Effects of the Consumption of Prickly Pear Cacti (Opuntia spp.) and its Products on Blood Glucose Levels and Insulin: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Terminology and Selection Criteria
2.2. Data Extraction and Outcomes of Interest
2.3. Data Analysis
2.4. Risk of Bias
3. Results
3.1. Search in Literature
3.2. Results of Included Studies
3.2.1. Results of Opuntia spp. Fruit Included Studies
3.2.2. Results of Opuntia spp. Cladode Included Studies
3.2.3. Results of Combined or Unspecified Opuntia spp. Included Studies
4. Discussion
4.1. Opuntia Ficus Indica Fruit
4.2. Opuntia Ficus Indica Cladode Leaf
4.3. Opuntia Ficus Indica as Combined Fruit and Cladode Leaf
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, D.; Che, J.; Yarla, N.S.; Zhu, H.; Lu, T.; Xu, B.; Putta, S. Type 2 diabetes study, introduction and perspective. ODJ 2018, 8, 13–21. [Google Scholar] [CrossRef]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef]
- Getz, L. Sustainable and responsible preventive medicine: Conceptualising ethical dilemmas arising from clinical implementation of advancing medical technology. Ph.D. Thesis, Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway, June 2006. [Google Scholar]
- Onakpoya, I.J.; O’Sullivan, J.; Heneghan, C.J. The effect of cactus pear (Opuntia ficus-indica) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2015, 31, 640–646. [Google Scholar] [CrossRef]
- Butera, D.; Tesoriere, L.; Di Gaudio, F.; Bongiorno, A.; Allegra, M.; Pintaudi, A.M.; Kohen, R.; Livrea, M.A. Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: Betanin and indicaxanthin. J. Agric. Food Chem. 2002, 50, 6895–6901. [Google Scholar] [CrossRef] [PubMed]
- Department of Environment. Opuntia spp. Available online: http://www.environment.gov.au/cgi-bin/biodiversity/invasive/weeds/weeddetails.pl?taxon_id=82753# (accessed on 6 January 2019).
- Australian Weeds Committee. Weeds of National Significance Opuntioid cacti (Austrocylindropuntia, Cylindropuntia, Opuntia spp.); Strategic plan; Australian Weeds Committee: Canberra, ACT, Australia, 2012.
- Barbera, G.; Carimi, F.; Inglese, P. Past and present role of the Indian-fig prickly-pear (Opuntia ficus-indica (L.) Miller, Cactaceae) in the agriculture of Sicily. Econ. Bot. 1992, 46, 10–20. [Google Scholar] [CrossRef]
- Knishinsky, R. Prickly Pear Cactus Medicine: Treatments for Diabetes, Cholesterol, and the Immune system; Inner Traditions/Bear & Co.: Rochester, VT, USA, 2004. [Google Scholar]
- Bocek, B.R. Ethnobotany of Costanoan Indians, California, based on collections by John P. Harrington. Econ. Bot. 1984, 38, 240–255. [Google Scholar] [CrossRef]
- Moerman, D.E. Native American ethnobotany. Am. Biol. Teach. 2000, 62, 223–224. [Google Scholar] [CrossRef]
- Brinker, F. Prickly pear as food and medicine. J. Diet. Suppl. 2009, 6, 362–376. [Google Scholar] [CrossRef]
- El Kossori, R.L.; Villaume, C.; El Boustani, E.; Sauvaire, Y.; Méjean, L. Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant. Foods Hum. Nut. 1998, 52, 263–270. [Google Scholar] [CrossRef]
- Medina, E.M.D.; Rodríguez, E.M.R.; Romero, C.D. Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.-O.; Dommes, J.; Pincemail, J. Evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef]
- Piga, A. Cactus pear: A fruit of nutraceutical and functional importance. J. Prof. Assoc. Cactus Dev. 2004, 6, 9–22. [Google Scholar]
- El Abdel-Hameed, S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013, 139, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Fernández-López, J.A.; Almela, L.; Obón, J.M.; Castellar, R. Determination of antioxidant constituents in cactus pear fruits. Plant. Foods Hum. Nutr. 2010, 65, 253–259. [Google Scholar] [CrossRef]
- Kuti, J.O. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica). Arab J. Chem. 2013, 9, S278–S281. [Google Scholar] [CrossRef]
- Son, J.E.; Lee, B.H.; Nam, T.G.; Im, S.; Chung, D.K.; Lee, J.M.; Chun, O.K.; Kim, D.O. Flavonols from the Ripe fruits of Opuntia ficus-indica var. saboten protect neuronal pc-12 cells against oxidative stress. J. Food Biochem. 2014, 38, 518–526. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Hervert-Hernández, D.; Sánchez-Mata, M.C.; Díez-Marqués, C.; Goñi, I. Intestinal bioaccessibility of polyphenols and antioxidant capacity of pulp and seeds of cactus pear. Int. J. Food Sci. Nutr. 2011, 62, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; De Bellis, L.; Blando, F. Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) Mill.] fruits from apulia (South Italy) genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Escobedo-Avellaneda, Z.; Martín-Belloso, O.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; García-García, R.; Torres, J.A.; Welti-Chanes, J. Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (Opuntia ficus-indica) beverages. Food Eng. Rev. 2015, 7, 198–208. [Google Scholar] [CrossRef]
- Dehbi, F.; Hasib, A.; Tilaoui, M.; El Batal, H.; Zaki, N.; Ouatmane, A.; Jaouad, A.; Zyad, A. Bioactive constituents, antioxidant activity and in vitro cancer cell cytotoxicity of Moroccan prickly pear (Opuntia ficus indica L.) juices. J. Natl. Sci. Res. 2013, 3, 12–20. [Google Scholar]
- Galati, E.M.; Mondello, M.R.; Giuffrida, D.; Dugo, G.; Miceli, N.; Pergolizzi, S.; Taviano, M.F. Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) mill. Fruit juice: Antioxidant and antiulcerogenic activity. J. Agric. Food Chem. 2003, 51, 4903. [Google Scholar] [CrossRef] [PubMed]
- Chaalal, M.; Louaileche, H.; Touati, N.; Bachir Bey, M. Phytochemicals, in vitro antioxidant capacity and antiradical potential of whole and ground seeds of three prickly pear varieties: A comparative study. Ind. Crops Prod. 2013, 49, 386–391. [Google Scholar] [CrossRef]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Coronado, G.D.; Thompson, B.; Tejeda, S.; Godina, R. Attitudes and beliefs among Mexican Americans about type 2 diabetes. J. Health Care Poor Under. 2004, 15, 576–588. [Google Scholar] [CrossRef]
- Lemley, M.; Spies, L.A. Traditional beliefs and practices among Mexican American immigrants with type II diabetes: A case study. J. Am. Assoc. Nurse Pract. 2015, 27, 185–189. [Google Scholar] [CrossRef]
- Astello-García, M.G.; Cervantes, I.; Nair, V.; Santos-Díaz, M.d.S.; Reyes-Agüero, A.; Guéraud, F.; Negre-Salvayre, A.; Rossignol, M.; Cisneros-Zevallos, L.; de la Rosa Barba, A.P. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 2015, 43, 119–130. [Google Scholar] [CrossRef]
- Saenz, C. Processing technologies: An alternative for cactus pear (Opuntia spp.) fruits and cladodes. J. Arid. Environ. 2000, 46, 209–225. [Google Scholar] [CrossRef]
- Godard, M.P.; Ewing, B.A.; Pischel, I.; Ziegler, A.; Benedek, B.; Feistel, B. Acute blood glucose lowering effects and long-term safety of Opuntia supplementation in pre-diabetic males and females. J. Ethnopharm. 2010, 130, 631–634. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 4, 264–269. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G. Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; Wiley Online Library: Hoboken, NJ, USA, 2008; pp. 187–241. [Google Scholar]
- Khouloud, A.; Abedelmalek, S.; Chtourou, H.; Souissi, N. The effect of Opuntia ficus-indica juice supplementation on oxidative stress, cardiovascular parameters, and biochemical markers following yo-yo Intermittent recovery test. Food Sci. Nutr. 2018, 6, 259–268. [Google Scholar] [CrossRef]
- Wolfram, R.M.; Kritz, H.; Efthimiou, Y.; Stomatopoulos, J.; Sinzinger, H. Effect of prickly pear (Opuntia robusta) on glucose- and lipid-metabolism in non-diabetics with hyperlipidemia: A pilot study. Wiener Klinische Wochenschrift 2002, 114, 840–846. [Google Scholar]
- Wiese, J.; McPherson, S.; Odden, M.C.; Shlipak, M.G. Effect of Opuntia ficus indica on symptoms of the alcohol hangover. Arch. Int. Med. 2004, 164, 1334–1340. [Google Scholar] [CrossRef] [PubMed]
- Pimienta-Barrios, E.; Mendez-Moran, L.; Ramirez-Hernandez, B.C.; Garcia de Alba-Garcia, J.E.; Dominguez-Arias, R.M. Effect of xoconostle (Opuntia joconostle Web.) fruit consumption on glucose and seric lipids. Agrociencia 2008, 42, 645–653. [Google Scholar] [CrossRef]
- Frati, A.C.; Gordillo, B.E.; Altamirano, P.; Ariza, C.R.; Cortes-Franco, R.; Chavez-Negrete, A.; Islas-Andrade, S. Influence of nopal intake upon fasting glycemia in type II diabetics and healthy subjects. Arch. Investing. Med. 1991, 22, 51–56. [Google Scholar]
- Frati, A.C.; Xilotl Díaz, N.; Altamirano, P.; Ariza, R.; López-Ledesma, R. The effect of two sequential doses of Opuntia streptacantha upon glycemia. Arch. Investing. Med. 1991, 22, 333–336. [Google Scholar]
- Frati-Munari, A.C.; Fernández-Harp, J.A.; Bañales-Ham, M.; Ariza-Andraca, C.R. Decreased blood glucose and insulin by nopal (Opuntia sp.). Arch. Investing. Med. 1983, 14, 269–274. [Google Scholar]
- Frati-Munari, A.C.; Fernández-Harp, J.A.; de la Riva, H.; Ariza-Andraca, R.; del Carmen Torres, M. Effects of nopal (Opuntia sp.) on serum lipids, glycemia and body weight. Arch. Investing. Med. 1983, 14, 117–125. [Google Scholar]
- Frati-Munari, A.C.; Gordillo, B.E.; Altamirano, P.; Ariza, C.R. Hypoglycemic effect of Opuntia streptacantha Lemaire in NIDDM. Diabetes Care 1988, 11, 63–66. [Google Scholar] [CrossRef]
- Frati-Munari, A.C.; Yever-Garcés, A.; Islas-Andrade, S.; Ariza-Andráca, C.R.; Chávez-Negrete, A. Studies on the mechanism of “hypoglycemic” effect of nopal (Opuntia sp.). Arch. Investing. Med. 1987, 18, 7–12. [Google Scholar]
- Guevara-Cruz, M.; Tovar, A.R.; Aguilar-Salinas, C.A.; Medina-Vera, I.; Gil-Zenteno, L.; Hernández-Viveros, I.; López-Romero, P.; Ordaz-Nava, G.; Canizales-Quinteros, S.; Guillen Pineda, L.E.; et al. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J. Nutr. 2012, 142, 64–69. [Google Scholar] [CrossRef]
- López-Romero, P.; Pichardo-Ontiveros, E.; Avila-Nava, A.; Vázquez-Manjarrez, N.; Tovar, A.R.; Pedraza-Chaverri, J.; Torres, N. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J. Acad. Nutr. Diet. 2014, 114, 1811–1818. [Google Scholar] [CrossRef]
- Carlos Guevara-Arauza, J.; Ornelas Paz, J.d.J.; Rosales Mendoza, S.; Soria Guerra, R.E.; Paz Maldonado, L.M.T.; Pimentel Gonzalez, D.J. Biofunctional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers. Chem. Cent. J. 2011, 5, 10. [Google Scholar] [CrossRef]
- Linares, E.; Thimonier, C.; Degre, M. The effect of NeOpuntia (R) on blood lipid parameters—Risk factors for the metabolic syndrome (syndrome X). Adv. Ther. 2007, 24, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Castaneda-Andrade, I.; Gonzalez-Sanchez, J.; Frati-Munari, A.C. Hypoglycemic effect of an Opuntia streptacanta Lemaire dialysate. J. Prof. Assoc. Cactus Dev. 1997, 2, 73–75. [Google Scholar]
- Frati, A.C.; Jimenez, E.; Ariza, C.R. Hypoglycemic effect of Opuntia-ficus-indica in non-insulin dependent diabetes mellitus patients. Phytother. Res. 1990, 4, 195–197. [Google Scholar] [CrossRef]
- Bacardi-Gascon, M.; Dueñas-Mena, D.; Jimenez-Cruz, A. Lowering effect on postprandial glycemic response of nopales added to Mexican breakfasts. Diabetes Care 2007, 30, 1264–1265. [Google Scholar] [CrossRef]
- Deldicque, L.; Van Proeyen, K.; Ramaekers, M.; Pischel, I.; Sievers, H.; Hespel, P. Additive insulinogenic action of Opuntia ficus-indica cladode and fruit skin extract and leucine after exercise in healthy males. J. Int. Soc. Sports Nutr. 2013, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Van Proeyen, K.; Ramaekers, M.; Pischel, I.; Hespel, P. Opuntia ficus-indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men. Int. J. Sport Nutr. Exerc. Met. 2012, 22, 284–291. [Google Scholar] [CrossRef]
- Dey, L.; Xie, J.T.; Wang, A.; Wu, J.; Maleckar, S.A.; Yuan, C.S. Anti-hyperglycemic effects of ginseng: Comparison between root and berry. Phytomedicine 2003, 10, 600–605. [Google Scholar] [CrossRef]
- Gray, A.M.; Flatt, P.R. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br. J. Nutr. 1999, 81, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Bryden, N.A.; Polansky, M.M.; Anderson, R.A. Insulin potentiating factor and chromium content of selected foods and spices. Biol. Trace Elem. Res. 1990, 24, 183–188. [Google Scholar] [CrossRef]
- Broadhurst, C.L. Nutrition and non-insulin dependent diabetes mellitus from an anthropological perspective. Altern. Med. Rev. 1997, 2, 378–393. [Google Scholar]
- Nelson, R.; Ihle, S.L.; Lewis, L.; Salisbury, S.; Miller, T.; Bergdall, V.; Bottoms, G. Effects of dietary fiber supplementation on glycemic control in dogs with alloxan-induced diabetes mellitus. Am. J. Vet. Res. 1991, 52, 2060–2066. [Google Scholar]
- Shanmugasundaram, E.; Gopinath, K.L.; Shanmugasundaram, K.R.; Rajendran, V. Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. J. Etthnopharm. 1990, 30, 265–279. [Google Scholar] [CrossRef]
Author (Year) | Participant, Sample Size | Aim | Intervention | Relevant Outcome | Results (C vs. T)) |
---|---|---|---|---|---|
Khouloud et al. (2016) [39] | Healthy M (n = 22) T (n = 11) Age: 20.91 ± 1.22 years C (n = 11) Age: 21.00 ± 0.84 years | Effect of flavonoid standardized PP fruit (Opuntia ficus indica; purple; peeled) juice consumption on cardiovascular, oxidative stress and biochemical parameters during exercise | Duration: 2 w T: 3 × day 30 mL/day PP juice; C: No antioxidants: 150 mL/day RCT | Fasted GLU | Before vs. After Exercise: ↑ GLU (p = 0.01) for both Treatment and Control groups No difference between groups were reported |
Wolfram et al. (2002) [40] | M (n = 24) Age: 37–55 y (45 ± 4.7 years) Group 1: (n = 12) ‘Hypercholesterolemic’ Group 2: (n = 12) ‘Hyperlipidemic’ | The effect of PP (Opuntia Robusta) pulp pectin on GLU and lipid metabolism | Duration: 16 w Pre-running phase: Diet: 7506 kJ (625 kJ 50% fibers and 50% CHO; 8 w) Phase 2: Replaced diet fiber and CHO with fresh 250g/day of PP pulp (8 weeks) Parallel CT | Fasted (14 hrs.): GLU INS | ↓ GLU between phase 1 and 2 (p < 0.005) for both groups 1 and 2 ↓ INS between phase 1 and 2 for group 1 (p < 0.005) INS group 2 = NS (p > 0.05) |
Pimienta et al. (2008) [42] | Phase 1: ‘Healthy’ M (n = 14) Age: 22.4 ± 3.2 years Phase 2: ‘T2DM participants’ F (n = 10) Age: 42.4 ± 3.3 years | The effects of yellow PP fruit peel on health males (single consumption) and diabetic females(Chronic; 5 weeks) | Phase 1: Single consumption Treatment: 250 g fruit peel and GLU solution Control: 75 g GLU (solution) Control trial Phase 2: Duration: 5 w Fasted; 3 × 50 g PP peel/week Control: Baseline measurements Control Trial | OGTT (12 h fasted) Time −20, 0, 20, 30, 60, 80, 100, 120, 140, 160, 190, 200 min Phase 1 and 2: GLU INS | Phase 1: ↓ GLU: treatment vs. control (40 min) (p < 0.05), all other time points NS (p > 0.05) ↑ INS treatment NS (p > 0.05) Phase 2: INS ‘healthy’ and diabetics NS (p > 0.05) GLU: diabetics NS (p > 0.05) |
Wiese et al. (2004) [41] | ‘Healthy M&F with history of at least one hangover (n = 55) M (n = 37) F (n = 18) Age: 21–25 years | The effect of Opuntia ficus indica PP fruit extract in reducing symptoms of severity from alcohol hangover | Length: Single consumption Induced hangover: Consumption of 1.75 g of alcohol/kg (Low: vodka, gin, rum; high: bourbon, scotch, tequila) with standard meal (cheeseburger, French fries and soda) Treatment: 2× capsule of Opuntia ficus indica PP fruit extract Placebo: 2× capsule 2 w washout Randomized Control Cross-Over Trial | GLU | Baseline VS. placebo: NS (p > 0.05) Placebo VS. treatment: NS (p > 0.05) |
Author (Year) | Participant, Sample Size | Aim | Intervention | Relevant Outcomes | Results (Treatment vs. Placebo) |
---|---|---|---|---|---|
Acute Results | |||||
Frati et al. (1983) [45] | ‘Healthy’ Males (n = 5) Age: 28–35 years | The effect of ‘Nopal’ (CLD; Opuntia streptacantha) consumption on OGTT, on GLU and INS in healthy males | Length: Single consumption Treatment:
Control trial | GLU (mg/dl) INS (µU/mL) Time: 0, 60, 120, 180 min | GLU: ↓ after meal CLD consumption 0 min (p < 0.01), 60 min (p < 0.05), 120 min (p < 0.05), 180 min (p < 0.01) INS: ↓ after meal CLD consumption; 0 min (p < 0.01), 60 min (p < 0.01), 120 min (p < 0.01), 180 min (p < 0.02) T2DM |
Frati et al. (1987) [48] | ‘Healthy’ Adults (n = 16) Group 1: (n = 5) Group 2: (n = 6) Group 3: (n = 5) | The effect of CLD (Opuntia sp.) consumption on blood GLU and INS response, to dextrose in OGTT | Length: Single Consumption Group 1: 12 h fasted + treatment Group 2: OGTT (25 g GLU), CLD given after time 0, before GLU load Group 3: OGTT (25 g GLU) + treatment CLD Treatment: 100 g on CLD, ground and mixed with 100 g of water Controls in each group: 12 h fasting: OGTT + Nopal load OGTT + 200 mL water | GLU INS Blood collection: Group 1 and 3: 0, 30, 60, 120, 180 min Group 2: 0, 5, 15, 30, 60, 120 min | CLD consumption on GLU and INS = NS (p > 0.05) GLU: NS (p > 0.05); except for: Group 1 vs Group 2 (CLD vs. OGTT+CLD): 60 min; 180 min (p < 0.025) |
Frati et al. (1990) [54] | T2DM (n = 8; 2 Males; 6 Females) Age: 45–68 years (Mean: 55 years) | The effect of Opuntia ficus indica on hyperglycemia (CLD) in T2DM | Length: single consumption Treatments: (500 g)
Cross-over trial | Fasted (12 h) blood: 40, 60, 120, 180 min GLU | ↓ GLU at 120 min and 190 min (VS. control (baseline); p < 0.01) NS differences between heated and unheated (p > 0.05) |
Frati et al. (1991) [44] | Group 1: (n = 8; 2 Males; 5 Females) T2DM Age:36–65 years (50 years) Group 2: (n = 6; 3 Females; 3 Male) ‘Healthy’ volunteers Age: 15–45 years (25 years) | The effect of two sequential doses of Opuntia streptacantha stems blood GLU and INS | Length: single consumption Treatment: 500 g broiled cladode Test A: Ingestion at time 0 h, 2 h; 300 mL water at 4 h Test B: Ingestion at time 0 h, 300 mL water at 2 h, 4 h Test C (control): 300mL water at 2 h, 4 h Control-trial | Blood: 0,2,4 and 6 h GLU | Test A vs Test B: ↓GLU: Group 1 first ingestion at 2, 4 and 6 h (p < 0.001) NS: ‘Healthy’ participants (p > 0.05) |
Frati et al. (1991) [43] | Group 1: T2DM (n =14; 9 Males, 5 Females) Age: 32–56 years (Mean: 43.4 years); Group 2: ‘Healthy’ (n = 14; 9 Males; 5 Females) Age: 23–51 years (Mean: 32.7 years) | The effect of ‘Nopal’ (CLD; Opuntia streptacantha) consumption on blood and GLU of T2DM | Length: Single consumption Group 1 and 2 treatments: (fasted) 500g grilled CLD (Opuntia streptacantha); or 400 mL Water Randomized control trial | GLU INS | GLU: ↓ in T2DM (Vs Control) (p < 0.005, 60 min; p < 0.005 120; p<0.001 180 min) ‘Healthy’- NS (p > 0.05) INS: (n = 7, each Group) ↓- T2DM (vs. control) (p < 0.001; 120 min, 180 min) ‘Healthy’: NS |
Frati et al. (1988) [47] | T2DM (n = 16) Group 1: (n = 16; 9 Males, 7 Females) Age: 32–67 years, Mean: 48.3±11.4 years (n = 12 received sulfonylureas) Group 2: (n = 10; 6 Males; 4 Females) Age: 31–67 years Mean: 46.2 ± 10.8 y; (n = 10 received sulfonylureas) Group 3: (n = 6; 4 Males; 2 Females) Age: 33–66 years Mean: 48 ± 11.7 years (n = 4 received sulfonylureas) | The effect of CLD (Opuntia streptacantha) consumption on T2DM | Length: Single consumption Hyperglycemic agents discontinued 72 h before trial. Treatment: Group 1: 500 g of Broiled CLD Group 2: 300 mL water Group 3: 500 g of Broiled Squash (zucchini) Randomized control-trial | GLU INS (fasted; 12 h) Time: 0, 60, 120, 180 min. | GLU: ↓ (vs. basal; p < 0.001) Group 1 vs. 2: ↓ 60 min (p< 0.025); 120 min (p < 0.001); 180 min (p < 0.001) Group 2: No change Group 3: NS (p > 0.05) INS: ↓ Serum INS Group 1 vs. 2: ↓ 120 min, 180 min (p < 0.001) Group 3: NS (p > 0.05) |
Lopez-Romero et al. (2014) [50] | Study 1: ‘Healthy’ (n = 7; 3 Males, 4 Females) Age: 26.3 ± 1.2 years; BMI: 23.5 ± 0.8 kg/m2Study 2: Group 1: T2DM (n = 14; 4 Males; 10 Females) Age: 40–60 years (Mean 48 ± 2.1 years); BMI: <30 kg/m2 (Mean 28.9 ± 1 kg/m2) Group 2: ‘Healthy’ (n = 7; 4 Males; 3 Females) Age: 25–54 years (Mean 21.1 ± 1.2 years) BMI: <25 kg/m2 (Mean: 22.2 ± 0.6 kg/m2) | Determine glycemic index of Nopal and Effect of nopal consumption on blood GLU | Fasted (12 h) Treatment: 150 g steamed Nopal Study 1: Length: Single consumption Dried nopal (CLD): 24.8% CHO; 32.2% insoluble fiber; 4.8% soluble fiber; <1.9% fat; 15.4% PRO. 50 g of Nopal vs. 50 g GLU Control trial Study 2: Length: Single consumption High CHO breakfast: 300 kcal; 89% CHO; 6% PRO; 5% fat (240 mL apple juice, 55.6 g white bread, 21 g strawberry jam) High Soy Protein Breakfast: 344 kcal; 42.2% CHO, 40.7% PRO; 16.9% fat (61.5 g soy hamburger, 230 mL soymilk beverage). Washout period: 1 week Cross-over trial | GLU INS Study 1: Blood (capillary and Venous) 15, 30, 45, 60, 90 and 120 min Study 2: Blood (capillary and Venous) 15, 30, 45, 60, 90, 120 and 150 min | Study 1: Nopal ingestion (vs. GLU) ↓ AUC GLU (p < 0.001) Glycemic index on Nopal: 32.5 ± 4.0 Nopal ingestion (vs. GLU) ↓ AUC INS (p < 0.05) Insulinemic index of Nopal: 36.1 ± 6.1 Study 2: High CHO Breakfast + Nopal= ↓ GLU at 30 min (p < 0.05), 45 min (p < 0.01), 60 min (p < 0.01); ↓ AUC GLU (p < 0.001). ↓ AUC of INS (p < 0.05) in diabetes patients High soy protein breakfast: ↓GLU (p < 0.001) regardless of group; Nopal GLU was NS (p > 0.05) Nopal INS was NS (p > 0.05) |
Castaneda-Andrade et al. (1997) [53] | T2DM (n =8; 2 Males; 6 Females) Age: 58.4 years (Range: 48.9–67.8 years) | The effect of Opuntia streptacantha on hyperglycemia (CLD) in T2DM | Length: Single consumption Treatment: Group A: 250 mg CLD capsule Group B: placebo capsules Randomized cross-over trial | 12 h fasted blood (0, 60, 120, 180 min) GLU INS | ↓ GLU (60 + min) both groups; ↓ GLU (basal vs. 180 min) (p < 0.001) for both groups |
Long-term results | |||||
Frati et al. (1983) [46] | 11 Males; 18 Females (n =29) ‘Healthy’: (n = 8) ‘0–8% overweight; Mean 8%’ Obese: (n = 14) ‘18–70% overweight’; Mean 35% T2DM: (n = 7); 1–5% overweight; received tolbutamide during trial | The effect of ‘Nopal’ (CLD; (Opuntia streptacantha) consumption on serum lipids, glycemia and body weight | Length: 10 days Treatment:
Total per day: 300 g CLD Total: 3000 g/10 days Control trial | GLU (m mol/DI) (Fasting; Pre- VS. Post-treatment) | GLU: ↓ (vs. fasting blood GLU) T2DM (p < 0.001), ‘non-T2DM’ (p < 0.05) |
Guevare-Cruz et al. (2012) [49] | ‘Healthy’ (n = 67) Age: 20–60 years BMI: 25–39.9 kg/m2 | The effect of dietary pattern on biochemical markers | 2 weeks prior: Reduced energy diet, low-saturated fay and low-cholesterol diet. (15 × eating plans: 50–60% CHO; 15% PRO; 25–35% FAT; <7% saturated fat, <200mg/d cholesterol, 20–30 g/d fiber.) Treatment: Length: 2 months Group 1: Controlled Dietary Pattern Group 2: Placebo Dietary Pattern: 100 g nopal (CLD), 4 g chia seeds, 22 g oats, 32g soy bean proteins, 0.02 g sweetener (‘Splenda’), 1 g flavoring Placebo: 30 g calcium caseinate, 30 g maltodextrin, 0.02 g sweetener (‘Splenda’), 1 g flavoring. Single-center, randomized, placebo-controlled, double-blind, parallel-art study | Pre/Post intervention OGTT: 75 g GLU (120 min) GLU INS | No change in either treatment group for GLU INS AUG: No difference in OGTT. ↑ INS in OGTT of Dietary Pattern (p < 0.05) ↑ Significant diet and time interaction between pre/post diet intervention on INS (p < 0.01) |
Linares et al. (2007) [52] | Females (n = 59) Age: <35 years (10.29%) 35–45 years (27.94%) 45–55 years (41.18%) >55 years (20.59%) BMI: 25–40 kg/m2 Placebo group: n = 33 Treatment group: n = 35 | Length: 6 weeks- with ‘balanced diet’ (2000 kcal; 38% Fats; 17% PRO; 45% CHO) and 30 min of physical activity/day. Treatment: 3 × 1.6 g ‘NeOpuntia©’ capsules, after meal/day with water. Control: 3 × Placebo Capsule Monocentric, randomized, double-blind, placebo-controlled study | Prevalence of Fasting GLU (>0.95 g/L) | GLU: Treatment group remained the same during study period (n = 15). ↑ in placebo group (n = 20→22). | |
Bacardi-Gascon et al. (2007) [55] | T2DM (n = 36) Age: 47–72 years GLU: 8.0 ± 2 mmol/L BMI: 24.86 ± 3.76 kg/m2 Group 1: n = 11 Group 2: n = 9 Group 3: n = 9 | Post-prandial glycemic response to nopal (CLD) | Length: 3 weeks Treatment: 1 × week/3 weeks (fasted)
7-day washout periods Control: Chilaquiles, Burrito and Quesadillas without cladode Placebo-controlled Cross-over trial | Fasted Baseline: 0, 50g of white bread at 15, 30, 45, 60, 90 and 120 min GLU | ↓ GLU over all; (p = 0.029) Group 1: ↓ AUC (with vs. without; p = 0.013) ↓ Glycemic index white bread and GLU (p = 0.018) Group 2: ↓ AUC (with vs. without CLD; p = 0.011) ↓ Glycemic index of white bread and GLU (p = 0.025) Group 3: ↓ AUC (with vs. without CLD; p = 0.019) ↓ Glycemic index of white bread and GLU (p = 0.027; p =0.025) |
Author (Year) | Participant, Sample Size | Aim | Intervention | Relevant Outcomes | Results (Treatment vs Placebo) |
---|---|---|---|---|---|
Acute Results | |||||
Deldicque et al. (2013) [56] | ‘Healthy’ Males (n = 11) Age: 21.1 ± 0.9 years Weight: 74.4 ± 4.2 kg | Effect of:
Supplementation on INS stimulation | Length: Single Consumption Fasted; post-30 min endurance exercise (70% VO2); 75 g of GLU with treatment at: 0 min and 60 min. Treatment:
1-week wash-out Randomized double-blind cross-over study | OGTT (2 h) INS GLU | OGTT: INS higher with ‘OpunDia+Leu’, after 60 min (vs. Placebo) INS: OpunDia+Leu ↑40% at 2 h (vs. placebo) (p < 0.05) OpunDia ↑ 2 h (vs. Placebo) (p < 0.05) AUC: OpunDia ↑ (p = 0.06) AUC: OpunDia+Leu (p < 0.05) Leu-no effect GLU: OpunDia ↓GLU by 7% (90 min), 15% (120 min) (vs. placebo; p < 0.05) AUC: ↓ OpunDia vs. placebo (p < 0.05) |
Van Proeyen et al. (2012) [57] | ‘Healthy’ Males (n = 6) Age: 21.0 ± 1.6 years; Weight: 78.1 ± 6.0 kg; | The effect of ‘OpunDia’ supplementation on blood GLU and INS before and after exercise | Length: Single consumption Standardized Dinner: 860 kcal; 73% CHO, 14% fat, 13% PRO); 12 h Fast Exercise: 30 min submaximal endurance Treatment: 500 mg, 1000 mg, 1500 mg ‘OpunDia’Placebo ‘LUVOS Heilerde’ Pre- and post- exercise: OGTT (2 h)-75 g GLU * Post-exercise OGTT, additional bolus at 60 min 2-week washout period Double-bind Placebo-controlled crossover study | 30, 60, 90, 120 min capillary and Venous blood collection GLU INS | Pre-exercise: ↓GLU: 30 min (p < 0.10), 60 min (p < 0.02). 60 + min = NS (p > 0.05). ↓GLU AUC (p < 0.03) ↑ INS (p < 0.01). ↑ INS: 30 min (p < 0.03) INS AUC = NS (p > 0.05) Post-exercise: ↓ GLU: 60 min (p < 0.04) ↓ GLU AUC (p < 0.03) INS = NS (p > 0.05) |
Godard et al. (2010) [36] | Obese (n = 29; Males and Females) BMI: 30–35 kg/m2 Age: 20–50 years Acute: n = 29 Chronic: Treatment: n = 15 Control: n = 14 | Determine the acute and chronic effects of ‘OpunDia’ | Length: Single consumption Treatment: 200 mg ‘OpunDia’ Placebo: 200 mg microcrystalline cellulose Acute trial: 400 mg ‘OpunDia’ 30 min prior to 75 g GLU (OGTT); Chronic trial: Length: 16 weeks 2 × Treatment (200 mg) or Placebo Randomized, Double-blind, placebo-controlled trial | Acute: GLU Blood time: 0, 30, 60, 90, 120 min Chronic: OGTT GLU INS | Acute: ‘OpunDia’ vs Fasted: 60, 90 and 120 min (p < 0.05) Chronic: GLU: Pre/Post- ‘OpunDia’: ↓ 60, 90 and 120 min (p < 0.05) Pre/Post Placebo: ↓ 60, 90 min (p < 0.05) INS: Pre/Post ‘OpunDia’: NS (p > 0.05) Pre/Post Placebo: NS (p > 0.05) |
Long-term results | |||||
Guevara-Arauza et al. (2011) [51] | ‘Healthy’ (n = 28; 12 Males, 16 Females) | To determine bio-functional effects of nopal (CLD) and PP fruit products | Length: 3 weeks Treatment: Supplement diet with 40 g Bars: Control-bar vs ‘Nopal (32%) with PP pulp Jam’ bar (15 g); and 100 g Tortillas vs. Tortillas with Nopal (48%). Dose: Twice a day, three-weeks. Control trial | Fasted (8 h) blood samples; | Tortilla VS. control: ↓ GLU (p < 0.05) Tortilla and PP pulp jam bars: ↓ GLU (p < 0.05) |
Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | Other Bias | ||
---|---|---|---|---|---|---|---|
Random Sequence Generation | Allocation Concealment | Blinding of Participants and Personnel | Blinding of Outcome Assessment | Incomplete Outcome Data | Selective Reporting | ||
Prickly Pear Fruit | |||||||
Khouloud et al. (2016) [39] | High | Unclear | High | Unclear | Low | Low | Unclear |
Wolfram et al. (2002) [40] | High | Unclear | High | Unclear | Low | Low | Unclear |
Pimienta et al. (2008) [42] | High | Unclear | High | Unclear | Low | Low | Unclear |
Wiese et al. (2004) [41] | Low | Low | Low | Unclear | Low | Low | Unclear |
Cladode/leaf | |||||||
Frati et al. (1983) [45] | Unclear | Unclear | High | Unclear | Low | Low | Unclear |
Frati et al. (1983) [46] | Unclear | Unclear | High | Unclear | Low | Low | Unclear |
Frati et al. (1987) [48] | Unclear | Unclear | High | Unclear | Low | Low | Unclear |
Frati et al. (1991) [43] | High | Unclear | High | High | Low | Low | Unclear |
Frati et al. (1991) [44] | Unclear | Unclear | High | Unclear | Low | Low | Unclear |
Frati et al. (1988) [47] | High | Unclear | High | High | Low | Low | Unclear |
Frati et al. (1990) [54] | High | Unclear | High | Unclear | Low | Low | Unclear |
Guevare-Cruz et al. (2012) [49] | Low | Low | Low | High | Low | Low | Unclear |
Lopez-Romero et al. (2014) [50] | Unclear | Low | High | Unclear | Low | Low | Unclear |
Castaneda-Andrade et al. (1997) [53] | Unclear | Unclear | Low | Unclear | Low | Low | Unclear |
Linares et al. (2007) [52] | Unclear | Low | Low | Unclear | Low | Low | Unclear |
Bacardi-Gascon et al. (2007) [55] | Low | Unclear | High | Unclear | Low | Low | Unclear |
Combination of Fruit and Cladode/Leaf | |||||||
Deldicque et al. (2013) [56] | Low | Unclear | Low | Unclear | Low | Low | Unclear |
Van Proeyen et al. (2012) [57] | Low | Unclear | Low | Unclear | Low | Low | Unclear |
Godard et al. (2010) [36] | Low | Unclear | Low | Unclear | Low | Low | Unclear |
Guevara-Arauza et al. (2011) [51] | Unclear | Unclear | High | Unclear | Low | Low | Unclear |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouws, C.A.; Georgousopoulou, E.N.; Mellor, D.D.; McKune, A.; Naumovski, N. Effects of the Consumption of Prickly Pear Cacti (Opuntia spp.) and its Products on Blood Glucose Levels and Insulin: A Systematic Review. Medicina 2019, 55, 138. https://doi.org/10.3390/medicina55050138
Gouws CA, Georgousopoulou EN, Mellor DD, McKune A, Naumovski N. Effects of the Consumption of Prickly Pear Cacti (Opuntia spp.) and its Products on Blood Glucose Levels and Insulin: A Systematic Review. Medicina. 2019; 55(5):138. https://doi.org/10.3390/medicina55050138
Chicago/Turabian StyleGouws, Caroline A., Ekavi N. Georgousopoulou, Duane D. Mellor, Andrew McKune, and Nenad Naumovski. 2019. "Effects of the Consumption of Prickly Pear Cacti (Opuntia spp.) and its Products on Blood Glucose Levels and Insulin: A Systematic Review" Medicina 55, no. 5: 138. https://doi.org/10.3390/medicina55050138
APA StyleGouws, C. A., Georgousopoulou, E. N., Mellor, D. D., McKune, A., & Naumovski, N. (2019). Effects of the Consumption of Prickly Pear Cacti (Opuntia spp.) and its Products on Blood Glucose Levels and Insulin: A Systematic Review. Medicina, 55(5), 138. https://doi.org/10.3390/medicina55050138