Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys–Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations
Abstract
:1. Introduction
Clinical Description
2. Materials and Methods
2.1. Protein Informatics and Molecular Modeling
2.2. Consent for Publication and Informed Consent
3. Results
3.1. Molecular Modeling and Thermodynamic Measurements
3.2. Energetics Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, K.A.; Pietenpol, J.A.; Moses, H.L. A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J. Cell. Biochem. 2007, 101, 9–33. [Google Scholar] [CrossRef] [PubMed]
- van de Laar, I.M.; Oldenburg, R.A.; Pals, G.; Roos-Hesselink, J.W.; de Graaf, B.M.; Verhagen, J.M.; Hoedemaekers, Y.M.; Willemsen, R.; Severijnen, L.A.; Venselaar, H.; et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 2011, 43, 121–126. [Google Scholar] [CrossRef]
- van de Laar, I.M.; van der Linde, D.; Oei, E.H.; Bos, P.K.; Bessems, J.H.; Bierma-Zeinstra, S.M.; van Meer, B.L.; Pals, G.; Oldenburg, R.A.; Bekkers, J.A.; et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J. Med. Genet. 2012, 49, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Macklin, S.; Mohammed, A.; Jackson, J.; Hines, S.L.; Atwal, P.S.; Caulfield, T. Personalized molecular modeling for pinpointing associations of protein dysfunction and variants associated with hereditary cancer syndromes. Mol. Genet. Genom. Med. 2018, 6, 805–810. [Google Scholar] [CrossRef]
- Richter, J.E., Jr.; Zimmermann, M.T.; Blackburn, P.R.; Mohammad, A.N.; Klee, E.W.; Pollard, L.M.; Macmurdo, C.F.; Atwal, P.S.; Caulfield, T.R. Protein modeling and clinical description of a novel in-frame GLB1 deletion causing GM1 gangliosidosis type II. Mol. Genet. Genom. Med. 2018, 6, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- von Roemeling, C.A.; Caulfield, T.R.; Marlow, L.; Bok, I.; Wen, J.; Miller, J.L.; Hughes, R.; Hazlehurst, L.; Pinkerton, A.B.; Radisky, D.C.; et al. Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. Oncotarget 2018, 9, 3–20. [Google Scholar] [CrossRef]
- Cohen, I.; Coban, M.; Shahar, A.; Sankaran, B.; Hockla, A.; Lacham, S.; Caulfield, T.R.; Radisky, E.S.; Papo, N. Disulfide engineering of human Kunitz-type serine protease inhibitors enhances proteolytic stability and target affinity toward mesotrypsin. J. Biol. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Hines, S.L.; Mohammad, A.N.; Jackson, J.; Macklin, S.; Caulfield, T.R. Integrative data fusion for comprehensive assessment of a novel CHEK2 variant using combined genomics, imaging, and functional-structural assessments via protein informatics. Mol. Omics 2019, 15, 59–66. [Google Scholar] [CrossRef]
- Hines, S.L.; Richter, J.E., Jr.; Mohammad, A.N.; Mahim, J.; Atwal, P.S.; Caulfield, T.R. Protein informatics combined with multiple data sources enriches the clinical characterization of novel TRPV4 variant causing an intermediate skeletal dysplasia. Mol. Genet. Genom. Med. 2019, e566. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Hooft, R.W.; Sander, C.; Scharf, M.; Vriend, G. The PDBFINDER database: A summary of PDB, DSSP and HSSP information with added value. Comput. Appl. Biosci. 1996, 12, 525–529. [Google Scholar] [CrossRef]
- Hooft, R.W.; Vriend, G.; Sander, C.; Abola, E.E. Errors in protein structures. Nature 1996, 381, 272. [Google Scholar] [CrossRef] [PubMed]
- King, R.D.; Sternberg, M.J. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci. 1996, 5, 2298–2310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 2009, 77 (Suppl. 9), 114–122. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Elber, R. SSALN: An alignment algorithm using structure-dependent substitution matrices and gap penalties learned from structurally aligned protein pairs. Proteins 2006, 62, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK—A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Caulfield, T.; Devkota, B. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Proteins 2012, 80, 2489–2500. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, T.; Medina-Franco, J.L. Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A. J. Struct. Biol. 2011, 176, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, T.R. Inter-ring rotation of apolipoprotein A-I protein monomers for the double-belt model using biased molecular dynamics. J. Mol. Graph. Model. 2011, 29, 1006–1014. [Google Scholar] [CrossRef]
- Caulfield, T.R.; Devkota, B.; Rollins, G.C. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data. J. Biophys. 2011, 2011, 219515. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vallejo, F.; Caulfield, T.; Martinez-Mayorga, K.; Giulianotti, M.A.; Nefzi, A.; Houghten, R.A.; Medina-Franco, J.L. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb. Chem. High Throughput Screen. 2011, 14, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Reumers, J.; Schymkowitz, J.; Ferkinghoff-Borg, J.; Stricher, F.; Serrano, L.; Rousseau, F. SNPeffect: A database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res. 2005, 33, D527–D532. [Google Scholar] [CrossRef] [PubMed]
- Schymkowitz, J.W.; Rousseau, F.; Martins, I.C.; Ferkinghoff-Borg, J.; Stricher, F.; Serrano, L. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc. Natl. Acad. Sci. USA 2005, 102, 10147–10152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.J.; Caulfield, T.; Xu, Y.F.; Gendron, T.F.; Hubbard, J.; Stetler, C.; Sasaguri, H.; Whitelaw, E.C.; Cai, S.; Lee, W.C.; et al. The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum. Mol. Genet. 2013, 22, 3112–3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Hay, S.O.; Lane, A.L.; Caulfield, T.R.; Claussin, C.; Bertrand, J.; Masson, A.; Choudhry, S.; Fauq, A.H.; Maharvi, G.M.; Leissring, M.A. Optimization of peptide hydroxamate inhibitors of insulin-degrading enzyme reveals marked substrate-selectivity. J. Med. Chem. 2013, 56, 2246–2255. [Google Scholar] [CrossRef]
- Ando, M.; Fiesel, F.C.; Hudec, R.; Caulfield, T.R.; Ogaki, K.; Gorka-Skoczylas, P.; Koziorowski, D.; Friedman, A.; Chen, L.; Dawson, V.L.; et al. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol. Neurodegener. 2017, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Caulfield, T.R.; Fiesel, F.C.; Moussaud-Lamodiere, E.L.; Dourado, D.F.; Flores, S.C.; Springer, W. Phosphorylation by PINK1 Releases the UBL Domain and Initializes the Conformational Opening of the E3 Ubiquitin Ligase Parkin. PLoS Comput. Biol. 2014, 10, e1003935. [Google Scholar] [CrossRef]
- Caulfield, T.R.; Fiesel, F.C.; Springer, W. Activation of the E3 ubiquitin ligase Parkin. Biochem. Soc. Trans. 2015, 43, 269–274. [Google Scholar] [CrossRef]
- Fiesel, F.C.; Ando, M.; Hudec, R.; Hill, A.R.; Castanedes-Casey, M.; Caulfield, T.R.; Moussaud-Lamodiere, E.L.; Stankowski, J.N.; Bauer, P.O.; Lorenzo-Betancor, O.; et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep. 2015, 16, 1114–1130. [Google Scholar] [CrossRef] [Green Version]
- Fiesel, F.C.; Caulfield, T.R.; Moussaud-Lamodiere, E.L.; Ogaki, K.; Dourado, D.F.; Flores, S.C.; Ross, O.A.; Springer, W. Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin. Hum. Mutat. 2015, 36, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Puschmann, A.; Fiesel, F.C.; Caulfield, T.R.; Hudec, R.; Ando, M.; Truban, D.; Hou, X.; Ogaki, K.; Heckman, M.G.; James, E.D.; et al. Heterozygous PINK1 p.G411S increases risk of Parkinson’s disease via a dominant-negative mechanism. Brain J. Neurol. 2017, 140 Pt 1, 98–117. [Google Scholar] [CrossRef]
- Regalado, E.S.; Guo, D.C.; Villamizar, C.; Avidan, N.; Gilchrist, D.; McGillivray, B.; Clarke, L.; Bernier, F.; Santos-Cortez, R.L.; Leal, S.M.; et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ. Res. 2011, 109, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Kutty, S.; Sengupta, P.P.; Khandheria, B.K. Patent foramen ovale: The known and the to be known. J. Am. Coll. Cardiol. 2012, 59, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Sand, K.M.; Midelfart, A.; Thomassen, L.; Melms, A.; Wilhelm, H.; Hoff, J.M. Visual impairment in stroke patients—A review. Acta Neurol. Scand. Suppl. 2013, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.K.; Tan, E.H.; Luo, B.; Huang, C.L.; Loo, J.S.; Choong, C.; Tan, N.S. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J. Am. Heart Assoc. 2013, 2, e000269. [Google Scholar] [CrossRef]
- Dai, X.; Shen, J.; Annam, N.P.; Jiang, H.; Levi, E.; Schworer, C.M.; Tromp, G.; Arora, A.; Higgins, M.; Wang, X.F.; et al. SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model. Sci. Rep. 2015, 5, 10180. [Google Scholar] [CrossRef] [Green Version]
- Qing, J.; Zhang, Y.; Derynck, R. Structural and functional characterization of the transforming growth factor-beta-induced Smad3/c-Jun transcriptional cooperativity. J. Biol. Chem. 2000, 275, 38802–38812. [Google Scholar] [CrossRef]
Gene | Protein | Inheritance | Disease Association(s) |
---|---|---|---|
ACTA2 | Actin, alpha-2, smooth muscle, aorta | AD | fTAAD |
ADAMTS2 | Adam metallopeptidase with thrombospondin type 1 motif 2 | AR | dEDS |
ALDH18A1 | Aldehyde dehydrogenase 18 family member a1 | AD AR | Cutis laxa |
ATP6V0A2 | Atpase h+ transporting v0 subunit a2 | AR | Cutis laxa |
ATP7A | Atpase copper transporting alpha | XL | Menkes, Obesity hypoventilation syndrome (OHS) |
B3GALT6 | Beta-1,3-galactosyltransferase 6 | AR | spEDS |
B4GALT7 | Beta-1,4-galactosyltransferase 7 | AR | spEDS |
CBS | Cystathionine beta-synthase | AR | Homocystinuria |
CHST14 | Carbohydrate (dermatan 4) sulfotransferase 14 | AR | mcEDS |
COL11A1 | Collagen type xi alpha 1 | AD | Fibrochondrogenesis Stickler syndrome |
COL11A2 | Collagen type xi alpha 2 | AD | Fibrochondrogenesis Stickler syndrome, non-ocular |
COL1A1 | Collagen type i alpha 1 | AD | aEDS cEDS Osteogenesis Imperfecta |
COL1A2 | Collagen type i alpha 2 | AD, AR | EDS, type VIIB Osteogenesis Imperfecta; cvEDS |
COL2A1 | Collagen type ii alpha 1 | AD AR | OSMED Stickler syndrome |
COL3A1 | Collagen type iii alpha 1 | AD | vEDS |
COL5A1 | Collagen type v alpha 1 | AD | cEDS |
COL5A2 | Collagen type v alpha 2 | AD | cEDS |
COL9A1 | Collagen type ix alpha 1 | AD AR | Stickler syndrome |
COL9A2 | Collagen type ix alpha 2 | AD AR | Stickler syndrome |
DSE | Dermatan sulfate epimerase | AR | mcEDS |
EFEMP2 | Egf containing fibulin-like extracellular matrix Protein 2 | AR | Cutis laxa |
ELN | Elastin | AD | Cutis laxa |
FBLN5 | Fibulin 5 | AD, AR | Cutis laxa |
FBN1 | Fibrillin 1 | AD | Marfan syndrome |
FBN2 | Fibrillin 2 | AD | Congenital contractural arachnodactyly |
FKBP14 | Fk506 binding protein 14 | AR | EDS with progressive kyphoscoliosis, myopathy, and hearing loss |
FLNA | Filamin a | XL | EDS with periventricular heterotopia |
LTBP4 | Latent transforming growth factor beta binding Protein 4 | AR | Cutis laxa, autosomal recessive |
MAT2A | Methionine adenosyltransferase ii, alpha | AD | fTAAD |
MED12 | Mediator complex subunit 12 | AD | fTAAD, Lujan syndrome |
MFAP5 | Microfibrillar-associated protein 5 | AD | fTAAD |
MYH11 | Myosin, heavy chain 11, smooth muscle | AD | fTAAD |
MYLK | Myosin light chain kinase | AD | fTAAD |
NOTCH1 | Notch, drosophila, homolog of, 1 | AD | fTAAD |
PLOD1 | Procollagen-lysine, 2-oxoglutarate 5-dioxygenase | AR | kEDS |
PRDM5 | Pr domain 5 | AR | BCS |
PRKG1 | Protein kinase, cgmp-dependent, regulatory, type i | AD | fTAAD |
PYCR1 | Pyrroline-5-carboxylate reductase 1 | AR | Cutis laxa, autosomal recessive |
RIN2 | Ras and rab interactor 2 | AR | MACS |
SKI | V-ski avian sarcoma viral oncogene homolog | AD | Shprintzen-Goldberg syndrome |
SLC2A10 | Solute carrier family 2 (facilitated glucose Transporter), member 10 | AR | Arterial tortuosity syndrome |
SLC39A13 | Solute carrier family 39 member 13 | AR | EDS, Spondylocheirodysplasia type |
SMAD3 | Mothers against decapentaplegic, drosophila, Homolog of, 3 | AD | LDS |
SMAD4 | Mothers against decapentaplegic, drosophila, homolog of, 4 | AD | JP/HHT |
TGFB2 | Transforming growth factor, beta-2 | AD | LDS |
TGFB3 | Transforming growth factor, beta-3 | AD | LDS |
TGFBR1 | Transforming growth factor-beta receptor, type i | AD | LDS |
TGFBR2 | Transforming growth factor-beta receptor, type ii | AD | LDS |
Zinc finger protein 469 | |||
ZNF469 | Transforming growth factor-beta | AR | BCS |
Type | Gene | Comments |
---|---|---|
Type 1 | TGFBR1 | Craniofacial involvement more frequent than in Type 2. |
Type 2 | TGFBR2 | Displays at least 2 major signs of vascular Ehlers–Danlos syndrome. No craniofacial anomalies. |
Type 3 | SMAD3 | Strong predisposition for osteoarthritis. |
Type 4 | TGFB2 | Systemic findings less severe & more similar to Marfan syndrome. |
Type 5 | TGFB3 | No remarkable arterial tortuosity or evidence of early dissections. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, J.E., Jr.; Samreen, A.; Vadlamudi, C.; Helmi, H.; Mohammad, A.N.; Wierenga, K.; Hines, S.; Atwal, P.S.; Caulfield, T.R. Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys–Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations. Medicina 2019, 55, 137. https://doi.org/10.3390/medicina55050137
Richter JE Jr., Samreen A, Vadlamudi C, Helmi H, Mohammad AN, Wierenga K, Hines S, Atwal PS, Caulfield TR. Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys–Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations. Medicina. 2019; 55(5):137. https://doi.org/10.3390/medicina55050137
Chicago/Turabian StyleRichter, John E., Jr., Ayesha Samreen, Charitha Vadlamudi, Haytham Helmi, Ahmed N. Mohammad, Klaas Wierenga, Stephanie Hines, Paldeep S. Atwal, and Thomas R. Caulfield. 2019. "Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys–Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations" Medicina 55, no. 5: 137. https://doi.org/10.3390/medicina55050137
APA StyleRichter, J. E., Jr., Samreen, A., Vadlamudi, C., Helmi, H., Mohammad, A. N., Wierenga, K., Hines, S., Atwal, P. S., & Caulfield, T. R. (2019). Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys–Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations. Medicina, 55(5), 137. https://doi.org/10.3390/medicina55050137