 50% | 0.665 |
Alcohol Consumption (<2 drinks/week, 2 drinks/week, >2 drinks/week) | <2 drinks/week, 58.8% 2 drinks/week, 20.6% >2 drinks/week, 20.6% | <2 drinks/week, 63.6% 2 drinks/week, 21.2% >2 drinks/week, 15.12% | <2 drinks/week, 58.3% 2 drinks/week, 25% >2 drinks/week, 16.7% | 0.984 |
Chr | SNP | Position | Ref/Alt Allele | Frequency Cases | Frequency Controls | p-Value | OR |
---|---|---|---|---|---|---|---|
1 | rs873041 | 29,718,378 | C/T | 0.13190 | 0.032710 | 9.969 × 10−6 | 4.4950 |
4 | rs77534195 | 94,718,164 | C/A | 0.11810 | 0.023360 | 3.573 × 10−6 | 5.5950 |
6 | rs61712011 | 134,363,477 | A/C | 0.09722 | 0.014020 | 2.580 × 10−6 | 7.5740 |
9 | rs75614542 | 123,521,842 | A/C | 0.09028 | 0.014020 | 9.996 × 10−6 | 6.9800 |
10 | rs11572106 | 96,817,479 | A/G | 0.08333 | 0.009346 | 3.199 × 10−6 | 9.6360 |
15 | rs17182744 | 25,279,455 | C/T | 0.11810 | 0.023470 | 3.856 × 10−6 | 5.5690 |
18 | rs72963110 | 73,693,542 | G/A | 0.09028 | 0.012140 | 5.100 × 10−6 | 8.0780 |
SNP | Ref/Alt Allele | Freq Cases | MAF | EAS | AMR | AFR | EUR | SAS |
---|---|---|---|---|---|---|---|---|
rs873041 | C/T | 0.13190 | 0.29 | 0.188 | 0.092 | 0.236 | 0.061 | 0.134 |
rs77534195 | C/A | 0.11810 | 0.17 | 0.098 | 0.027 | 0.022 | 0.081 | 0.101 |
rs61712011 | A/C | 0.09722 | 0.43 | 0.021 | 0.053 | 0.327 | 0.024 | 0.043 |
rs75614542 | A/C | 0.09028 | 0.04 | 0.000 | 0.009 | 0.000 | 0.017 | 0.007 |
rs11572106 | A/G | 0.08333 | 0.04 | 0.000 | 0.017 | 0.002 | 0.023 | 0.018 |
rs17182744 | C/T | 0.11810 | 0.06 | 0.000 | 0.016 | 0.016 | 0.034 | 0.018 |
rs72963110 | G/A | 0.09028 | 0.08 | 0.000 | 0.016 | 0.002 | 0.031 | 0.003 |
SNP | Closest Gene | SNP-Gene Distance | Annotation | eQTL | RegulomeDB 2.2. | 3DSNP Score |
---|---|---|---|---|---|---|
rs873041 | LINC01756 (lincRNA) | 41,752 bp | Intergenic | No | Rank = 2b, Score = 0.61652 | 1.88 |
rs77534195 | GRID2 | 0 bp | Intronic | No | Rank = 7, Score = 0.18412 | 2.07 |
rs61712011 | SLC2A12 | 0 bp | Intronic | No | Rank = 7, Score = 0.51392 | 1.81 |
rs75614542 | FBXW2 | 0 bp | 3′ UTR | No | Rank = 1f, Score = 0.55324 | 6.63 |
rs11572106 | CYP2C8 | 0 bp | Intronic | No | Rank = 1f, Score = 0.907 | 1.22 |
rs17182744 | SNHG14 (lincRNA) | 0 bp | Non-coding | No | Rank = 7, Score = 0.18412 | 26.38 |
rs72963110 | AC090457.1 (lincRNA) | 26,531 bp | Intergenic | No | Rank = 5, Score = 0.58955 | 1.34 |
SNP | Gene | Gain | Loss |
---|---|---|---|
rs75614542 | FBXW2 | hsa-miR-7110-3p, hsa-miR-6873-3p, hsa-miR-6817-3p, hsa-miR-4680-5p, hsa-miR-618 | hsa-miR-3675-3p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatziparasidou, A.; Kyrgiafini, M.-A.; Sarafidou, T.; Moutou, K.A.; Mamuris, Z. Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis. Curr. Issues Mol. Biol. 2024, 46, 6522-6532. https://doi.org/10.3390/cimb46070389
Chatziparasidou A, Kyrgiafini M-A, Sarafidou T, Moutou KA, Mamuris Z. Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis. Current Issues in Molecular Biology. 2024; 46(7):6522-6532. https://doi.org/10.3390/cimb46070389
Chicago/Turabian StyleChatziparasidou, Alexia, Maria-Anna Kyrgiafini, Theologia Sarafidou, Katerina A. Moutou, and Zissis Mamuris. 2024. "Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis" Current Issues in Molecular Biology 46, no. 7: 6522-6532. https://doi.org/10.3390/cimb46070389
APA StyleChatziparasidou, A., Kyrgiafini, M. -A., Sarafidou, T., Moutou, K. A., & Mamuris, Z. (2024). Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis. Current Issues in Molecular Biology, 46(7), 6522-6532. https://doi.org/10.3390/cimb46070389