Correlation Analysis Between Multi-Drug Resistance Phenotype and Virulence Factor Expression of Clinical Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Antibiotic Sensitivity Test
2.2.2. Determination of PA Biofilm by Crystal Violet Staining Method
2.2.3. Determination of Pyocyanin
2.2.4. Elastase Assay
2.2.5. Measurement of Cluster Movement Ability
2.2.6. Homology Analysis of Strain DNA
2.2.7. Statistical Analysis
3. Results
3.1. Antibiotic Sensitivity Disk Method
3.2. Characteristics of Clinical PA Strains
3.3. Gene Typing Based on Homology Analysis
3.4. Correlation Matrix Analysis Between Virulence Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, K.; Li, W.; Li, J.; Ma, T.; Wang, K.; Yuan, Y.; Li, J.S.; Xie, R.; Huang, T.; Zhang, Y.; et al. TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat. Microbiol. 2019, 4, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Ofonime Ukpuho, B.; Olleym, M.; Ibrahim, I. Prevalence and Antibiotic Resistance Profile of Pseudomonas aeruginosa in Wound Infections in Keffi, Nasarawa State, Nigeria. Asian J. Res. Infect. Dis. 2024, 15, 20–31. [Google Scholar]
- Freschi, L.; Vincent, A.; Jeukens, J.; Emond-Rheault, J.; Kukavica-Ibrulj, I.; Dupont, M.; Charette, S.; Boyle, B.; Levesque, R. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol. 2019, 11, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Abu Lila, A.S.; Huwaimel, B.; Alobaida, A.; Hussain, T.; Rafi, Z.; Mehmood, K.; Abdallah, M.H.; Hagbani, T.A.; Rizvi, S.M.; Moin, A.; et al. Delafloxacin capped gold nanoparticles (DFX-AuNPs): An effective antibacterial nano-formulation of fluoroquinolone antibiotic. Materials 2022, 15, 5709. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, W.; Liao, G.; Huang, C.; Wang, J.; Zhang, J. Inhibiting mechanism of Pseudomonas aeruginosa biofilm formation—An innovational reagent of plasma-activated lactic acid. J. Water Process Eng. 2025, 69, 69106613. [Google Scholar] [CrossRef]
- Puerta-Alcalde, P.; Cardozo, C.; Marco, F.; Suarez-Lledo, M.; Moreno, E.; Morata, L.; Fernandez-Aviles, F.; Gutierrez-Garcia, G.; Chumbita, M.; Rosinol, L.; et al. Changing epidemiology of bloodstream infection in a 25-years hematopoietic stem cell transplant program: Current challenges and pitfalls on empiric antibiotic treatment impacting outcomes. Bone Marrow Transpl. 2020, 55, 603–612. [Google Scholar] [CrossRef]
- Kadaikunnan, S.; Alharbi, N.S.; Khaled, J.M.; Alobaidi, A.S.; Rajivgandhi, G.N.; Ramachandran, G.; Gnanasekaran, C.; Chelliah, C.K.; Alanzi, K.F.; Manoharan, N. Partially purified actinomycetes compounds enhance the intracellular damages in multi-drug-resistant P. aeruginosa and K. pneumoniae. Saudi J. Biol. Sci. 2021, 28, 6057–6062. [Google Scholar] [CrossRef] [PubMed]
- Morihara, K.; Tsuzuki, H. Production of protease and elastase by Pseudomonas aeruginosa strains isolated from patients. Infect. Immun. 1977, 15, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Klaus, J.; Burnham, J.P.; Michelson, A.; McEvoy, C.A.; Kollef, M.H.; Lyons, P.G. Bloodstream infections and delayed antibiotic coverage are associated with negative hospital outcomes in hematopoietic stem cell transplant recipients. Chest 2020, 158, 1385–1396. [Google Scholar] [CrossRef]
- Marra, A.R.; Pereira, C.A.; Gales, A.C.; Menezes, L.C.; Cal, R.G.; de Souza, J.M.; Edmond, M.B.; Faro, C.; Wey, S.B. Bloodstream infections with metallo-beta-lactamase-producing Pseudomonas aeruginosa: Epidemiology, microbiology, and clinical outcomes. Antimicrob. Agents Chemother. 2006, 50, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Law, N.; Logan, C.; Furr, C.; Lehman, S.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P.; Schooley, R.; et al. Successful Bacteriophage Therapy for Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infection in a Cystic Fibrosis Patient. J. Heart Lung Transplant. 2019, 38, S38. [Google Scholar] [CrossRef]
- Mettrick, K.A.; Weaver, G.M.; Grainge, I. Neutral-Neutral 2-Dimensional Agarose Gel Electrophoresis for Visualization of E. coli DNA Replication Structures. Methods Mol. Biol. 2020, 2119, 61–72. [Google Scholar] [PubMed]
- Nikolina, B.; Filip, K. Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. PLoS ONE 2021, 16, e0258385. [Google Scholar]
- Li, Z.; Zhou, X.; Liao, D.; Liu, R.; Zhao, X.; Wang, J.; Zhong, Q.; Zeng, Z.; Peng, Y.; Tan, Y.; et al. Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials. Front. Cell. Infect. Microbiol. 2023, 13, 1180194. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Cherie Millar, B.; Moore, J.E. Extraction of genomic DNA from Pseudomonas aeruginosa: A comparison of three methods. Br. J. Biomed. Sci. 2003, 60, 34–35. [Google Scholar] [CrossRef] [PubMed]
- Milan, O.; Debroize, L.; Bertrand, X.; Plesiat, P.; Valentin, A.S.; Quentin, R.; Van der Mee-Marquet, N. Difficult-to-detect carbapenem-resistant IMP13-producing P. aeruginosa: Experience feedback concerning a cluster of urinary tract infections at a surgical clinic in France. Antimicrob. Resist. Infect. Control 2013, 2, 12. [Google Scholar] [CrossRef]
- Silva-Santana, G.; Cabral-Oliveira, G.G.; Oliveira, D.R.; Nogueira, B.A.; Pereira-Ribeiro, P.M.; Mattos-Guaraldi, A.L. Staphylococcus aureus biofilms: An opportunistic pathogen with multidrug resistance. Rev. Med. Microbiol. 2021, 32, 12–21. [Google Scholar] [CrossRef]
- Cho, H.H.; Kwon, K.C.; Kim, S.; Park, Y.; Koo, S.H. Association between Biofilm Formation and Antimicrobial Resistance in Carbapenem-Resistant Pseudomonas aeruginosa. Ann. Clin. Lab. Sci. 2018, 48, 363–368. [Google Scholar] [PubMed]
- Shahraki, S.Z.; Hamed, T.; Mojdeh, J. Coexistence of Virulence Factors and Efflux Pump Genes in Clinical Isolates of: Analysis of Biofilm-Forming Strains from Iran. Int. J. Microbiol. 2021, 2021, 5557361. [Google Scholar]
- Karami, P.; Mohajeri, P.; Mashouf, R.Y.; Karami, M.; Yaghoobi, M.H.; Dastan, D.; Alikhani, M.Y. Molecular characterization of clinical and environmental Pseudomonas aeruginosa isolated in a burn center. Saudi J. Biol. Sci. 2019, 26, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Eladawy, M.; El-Mowafy, M.; El-Sokkary, M.M.; Barwa, R. Antimicrobial resistance and virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. Microb. Pathog. 2021, 158, 105042. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.; Pandey, S.; Gagan, S.; Biswas, S.; Joseph, J. Virulence factors in multidrug (MDR) and Pan-drug resistant (XDR) Pseudomonas aeruginosa: A cross-sectional study of isolates recovered from ocular infections in a high-incidence setting in southern India. J. Ophthalmic Inflamm. Infect. 2021, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Zolpirani, F.H.; Ghaemi, E.A.; Yasaghi, M.; Nikokar, I.; Ardebili, A. Effect of phenylalanine arginyl β-naphthylamide on the imipenem resistance, elastase production, and the expression of quorum sensing and virulence factor genes in Pseudomonas aeruginosa clinical isolates. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2024, 55, 2715–2726. [Google Scholar] [CrossRef]
- Plate-based assay for swimming motility in Pseudomonas aeruginosa. Methods Mol. Biol. 2014, 1149, 59–65. [CrossRef]
- Pang, Z.; Zhu, Q. Traditional Chinese Medicine is an Alternative Therapeutic Option for Treatment of Pseudomonas aeruginosa Infections. Front. Pharmacol. 2021, 12, 737252. [Google Scholar] [CrossRef]
- Wang, F.; He, Q.; Yin, J.; Xu, S.; Hu, W.; Gu, L. BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin. Nat. Commun. 2018, 9, 2563. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Manefield, M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE 2012, 7, e46718. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, P.; Gagnière, H.; Berry, H.; Bret, L. Antibiotic resistance and virulence properties of Pseudomonas aeruginosa strains from mechanically ventilated patients with pneumonia in intensive care units: Comparison with imipenem-resistant extra-respiratory tract isolates from uninfected patients. Microbes Infect. 2002, 4, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed]
Biofilm | Formation Quantity | Formation Degree | ||
---|---|---|---|---|
Possession | Nothing | Weak | Medium | |
Clinical bacterial strains | 93.75% | 6.25% | 73.3% | 26.7% |
Types of Antibiotics | CIP | PIP | AMP | CPI | GEN | CZ | NOR | IPM | |
---|---|---|---|---|---|---|---|---|---|
Formation of biofilm | Correlation coefficient (r=) | n.r | n.r | n.r | n.r | n.r | n.r | n.r | 0.488 |
Statistical value (p=) | 0.166 | 0.082 | n.r | n.r | 0.082 | n.r | 0.082 | 0.040 |
Virulence Factor | Pyocyanin (OD520) | Cluster Movement (cm2) | Elastase (mm) | Biofilm (OD590) | |
---|---|---|---|---|---|
Pyocyanin (OD520) | p < 0.0001 | p < 0.0001 | 0.064052 | Statistical figures (p=) | |
Cluster Movement (cm2) | −0.1577 | 0.185145 | p < 0.0001 | ||
Elastase (mm) | 0.4128 | 0.3257 | p < 0.0001 | ||
Biofilm (OD590) | 0.7408 | −0.2529 | 0.1033 | ||
Pearson correlation coefficient (r=) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhou, R.; Pan, J.; Liu, Z.; Huang, X.; Lin, Y.; Li, N.; Chen, K.; Sun, W.; Deng, Y.; et al. Correlation Analysis Between Multi-Drug Resistance Phenotype and Virulence Factor Expression of Clinical Pseudomonas aeruginosa. Curr. Issues Mol. Biol. 2025, 47, 50. https://doi.org/10.3390/cimb47010050
Xu W, Zhou R, Pan J, Liu Z, Huang X, Lin Y, Li N, Chen K, Sun W, Deng Y, et al. Correlation Analysis Between Multi-Drug Resistance Phenotype and Virulence Factor Expression of Clinical Pseudomonas aeruginosa. Current Issues in Molecular Biology. 2025; 47(1):50. https://doi.org/10.3390/cimb47010050
Chicago/Turabian StyleXu, Wenli, Runcheng Zhou, Jingwei Pan, Zhuangcong Liu, Xuyu Huang, Yueqiao Lin, Nan Li, Kecan Chen, Wenbo Sun, Yi Deng, and et al. 2025. "Correlation Analysis Between Multi-Drug Resistance Phenotype and Virulence Factor Expression of Clinical Pseudomonas aeruginosa" Current Issues in Molecular Biology 47, no. 1: 50. https://doi.org/10.3390/cimb47010050
APA StyleXu, W., Zhou, R., Pan, J., Liu, Z., Huang, X., Lin, Y., Li, N., Chen, K., Sun, W., Deng, Y., Yang, A., & Chen, X. (2025). Correlation Analysis Between Multi-Drug Resistance Phenotype and Virulence Factor Expression of Clinical Pseudomonas aeruginosa. Current Issues in Molecular Biology, 47(1), 50. https://doi.org/10.3390/cimb47010050