Preclinical Considerations about Affective Disorders and Pain: A Broadly Intertwined, yet Often Under-Explored, Relationship Having Major Clinical Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Database Searches
2.3. Study Selection
2.4. Data Synthesis
3. Results
3.1. Study Characteristics
3.2. Quality Assessment
3.3. Pain in BD
3.4. Pain in MDD
3.5. MDD in Pain
3.6. BD in Pain
3.7. Animal Models
3.7.1. Depression in Pain—An Animal Model
3.7.2. Pain in Depression Animal Models
3.8. Evolutionary Hypothesis
4. Discussion
4.1. Depression and Pain vs. Pain and Depression
4.1.1. Hypothesis
4.1.2. Clinical Implications
4.2. Bipolar and Pain vs. Pain and Bipolar
4.3. Animal Models
4.4. The Relevance of Anxiety, Depression and Pain Co-Occurrence
4.5. Pain Predictability
4.6. Neuroticism and Its Associations with the Risk of Affective Disorders and Pain Vulnerability
4.7. Possible Therapeutic Avenues
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Arlington, VA, USA, 2013; ISBN 089042554X.
- Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 1994; ISBN1 0-89042-061-0 (Hardcover). ISBN2 0-89042-062-9 (Paperback).
- Somatic Symptom and Related Disorders. In Diagnostic and Statistical Manual of Mental Disorders; DSM Library; American Psychiatric Association: Arlington, VA, USA, 2013; ISBN 0-89042-555-8.
- Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and Pain Comorbidity: A Literature Review. Arch. Intern. Med. 2003, 163, 2433–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteford, H.A.; Degenhardt, L.; Rehm, J.; Baxter, A.J.; Ferrari, A.J.; Erskine, H.E.; Charlson, F.J.; Norman, R.E.; Flaxman, A.D.; Johns, N.; et al. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1575–1586. [Google Scholar] [CrossRef]
- Stubbs, B.; Vancampfort, D.; Solmi, M.; Veronese, N.; Fornaro, M. How common is bipolar disorder in general primary care attendees? A systematic review and meta-analysis investigating prevalence determined according to structured clinical assessments. Aust. N. Z. J. Psychiatry 2016, 50, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 2015, 14, 339–347. [Google Scholar] [CrossRef]
- Vancampfort, D.; Correll, C.U.; Galling, B.; Probst, M.; De Hert, M.; Ward, P.B.; Rosenbaum, S.; Gaughran, F.; Lally, J.; Stubbs, B. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. World Psychiatry 2016, 15, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.R.; McGee, R.E.; Druss, B.G. Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA psychiatry 2015, 72, 334–341. [Google Scholar] [CrossRef]
- DE Hert, M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.; Cohen, D.; Asai, I.; Detraux, J.; Gautam, S.; Möller, H.-J.; Ndetei, D.M.; et al. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 2011, 10, 52–77. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.J.; Pereira, I.E.S.; Yadegarfar, M.; Pepereke, S.; Mugadza, V.; Stubbs, B. Breast cancer screening in women with mental illness: Comparative meta-analysis of mammography uptake. Br. J. Psychiatry 2014, 205, 428–435. [Google Scholar] [CrossRef]
- Turk, D.C.; Dworkin, R.H. What should be the core outcomes in chronic pain clinical trials? Arthritis Res. Ther. 2004, 6, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Holden, A.; Winlow, W. Comparative Neurobiology of Excitation. In The Neurobiology of Pain; Manchester University Press: Manchester, UK, 1984; ISBN1 0-7190-1061-6 hardback. ISBN2 0-7190-0996-0 paperback. [Google Scholar]
- Bonavita, V.; De Simone, R. Pain as an evolutionary necessity. Neurol. Sci. 2011, 32, 61–66. [Google Scholar] [CrossRef]
- Dersh, J.; Gatchel, R.J.; Polatin, P.; Mayer, T. Prevalence of Psychiatric Disorders in Patients With Chronic Work-Related Musculoskeletal Pain Disability. J. Occup. Environ. Med. 2002, 44, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Dersh, J.; Polatin, P.; Gatchel, R. Chronic Pain and Psychopathology: Research Findings and Theoretical Considerations. Psychosom. Med. 2002, 64, 773–786. [Google Scholar] [PubMed]
- Turk, D.C.; Okifuji, A. Psychological factors in chronic pain: Evolution and revolution. J. Consult. Clin. Psychol. 2002, 70, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Magni, G.; Marchetti, M.; Moreschi, C.; Merskey, H.; Luchini, S.R. Chronic musculoskeletal pain and depressive symptoms in the national health and nutrition examination I. Epidemiologic follow-up study. Pain 1993, 53, 163–168. [Google Scholar] [CrossRef]
- Edwards, R.R.; Smith, M.T.; Klick, B.; Magyar-Russell, G.; Haythornthwaite, J.A.; Holavanahalli, R.; Patterson, D.R.; Blakeney, P.; Lezotte, D.; McKibben, J.; et al. Symptoms of depression and anxiety as unique predictors of pain-related outcomes following burn injury. Ann. Behav. Med. 2007, 34, 313–322. [Google Scholar] [CrossRef]
- Gerrits, M.M.J.G.; van Marwijk, H.W.J.; van Oppen, P.; van der Horst, H.; Penninx, B.W.J.H. Longitudinal association between pain, and depression and anxiety over four years. J. Psychosom. Res. 2015, 78, 64–70. [Google Scholar] [CrossRef]
- Bair, M.J.; Wu, J.; Damush, T.M.; Sutherland, J.M.; Kroenke, K. Association of depression and anxiety alone and in combination with chronic musculoskeletal pain in primary care patients. Psychosom. Med. 2008, 70, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Asmundson, G.J.G.; Katz, J. Understanding the co-occurrence of anxiety disorders and chronic pain: State-of-the-art. Depress. Anxiety 2009, 26, 888–901. [Google Scholar] [CrossRef]
- Williams, L.J.; Pasco, J.A.; Jacka, F.N.; Dodd, S.; Berk, M. Pain and the relationship with mood and anxiety disorders and psychological symptoms. J. Psychosom. Res. 2012, 72, 452–456. [Google Scholar] [CrossRef]
- Von Korff, M.; Crane, P.; Lane, M.; Miglioretti, D.L.; Simon, G.; Saunders, K.; Stang, P.; Brandenburg, N.; Kessler, R. Chronic spinal pain and physical–mental comorbidity in the United States: Results from the national comorbidity survey replication. Pain 2005, 113, 331–339. [Google Scholar] [CrossRef]
- Fornaro, M.; Stubbs, B. A meta-analysis investigating the prevalence and moderators of migraines among people with bipolar disorder. J. Affect. Disord. 2015, 178, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.; Eggermont, L.; Mitchell, A.; Hert, M.; Correll, C.; Soundy, A.; Rosenbaum, S.; Vancampfort, D. The prevalence of pain in bipolar disorder: A systematic review and large-scale meta-analysis. Acta Psychiatr. Scand. 2015, 131, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.; Scott, J.; Houck, P.; Reynolds, C.; Kupfer, D.; Frank, E. Pain Predicts Longer Time to Remission During Treatment of Recurrent Depression. J. Clin. Psychiatry 2005, 66, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.F.; Weiner, D.; Seligman, K.; Butters, M.; Miller, M.; Frank, E.; Stack, J.; Mulsant, B.H.; Pollock, B.; Dew, M.A.; et al. Body Pain and Treatment Response in Late-Life Depression. Am. J. Geriatr. Psychiatry 2005, 13, 188–194. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, M.; Abdin, E.; Vaingankar, J.A.; Chong, S.A. Prevalence, correlates, comorbidity and severity of bipolar disorder: Results from the Singapore Mental Health Study. J. Affect. Disord. 2013, 146, 189–196. [Google Scholar] [CrossRef]
- Kilbourne, A.M.; Cornelius, J.R.; Han, X.; Pincus, H.A.; Shad, M.; Salloum, I.; Conigliaro, J.; Haas, G.L. Burden of general medical conditions among individuals with bipolar disorder. Bipolar Disord. 2004, 6, 368–373. [Google Scholar] [CrossRef]
- Gallagher, R.M.; Verma, S. Managing pain and comorbid depression: A public health challenge. Semin. Clin. Neuropsychiatry 1999, 4, 203–220. [Google Scholar]
- Gatchel, R.; Peng, Y.; Peters, M.; Fuchs, P.; Turk, D. The Biopsychosocial Approach to Chronic Pain: Scientific Advances and Future Directions. Psychol. Bull. 2007, 133, 581–624. [Google Scholar] [CrossRef]
- Siddall, P.J.; Cousins, M.J. Persistent Pain as a Disease Entity: Implications for Clinical Management. Anesth. Analg. 2004, 99, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Corruble, E.; Guelfi, J.-D. Pain Complaints in Depressed Inpatients. Psychopathology 2000, 33, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Romano, J.M.; Turner, J.A. Chronic pain and depression: Does the evidence support a relationship? Psychol. Bull. 1985, 97, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.R.; Wang, J. Chronic back pain and major depression in the general Canadian population. Pain 2004, 107, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Means-Christensen, A.J.; Roy-Byrne, P.P.; Sherbourne, C.D.; Craske, M.G.; Stein, M.B. Relationships among pain, anxiety, and depression in primary care. Depress. Anxiety 2008, 25, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Chan, F.; Berven, N. Factors affecting depression among people with chronic musculoskeletal pain: A structural equation model. Rehabil. Psychol. 2007, 52, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Tennen, H.; Affleck, G.; Zautra, A. Depression history and coping with chronic pain: A daily process analysis. Heal. Psychol. 2006, 25, 370–379. [Google Scholar] [CrossRef]
- Alschuler, K.N.; Ehde, D.M.; Jensen, M.P. The co-occurrence of pain and depression in adults with multiple sclerosis. Rehabil. Psychol. 2013, 58, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Amtmann, D.; Askew, R.L.; Kim, J.; Chung, H.; Ehde, D.M.; Bombardier, C.H.; Kraft, G.H.; Jones, S.M.; Johnson, K.L. Pain affects depression through anxiety, fatigue, and sleep in multiple sclerosis. Rehabil. Psychol. 2015, 60, 81–90. [Google Scholar] [CrossRef]
- Banks, S.; Kerns, R. Explaining high rates of depression in chronic pain: A diathesis-stress framework. Psychol. Bull. 1996, 119, 95–110. [Google Scholar] [CrossRef]
- Corbière, M.; Sullivan, M.; Stanish, W.; Adams, H. Pain and Depression in Injured Workers and Their Return to Work: A Longitudinal Study. Can. J. Behav. Sci. Can. des Sci. du Comport. 2007, 39, 23–31. [Google Scholar] [CrossRef]
- Lefter, R.; Cojocaru, D.; Ciobica, A.; Paulet, M.; Serban, L.; Anton, E. Aspects of animal models for major neuropsychiatric disorders. Arch. Biol. Sci. 2014, 66, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Norman, G.J.; Karelina, K.; Zhang, N.; Walton, J.C.; Morris, J.S.; Devries, A.C. Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury. Mol. Psychiatry 2010, 15, 404–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Dantzer, R.; Budac, D.P.; Walker, A.K.; Mao-Ying, Q.-L.; Lee, A.W.; Heijnen, C.J.; Kavelaars, A. Peripheral indoleamine 2,3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain. Behav. Immun. 2015, 46, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Chen, L.; Lim, G.; Sung, B.; Wang, S.; McCabe, M.F.; Rusanescu, G.; Yang, L.; Tian, Y.; Mao, J. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J. Clin. Invest. 2012, 122, 2940–2954. [Google Scholar] [CrossRef] [Green Version]
- Gai, B.M.; Bortolatto, C.F.; Brüning, C.A.; Zborowski, V.A.; Stein, A.L.; Zeni, G.; Nogueira, C.W. Depression-related behavior and mechanical allodynia are blocked by 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene in a mouse model of neuropathic pain induced by partial sciatic nerve ligation. Neuropharmacology 2014, 79, 580–589. [Google Scholar] [CrossRef]
- Caspani, O.; Reitz, M.-C.; Ceci, A.; Kremer, A.; Treede, R.-D. Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacol. Biochem. Behav. 2014, 124, 290–296. [Google Scholar] [CrossRef]
- Amorim, D.; David-Pereira, A.; Pertovaara, A.; Almeida, A.; Pinto-Ribeiro, F. Amitriptyline reverses hyperalgesia and improves associated mood-like disorders in a model of experimental monoarthritis. Behav. Brain Res. 2014, 265, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Doods, H.; Treede, R.-D.; Ceci, A. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain. Neurosci. Lett. 2016, 619, 162–167. [Google Scholar] [CrossRef]
- Andre, J.; Zeau, B.; Pohl, M.; Cesselin, F.; Benoliel, J.-J.; Becker, C. Involvement of cholecystokininergic systems in anxiety-induced hyperalgesia in male rats: Behavioral and biochemical studies. J. Neurosci. 2005, 25, 7896–7904. [Google Scholar] [CrossRef]
- Rodriguez-gaztelumendi, A.; Rojo, M.; Pazos, Á.; Diaz, A. An altered spinal serotonergic system contributes to increased thermal nociception in an animal model of depression. Exp. Brain Res. 2014, 232. [Google Scholar] [CrossRef] [PubMed]
- Burke, N.N.; Geoghegan, E.; Kerr, D.M.; Moriarty, O.; Finn, D.P.; Roche, M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. Genes Brain Behav. 2013, 12, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.-J.; Wang, W.; Wang, N.; Wang, J.-Y.; Luo, F. Depressive-like history alters persistent pain behavior in rats: Opposite contribution of frontal cortex and amygdala implied. PsyCh J. 2013, 2, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinney, D.K.; Tanaka, M. An Evolutionary Hypothesis of Depression and Its Symptoms, Adaptive Value, and Risk Factors. J. Nerv. Ment. Dis. 2009, 197, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bosmans, E.; Suy, E.; Vandervorst, C.; De Jonckheere, C.; Raus, J. Immune Disturbances during Major Depression: Upregulated Expression of Interleukin-2 Receptors. Neuropsychobiology 1990, 24, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Lambrechts, J.; Bosmans, E.; Jacobs, J.; Suy, E.; Vandervorst, C.; De Jonckheere, C.; Minner, B.; Raus, J. Evidence for a systemic immune activation during depression: Results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol. Med. 1992, 22, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Scharpé, S.; Van Grootel, L.; Uyttenbroeck, W.; Cooreman, W.; Cosyns, P.; Suy, E. Higher α1-antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: Further evidence for the existence of an inflammatory response during that illness. J. Affect. Disord. 1992, 24, 183–192. [Google Scholar] [CrossRef]
- Interleukin-1 beta: A putative mediator of HPA axis hyperactivity in major depression? Am. J. Psychiatry 1993, 150, 1189–1193. [CrossRef]
- Maes, M.; Scharpé, S.; Meltzer, H.Y.; Bosmans, E.; Suy, E.; Calabrese, J.; Cosyns, P. Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res. 1993, 49, 11–27. [Google Scholar] [CrossRef]
- Maes, M.; Meltzer, H.Y.; Scharpè, S.; Bosmans, E.; Suy, E.; De Meester, I.; Calabrese, J.; Cosyns, P. Relationships between lower plasma L-tryptophan levels and immune-inflammatory variables in depression. Psychiatry Res. 1993, 49, 151–165. [Google Scholar] [CrossRef]
- Maes, M.; Scharpé, S.; Meltzer, H.Y.; Okayli, G.; Bosmans, E.; D’Hondt, P.; Vanden Bossche, B.; Cosyns, P. Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: Further evidence for an immune response. Psychiatry Res. 1994, 54, 143–160. [Google Scholar] [CrossRef]
- Hagen, E.H. Evolutionary Theories of Depression: A Critical Review. Can. J. Psychiatry 2011, 56, 716–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, M.; Fisar, Z.; Medina, M.; Scapagnini, G.; Nowak, G.; Berk, M. New drug targets in depression: Inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012, 20, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Üçeyler, N.; Valenza, R.; Stock, M.; Schedel, R.; Sprotte, G.; Sommer, C. Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain. Arthritis Rheum. 2006, 54, 2656–2664. [Google Scholar] [CrossRef] [PubMed]
- Backonja, M.M.; Coe, C.L.; Muller, D.A.; Schell, K. Altered cytokine levels in the blood and cerebrospinal fluid of chronic pain patients. J. Neuroimmunol. 2008, 195, 157–163. [Google Scholar] [CrossRef]
- Ji, R.-R.; Xu, Z.-Z.; Gao, Y.-J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 2014, 13, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Kuhnen, C.M.; Samanez-Larkin, G.R.; Knutson, B. Serotonergic genotypes, neuroticism, and financial choices. PLoS ONE 2013, 8, e54632. [Google Scholar] [CrossRef]
- Lumley, M.A.; Cohen, J.L.; Borszcz, G.S.; Cano, A.; Radcliffe, A.M.; Porter, L.S.; Schubiner, H.; Keefe, F.J. Pain and emotion: A biopsychosocial review of recent research. J. Clin. Psychol. 2011, 67, 942–968. [Google Scholar] [CrossRef] [Green Version]
- Bergbom, S.; Boersma, K.; Overmeer, T.; Linton, S.J. Relationship Among Pain Catastrophizing, Depressed Mood, and Outcomes Across Physical Therapy Treatments. Phys. Ther. 2011, 91, 754–764. [Google Scholar] [CrossRef] [Green Version]
- Quesseveur, G.; Portal, B.; Basile, J.-A.; Ezan, P.; Mathou, A.; Halley, H.; Leloup, C.; Fioramonti, X.; Déglon, N.; Giaume, C.; et al. Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Front. Cell. Neurosci. 2015, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Miguel-Hidalgo, J.J.; Wilson, B.A.; Hussain, S.; Meshram, A.; Rajkowska, G.; Stockmeier, C.A. Reduced connexin 43 immunolabeling in the orbitofrontal cortex in alcohol dependence and depression. J. Psychiatr. Res. 2014, 55, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-D.; Liu, Y.; Yuan, Y.-H.; Li, J.; Chen, N.-H. Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 2012, 37, 1305–1320. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, H.; Khaksarian, M.; Joghataei, M.T.; Hassanzadeh, G.; Soleimani, M.; Eftekhari, S.; Soleimani, M.; Mousavizadeh, K.; Hadjighassem, M.R. Fluoxetin upregulates connexin 43 expression in astrocyte. Basic Clin. Neurosci. 2014, 5, 74–79. [Google Scholar] [PubMed]
- Ohara, P.T.; Vit, J.-P.; Bhargava, A.; Jasmin, L. Evidence for a role of connexin 43 in trigeminal pain using RNA interference in vivo. J. Neurophysiol. 2008, 100, 3064–3073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lépine, J.-P.; Briley, M. The epidemiology of pain in depression. Hum. Psychopharmacol. Clin. Exp. 2004, 19, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Magni, G.; Moreschi, C.; Rigatti-Luchini, S.; Merskey, H. Prospective study on the relationship between depressive symptoms and chronic musculoskeletal pain. Pain 1994, 56, 289–297. [Google Scholar] [CrossRef]
- Simon, G.E.; VonKorff, M.; Piccinelli, M.; Fullerton, C.; Ormel, J. An International Study of the Relation between Somatic Symptoms and Depression. N. Engl. J. Med. 1999, 341, 1329–1335. [Google Scholar] [CrossRef]
- Nicassio, P.M.; Wallston, K.A. Longitudinal relationships among pain, sleep problems, and depression in rheumatoid arthritis. J. Abnorm. Psychol. 1992, 101, 514–520. [Google Scholar] [CrossRef]
- Dohrenwend, B.P.; Raphael, K.G.; Marbach, J.J.; Gallagher, R.M. Why is depression comorbid with chronic myofascial face pain?: A family study test of alternative hypotheses. Pain 1999, 83, 183–192. [Google Scholar] [CrossRef]
- Patten, S.B. Long-term medical conditions and major depression in a Canadian population study at waves 1 and 2. J. Affect. Disord. 2001, 63, 35–41. [Google Scholar] [CrossRef]
- Von Korff, M.; Simon, G. The Relationship Between Pain and Depression. Br. J. Psychiatry 1996, 168, 101–108. [Google Scholar] [CrossRef]
- Hotopf, M.; Mayou, R.; Wadsworth, M.; Wessely, S. Temporal relationships between physical symptoms and psychiatric disorder: Results from a national birth cohort. Br. J. Psychiatry 1998, 173, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Gureje, O. Psychiatric aspects of pain. Curr. Opin. Psychiatry 2007, 20, 42–46. [Google Scholar] [CrossRef]
- Turk, D.C.; Salovey, P. “Chronic Pain as a Variant of Depressive Disease”: A Critical Reappraisal. J. Nerv. Ment. Dis. 1984, 172. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, T.; Gracely, R.H.; Williams, D.A.; Geisser, M.E.; Petzke, F.W.; Clauw, D.J. The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum. 2005, 52, 1577–1584. [Google Scholar] [CrossRef] [Green Version]
- Fields, H.L. Chapter 18—Pain modulation: Expectation, opioid analgesia and virtual pain. In The Biological Basis for Mind Body Interactions; Mayer, E.A., Saper, C.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 122, pp. 245–253. ISBN 0079-6123. [Google Scholar]
- Karabatsiakis, A.; Böck, C.; Salinas-Manrique, J.; Kolassa, S.; Calzia, E.; Dietrich, D.E.; Kolassa, I.-T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry 2014, 4, e397-e397. [Google Scholar] [CrossRef] [Green Version]
- Erkan Ozcan, M.; Gulec, M.; Ozerol, E.; Polat, R.; Akyol, O. Antioxidant enzyme activities and oxidative stress in affective disorders. Int. Clin. Psychopharmacol. 2004, 19, 89–95. [Google Scholar] [CrossRef]
- Andreazza, A.C.; Cassini, C.; Rosa, A.R.; Leite, M.C.; de Almeida, L.M.V.; Nardin, P.; Cunha, A.B.N.; Ceresér, K.M.; Santin, A.; Gottfried, C.; et al. Serum S100B and antioxidant enzymes in bipolar patients. J. Psychiatr. Res. 2007, 41, 523–529. [Google Scholar] [CrossRef]
- Selek, S.; Savas, H.A.; Gergerlioglu, H.S.; Bulbul, F.; Uz, E.; Yumru, M. The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J. Affect. Disord. 2008, 107, 89–94. [Google Scholar] [CrossRef]
- Can, M.; Güven, B.; Atik, L. Lipid Peroxidation and Serum Antioxidant Enzymes Activity in Patients with Bipolar and Major Depressive Disorders. JMOOD 2011, 1, 14–18. [Google Scholar]
- Stefanescu, C.; Ciobica, A. The relevance of oxidative stress status in first episode and recurrent depression. J. Affect. Disord. 2012, 143, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Arcan, O.; Bild, W.; Ciobica, A.; Serban, D.; Anton, E.; Petrariu, F.; Timofte, D.; Nastasa, V. Angiotensin-(1-7) intracerebroventricular administration generates nociceptive effects in hot-plate task and decreased oxidative stress in the temporal lobe. Rom. Biotechnol. Lett. 2014, 19, 9763–9771. [Google Scholar]
- Arcan, O.; Ciobica, A.; Bild, W.; Stoica, B.; Hritcu, L.; Cojocaru, D. The Effects of Central Angiotensin II and Its Specific Blockers on Nociception. Possible Interactions with Oxidative Stress Status / Efekti Centralnog Angiotenzina II I Njegovih Specifičnih Blokatora Na Nocicepciju. Moguće Interakcije Sa Statusom Oksidati. J. Med. Biochem. 2013, 32, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Borges, G.; Neto, F.; Mico, J.A.; Berrocoso, E. Reversal of Monoarthritis-induced Affective Disorders by Diclofenac in Rats. Anesthesiol. J. Am. Soc. Anesthesiol. 2014, 120, 1476–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroenke, K.; West, S.L.; Swindle, R.; Gilsenan, A.; Eckert, G.J.; Dolor, R.; Stang, P.; Zhou, X.-H.; Hays, R.; Weinberger, M. Similar Effectiveness of Paroxetine, Fluoxetine, and Sertraline in Primary CareA Randomized Trial. JAMA 2001, 286, 2947–2955. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.R.; Cano, A. Comorbid Chronic Pain and Depression: Who Is at Risk? J. Pain 2009, 10, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, K.; Wu, J.; Bair, M.J.; Krebs, E.E.; Damush, T.M.; Tu, W. Reciprocal relationship between pain and depression: A 12-month longitudinal analysis in primary care. J. Pain 2011, 12, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Arnow, B.A.; Hunkeler, E.M.; Blasey, C.M.; Lee, J.; Constantino, M.J.; Fireman, B.; Kraemer, H.C.; Dea, R.; Robinson, R.; Hayward, C. Comorbid Depression, Chronic Pain, and Disability in Primary Care. Psychosom. Med. 2006, 68, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Linton, S.J. A Review of Psychological Risk Factors in Back and Neck Pain. Spine (Phila. Pa. 1976). 2000, 25. [Google Scholar] [CrossRef]
- Ang, D.C.; Chakr, R.; France, C.R.; Mazzuca, S.A.; Stump, T.E.; Hilligoss, J.; Lengerich, A. Association of Nociceptive Responsivity With Clinical Pain and the Moderating Effect of Depression. J. Pain 2011, 12, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Yunus, M.B. Fibromyalgia and Overlapping Disorders: The Unifying Concept of Central Sensitivity Syndromes. Semin. Arthritis Rheum. 2007, 36, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Dickens, C.; McGowan, L.; Dale, S. Impact of Depression on Experimental Pain Perception: A Systematic Review of the Literature with Meta-Analysis. Psychosom. Med. 2003, 65, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Shmueli, D.; Grunhaus, L.; Dolberg, O.T.; Feldinger, E.; Magora, F.; Shapira, S.C. The influence of electroconvulsive therapy on pain threshold and pain tolerance in major depression patients before, during and after treatment. Eur. J. Pain 2003, 7, 419–424. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Silman, A.J.; Macfarlane, G.J.; Ray, D.; Gupta, A.; Dickens, C.; Morriss, R.; McBeth, J. Poor sleep and depression are independently associated with a reduced pain threshold. Results of a population based study. Pain 2005, 115, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Vogt, B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005, 6, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; Fox, A.S.; Winter, J.J.; Davidson, R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011, 12, 154–167. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Barthas, F.; Sellmeijer, J.; Hugel, S.; Waltisperger, E.; Barrot, M.; Yalcin, I. The Anterior Cingulate Cortex Is a Critical Hub for Pain-Induced Depression. Biol. Psychiatry 2015, 77, 236–245. [Google Scholar] [CrossRef]
- Meerwijk, E.L.; Ford, J.M.; Weiss, S.J. Resting-state EEG delta power is associated with psychological pain in adults with a history of depression. Biol. Psychol. 2015, 105, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Osmond, H.; Mullaly, R.; Bisbee, C. The pain of depression compared with physical pain. Practitioner 1984, 228, 849–853. [Google Scholar] [PubMed]
- Linton, S.J.; Bergbom, S. Understanding the link between depression and pain. Scand. J. Pain 2011, 2, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.K.; Coulston, C.M.; Asghari, A.; Malhi, G.S. Depressive symptoms in patients with chronic pain. Med. J. Aust. 2009, 190, S66–S70. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.L.; Adams, H.; Tripp, D.; Stanish, W.D. Stage of chronicity and treatment response in patients with musculoskeletal injuries and concurrent symptoms of depression. Pain 2008, 135, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Klinedinst, N.J.; Regenold, W.T. A mitochondrial bioenergetic basis of depression. J. Bioenerg. Biomembr. 2015, 47, 155–171. [Google Scholar] [CrossRef]
- Birgenheir, D.G.; Ilgen, M.A.; Bohnert, A.S.B.; Abraham, K.M.; Bowersox, N.W.; Austin, K.; Kilbourne, A.M. Pain conditions among veterans with schizophrenia or bipolar disorder. Gen. Hosp. Psychiatry 2013, 35, 480–484. [Google Scholar] [CrossRef]
- Wallace, D.J.; Gotto, J. Hypothesis: Bipolar Illness with Complaints of Chronic Musculoskeletal Pain Is a Form of Pseudofibromyalgia. Semin. Arthritis Rheum. 2008, 37, 256–259. [Google Scholar] [CrossRef]
- Arnold, L.M.; Hudson, J.I.; Keck, P.E.; Auchenbach, M.B.; Javaras, K.N.; Hess, E. V Comorbidity of fibromyalgia and psychiatric disorders. J. Clin. Psychiatry 2006, 67, 1219–1225. [Google Scholar] [CrossRef]
- Kil, H.K.; Kim, W.O.; Chung, W.Y.; Kim, G.H.; Seo, H.; Hong, J.-Y. Preoperative anxiety and pain sensitivity are independent predictors of propofol and sevoflurane requirements in general anaesthesia. Br. J. Anaesth. 2012, 108, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, B.I.; Houck, P.R.; Karp, J.F. Factors associated with pain interference in an epidemiologic sample of adults with bipolar I disorder. J. Affect. Disord. 2009, 117, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, E.E.; Rabideau, D.J.; Gigler, M.E.; Nierenberg, A.A.; Deckersbach, T.; Sylvia, L.G. Patient perceptions of physical health and bipolar symptoms: The intersection of mental and physical health. J. Affect. Disord. 2016, 189, 203–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narita, M.; Kaneko, C.; Miyoshi, K.; Nagumo, Y.; Kuzumaki, N.; Nakajima, M.; Nanjo, K.; Matsuzawa, K.; Yamazaki, M.; Suzuki, T. Chronic Pain Induces Anxiety with Concomitant Changes in Opioidergic Function in the Amygdala. Neuropsychopharmacology 2006, 31, 739–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba-Delgado, C.; Llorca-Torralba, M.; Horrillo, I.; Ortega, J.E.; Mico, J.A.; Sánchez-Blázquez, P.; Meana, J.J.; Berrocoso, E. Chronic Pain Leads to Concomitant Noradrenergic Impairment and Mood Disorders. Biol. Psychiatry 2013, 73, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Radat, F.; Margot-Duclot, A.; Attal, N. Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: A multicentre cohort study. Eur. J. Pain 2013, 17, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.; Milligan, E.; Maier, S.F. Glial proinflammatory cytokines mediate exaggerated pain states: Implications for clinical pain. Glia 2008, 56, 378–386. [Google Scholar]
- Walker, A.K.; Budac, D.P.; Bisulco, S.; Lee, A.W.; Smith, R.A.; Beenders, B.; Kelley, K.W.; Dantzer, R. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 2013, 38, 1609–1616. [Google Scholar] [CrossRef]
- Alexander, G.M.; Reichenberger, E.; Peterlin, B.L.; Perreault, M.J.; Grothusen, J.R.; Schwartzman, R.J. Plasma amino acids changes in complex regional pain syndrome. Pain Res. Treat. 2013, 2013, 742407. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.T.; Haythornthwaite, J.A. How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature. Sleep Med. Rev. 2004, 8, 119–132. [Google Scholar] [CrossRef]
- Carlson, P.J.; Singh, J.B.; Zarate, C.A., Jr.; Drevets, W.C.; Manji, H.K. Neural circuitry and neuroplasticity in mood disorders: Insights for novel therapeutic targets. NeuroRx 2006, 3, 22–41. [Google Scholar] [CrossRef] [Green Version]
- Rezin, G.T.; Cardoso, M.R.; Gonçalves, C.L.; Scaini, G.; Fraga, D.B.; Riegel, R.E.; Comim, C.M.; Quevedo, J.; Streck, E.L. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 2008, 53, 395–400. [Google Scholar] [CrossRef]
- Hroudová, J.; Fišar, Z.; Kitzlerová, E.; Zvěřová, M.; Raboch, J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 2013, 13, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Sjövall, F.; Ehinger, J.K.H.; Marelsson, S.E.; Morota, S.; Åsander Frostner, E.; Uchino, H.; Lundgren, J.; Arnbjörnsson, E.; Hansson, M.J.; Fellman, V.; et al. Mitochondrial respiration in human viable platelets—Methodology and influence of gender, age and storage. Mitochondrion 2013, 13, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Dworkin, S.F.; Von Korff, M.; LeResche, L. Multiple Pains and Psychiatric Disturbance: An Epidemiologic Investigation. Arch. Gen. Psychiatry 1990, 47, 239–244. [Google Scholar] [CrossRef]
- Schnurr, R.F.; Brooke, R.I.; Rollman, G.B. Psychosocial correlates of temporomandibular joint pain and dysfunction. Pain 1990, 42, 153–165. [Google Scholar] [CrossRef]
- Gamsa, A. The role of psychological factors in chronic pain. I. A half century of study. Pain 1994, 57, 5–15. [Google Scholar] [CrossRef]
- Rudy, T.E.; Turk, D.C.; Kubinski, J.A.; Zaki, H.S. Differential treatment responses of TMD patients as a function of psychological characteristics. Pain 1995, 61, 103–112. [Google Scholar] [CrossRef]
- Auerbach, S.M.; Laskin, D.M.; Frantsve, L.M.E.; Orr, T. Depression, pain, exposure to stressful life events, and long-term outcomes in temporomandibular disorder patients. J. Oral Maxillofac. Surg. 2001, 59, 628–633. [Google Scholar] [CrossRef]
- Campo, J.V.; Bridge, J.; Ehmann, M.; Altman, S.; Lucas, A.; Birmaher, B.; Lorenzo, C.D.; Iyengar, S.; Brent, D.A. Recurrent Abdominal Pain, Anxiety, and Depression in Primary Care. Pediatrics 2004, 113, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J. Diagnostic and Statistical Manual of Mental Disorders (4th edn, text revision) (DSM-IV-TR). Br. J. Psychiatry 2001, 179, 85. [Google Scholar] [CrossRef]
- Lavigne, J.V.; Saps, M.; Bryant, F.B. Models of Anxiety, Depression, Somatization, and Coping as Predictors of Abdominal Pain in a Community Sample of School-Age Children. J. Pediatr. Psychol. 2013, 39, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.-H.; Jung, S.-W.; Park, J.-Y.; Song, K.-S.; Yu, K.-I. Is shoulder pain for three months or longer correlated with depression, anxiety, and sleep disturbance? J. Shoulder Elb. Surg. 2013, 22, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Seo, H.-J.; Bae, K.-C.; Lee, K.-J.; Hwang, I.; Warner, J.J.P. The impact of depression and anxiety on self-assessed pain, disability, and quality of life in patients scheduled for rotator cuff repair. J. Shoulder Elb. Surg. 2013, 22, 1160–1166. [Google Scholar] [CrossRef]
- Hilgard, J.R.; Lebaron, S. Relief of anxiety and pain in children and adolescents with cancer: Quantitative measures and clinical observations. Int. J. Clin. Exp. Hypn. 1982, 30, 417–442. [Google Scholar] [CrossRef]
- Palermo, T.M.; Drotar, D. Prediction of Children’s Postoperative Pain: The Role of Presurgical Expectations and Anticipatory Emotions1. J. Pediatr. Psychol. 1996, 21, 683–698. [Google Scholar] [CrossRef]
- Tsao, J.C.I.; Myers, C.D.; Craske, M.G.; Bursch, B.; Kim, S.C.; Zeltzer, L.K. Role of anticipatory anxiety and anxiety sensitivity in children’s and adolescents’ laboratory pain responses. J. Pediatr. Psychol. 2004, 29, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorn, L.D.; Campo, J.C.; Thato, S.; Dahl, R.E.; Lewin, D.; Chandra, R.; Di Lorenzo, C. Psychological Comorbidity and Stress Reactivity in Children and Adolescents With Recurrent Abdominal Pain and Anxiety Disorders. J. Am. Acad. Child Adolesc. Psychiatry 2003, 42, 66–75. [Google Scholar] [CrossRef]
- Dufton, L.M.; Dunn, M.J.; Compas, B.E. Anxiety and somatic complaints in children with recurrent abdominal pain and anxiety disorders. J. Pediatr. Psychol. 2009, 34, 176–186. [Google Scholar] [CrossRef]
- Walker, L.; Smith, C.; Garber, J.; Slyke, D. Development and validation of the Pain Response Inventory for Children. Psychol. Assess. 1997, 9, 392–405. [Google Scholar] [CrossRef]
- Reid, G.J.; Gilbert, C.A.; McGrath, P.J. The Pain Coping Questionnaire: Preliminary validation. Pain 1998, 76, 83–96. [Google Scholar] [CrossRef]
- Kaminsky, L.; Robertson, M.; Dewey, D. Psychological Correlates of Depression in Children with Recurrent Abdominal Pain. J. Pediatr. Psychol. 2006, 31, 956–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczynski, K.J.; Simons, L.E.; Claar, R.L. Anxiety, Coping, and Disability: A Test of Mediation in a Pediatric Chronic Pain Sample*. J. Pediatr. Psychol. 2011, 36, 932–941. [Google Scholar] [CrossRef]
- Fornaro, M.; De Berardis, D.; Iasevoli, F.; Pistorio, M.L.; D’Angelo, E.; Mungo, S.; Martino, M.; Ventriglio, A.; Cattaneo, C.I.; Favaretto, E.; et al. Treatment adherence towards prescribed medications in bipolar-II acute depressed patients: Relationship with cyclothymic temperament and “therapeutic sensation seeking” in response towards subjective intolerance to pain. J. Affect. Disord. 2013, 151, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Dilsaver, S.C.; Benazzi, F.; Manning, J.S.; Akiskal, K.K.; Akiskal, H.S. Pain complaints in latino adults of mexican origin with and without major depressive episode: A cross-sectional study. Prim. Care Companion J. Clin. Psychiatry 2008, 10, 191–196. [Google Scholar] [CrossRef]
- Kudlow, P.A.; Rosenblat, J.D.; Weissman, C.R.; Cha, D.S.; Kakar, R.; McIntyre, R.S.; Sharma, V. Prevalence of fibromyalgia and co-morbid bipolar disorder: A systematic review and meta-analysis. J. Affect. Disord. 2015, 188, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Poleshuck, E.L.; Andrus, C.H.; Hogan, L.A.; Jung, B.F.; Kulick, D.I.; Dworkin, R.H. Risk factors for acute pain and its persistence following breast cancer surgery. Pain 2005, 119, 16–25. [Google Scholar] [CrossRef]
- Kyranou, M.; Paul, S.M.; Dunn, L.B.; Puntillo, K.; Aouizerat, B.E.; Abrams, G.; Hamolsky, D.; West, C.; Neuhaus, J.; Cooper, B.; et al. Differences in depression, anxiety, and quality of life between women with and without breast pain prior to breast cancer surgery. Eur. J. Oncol. Nurs. 2013, 17, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Jaremka, L.M.; Fagundes, C.P.; Glaser, R.; Bennett, J.M.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Loneliness predicts pain, depression, and fatigue: Understanding the role of immune dysregulation. Psychoneuroendocrinology 2013, 38, 1310–1317. [Google Scholar] [CrossRef] [Green Version]
- Oishi, S.; Schiller, J.; Gross, E.B. Felt Understanding and Misunderstanding Affect the Perception of Pain, Slant, and Distance. Soc. Psychol. Personal. Sci. 2012, 4, 259–266. [Google Scholar] [CrossRef]
- Barlow, D.H.; Ellard, K.K.; Sauer-Zavala, S.; Bullis, J.R.; Carl, J.R. The Origins of Neuroticism. Perspect. Psychol. Sci. 2014, 9, 481–496. [Google Scholar] [CrossRef]
- Meng, W.; Adams, M.; Reel, P.; Lathika Rajendrakumar, A.; Huang, Y.; Deary, I.; Palmer, C.; Mcintosh, A.; Smith, B. Genetic correlations between pain phenotypes and depression and neuroticism. Eur. J. Hum. Genet. 2019, 28, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, L.A.; Seidman, L.C.; Lung, K.C.; Zeltzer, L.K.; Tsao, J.C.I. Relationship of neuroticism and laboratory pain in healthy children: Does anxiety sensitivity play a role? Pain 2013, 154, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadimpati, S.; Zale, E.L.; Hooten, M.W.; Ditre, J.W.; Warner, D.O. Associations between Neuroticism and Depression in Relation to Catastrophizing and Pain-Related Anxiety in Chronic Pain Patients. PLoS ONE 2015, 10, e0126351. [Google Scholar]
- Goubert, L.; Crombez, G.; Van Damme, S. The role of neuroticism, pain catastrophizing and pain-related fear in vigilance to pain: A structural equations approach. Pain 2004, 107, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Pallegama, R.W.; Ariyasinghe, S.; Perera, E.D.; Treede, R.-D. Influence of Catastrophizing and Personality Traits on Recalled Ratings of Acute Pain Experience in Healthy Young Adults. Pain Med. 2017, 18, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harkins, S.W.; Price, D.D.; Braith, J. Effects of extraversion and neuroticism on experimental pain, clinical pain, and illness behavior. Pain 1989, 36, 209–218. [Google Scholar] [CrossRef]
- Xia, J.; He, Q.; Li, Y.; Xie, D.; Zhu, S.; Chen, J.; Shen, Y.; Zhang, N.; Wei, Y.; Chen, C.; et al. The relationship between neuroticism, major depressive disorder and comorbid disorders in Chinese women. J. Affect. Disord. 2011, 135, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.J.; Howard, D.M.; Luciano, M.; Clarke, T.-K.; Davies, G.; Hill, W.D.; Smith, D.; Deary, I.J.; Porteous, D.J.; McIntosh, A.M. Genetic stratification of depression by neuroticism: Revisiting a diagnostic tradition. Psychol. Med. 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Middeldorp, C.M.; de Moor, M.H.M.; McGrath, L.M.; Gordon, S.D.; Blackwood, D.H.; Costa, P.T.; Terracciano, A.; Krueger, R.F.; de Geus, E.J.C.; Nyholt, D.R.; et al. The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. Transl. Psychiatry 2011, 1, e50. [Google Scholar] [CrossRef] [Green Version]
- Sparding, T.; Pålsson, E.; Joas, E.; Hansen, S.; Landén, M. Personality traits in bipolar disorder and influence on outcome. BMC Psychiatry 2017, 17, 159. [Google Scholar] [CrossRef] [Green Version]
- Rash, J.; Aguirre Camacho, A.; Campbell, T. Oxytocin and Pain A Systematic Review and Synthesis of Findings. Clin. J. Pain 2013, 30, 453–462. [Google Scholar]
- Liu, W.; Zhou, C. Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning. Psychoneuroendocrinology 2012, 37, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Korte, S.M. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci. Biobehav. Rev. 2001, 25, 117–142. [Google Scholar] [CrossRef]
- Erickson, K.; Drevets, W.; Schulkin, J. Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci. Biobehav. Rev. 2003, 27, 233–246. [Google Scholar] [CrossRef]
- Benedetti, M.; Merino, R.; Kusuda, R.; Ravanelli, M.I.; Cadetti, F.; dos Santos, P.; Zanon, S.; Lucas, G. Plasma corticosterone levels in mouse models of pain. Eur. J. Pain 2012, 16, 803–815. [Google Scholar] [CrossRef]
- Weinstein, A.; Kop, W.; Deuster, P. Depressive Mood Symptoms and Fatigue After Exercise Withdrawal: The Potential Role of Decreased Fitness. Psychosom. Med. 2006, 68, 224–230. [Google Scholar]
- McNeely, M.L.; Campbell, K.L.; Rowe, B.H.; Klassen, T.P.; Mackey, J.R.; Courneya, K.S. Effects of exercise on breast cancer patients and survivors: A systematic review and meta-analysis. CMAJ 2006, 175, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration and all-cause mortality: A systematic review and meta-analysis of prospective studies. Sleep 2010, 33, 585–592. [Google Scholar] [CrossRef]
- Landmark, T.; Romundstad, P.; Borchgrevink, P.C.; Kaasa, S.; Dale, O. Associations between recreational exercise and chronic pain in the general population: Evidence from the HUNT 3 study. Pain 2011, 152, 2241–2247. [Google Scholar] [CrossRef]
- Staner, L. Sleep and anxiety disorders. Dialogues Clin. Neurosci. 2003, 5, 249–258. [Google Scholar]
- Harvey, A.G.; Talbot, L.S.; Gershon, A. Sleep Disturbance in Bipolar Disorder Across the Lifespan. Clin. Psychol. (N. Y.) 2009, 16, 256–277. [Google Scholar] [CrossRef] [Green Version]
- Fadgyas-Stanculete, M.; Buga, A.M.; Popa-Wagner, A.; Dumitrascu, D.L. The relationship between irritable bowel syndrome and psychiatric disorders: From molecular changes to clinical manifestations. J. Mol. Psychiatry 2014, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A. Clinical practice. Irritable bowel syndrome. N. Engl. J. Med. 2008, 358, 1692–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Agnihotri, A.; Pathak, M.K.; Shirazi, A.; Tiwari, R.P.; Sreenivas, V.; Sagar, R.; Makharia, G.K. Psychiatric, somatic and other functional gastrointestinal disorders in patients with irritable bowel syndrome at a tertiary care center. J. Neurogastroenterol. Motil. 2012, 18, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tollefson, G.D.; Tollefson, S.L.; Pederson, M.; Luxenberg, M.; Dunsmore, G. Comorbid Irritable Bowel Syndrome in Patients with Generalized Anxiety and Major Depression. Ann. Clin. Psychiatry 1991, 3, 215–220. [Google Scholar] [CrossRef]
- Masand, P.S.; Kaplan, D.S.; Gupta, S.; Bhandary, A.N.; Nasra, G.S.; Kline, M.D.; Margo, K.L. Major depression and irritable bowel syndrome: Is there a relationship? J. Clin. Psychiatry 1995, 56, 363–367. [Google Scholar]
- Karling, P.; Danielsson, Å.; Adolfsson, R.; Norrback, K.-F. No difference in symptoms of irritable bowel syndrome between healthy subjects and patients with recurrent depression in remission. Neurogastroenterol. Motil. 2007, 19, 896–904. [Google Scholar] [CrossRef]
- Michael, V.; El Hamady, M.; El-Bakry, S.; Awd, M. A study of psychiatric comorbidities in irritable bowel syndrome. Egypt. J. Psychiatry 2018, 39, 140–149. [Google Scholar]
- Fitzgerald, P.; Cassidy Eugene, M.; Clarke, G.; Scully, P.; Barry, S.; Quigley Eamonn, M.M.; Shanahan, F.; Cryan, J.; Dinan Timothy, G. Tryptophan catabolism in females with irritable bowel syndrome: Relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity. Neurogastroenterol. Motil. 2008, 20, 1291–1297. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Arumugam, S.; Majeed, S.; Ali, F. Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: A randomised, double-blind, placebo controlled, multi-centre, pilot clinical study. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust. N. Z. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardisi, B.; Halawani, A.; Halawani, H.; Alharbi, A.; Turkostany, N.; Alrehaili, T.; Radin, A.; Alkhuzea, N. Efficiency of diet change in irritable bowel syndrome. J. Fam. Med. Prim. Care 2018, 7, 946–951. [Google Scholar]
- Inserra, A.; Rogers, G.B.; Licinio, J.; Wong, M.-L. The Microbiota-Inflammasome Hypothesis of Major Depression. BioEssays 2018, 40, 1800027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slyepchenko, A.; Maes, M.; Jacka, F.N.; Köhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; et al. Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychother. Psychosom. 2017, 86, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Crane, C.; Martin, M.; Johnston, D.; Goodwin, G.M. Does depression influence symptom severity in irritable bowel syndrome? Case study of a patient with irritable bowel syndrome and bipolar disorder. Psychosom. Med. 2003, 65, 919–923. [Google Scholar] [CrossRef]
- Mykletun, A.; Jacka, F.; Williams, L.; Pasco, J.; Henry, M.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Prevalence of mood and anxiety disorder in self reported irritable bowel syndrome (IBS). An epidemiological population based study of women. BMC Gastroenterol. 2010, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Hu, L.-Y.; Yeh, C.-M.; Hu, Y.-W.; Chen, P.-M.; Chen, T.-J.; Lu, T. Irritable brain caused by irritable bowel? A nationwide analysis for irritable bowel syndrome and risk of bipolar disorder. PLoS ONE 2015, 10, e0118209. [Google Scholar] [CrossRef] [Green Version]
- Tseng, P.-T.; Zeng, B.-S.; Chen, Y.-W.; Wu, M.-K.; Wu, C.-K.; Lin, P.-Y. A meta-analysis and systematic review of the comorbidity between irritable bowel syndrome and bipolar disorder. Medicine (Baltimore) 2016, 95, e4617. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Hu, L.-Y.; Shen, C.-C.; Huang, M.-W.; Tsai, S.-J.; Yang, A.C.; Hu, C.-K.; Perng, C.-L.; Huang, Y.-S.; Hung, J.-H. Risk of Psychiatric Disorders following Irritable Bowel Syndrome: A Nationwide Population-Based Cohort Study. PLoS ONE 2015, 10, e0133283. [Google Scholar] [CrossRef] [Green Version]
- Järbrink-Sehgal, E.; Andreasson, A. The gut microbiota and mental health in adults. Curr. Opin. Neurobiol. 2020, 62, 102–114. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Purpose | Diagnostic Assessment Tools | Study Description | Results | Comorbidities | Medicated or not | Quality Assessment |
---|---|---|---|---|---|---|---|
[42] | Rate pain, depression, and comorbid pain and depression in the context of MS (diagnosed by a medical professional) | Self-assessed; Pain: 0–10 NRS; Depression: PHQ-9; NRS was interpreted in 2 ways: any score > 0-indication of pain presence; scores ≥ 3-indicate at least moderate pain severity in persons diagnosed with MS; PHQ-9–2 ways of interpretation: variable for assessing the severity of depressive symptoms; a diagnostic tool for a major depressive episode if five or more symptoms were registered more than half the days | N = 161 with MS There were a majority of women (83%) Caucasian participants (97%). | The prevalence of pain and depression comorbidity with MS is only 6–19%, but when MS patients do manifest depression or pain, it is likely that the other manifestation is also present; patients suffering from pain are at least 5 times more prone to present with MDE as compared to those without pain. Also, among the individuals meeting depressive classification, 86–100% complained of pain, and 67–77% from those with depressive traits complained of at least moderate pain severity. Although individuals manifesting pain also manifested depression, the prevalence rates were lower, 11–34% met depression criteria from the ones experiencing any pain, and 15–37% from experiencing at least moderate pain. | MS | No indications | y/31 |
[43] | Assess chronic pain and depression in the context of MS | Self-assessed | MS | y/31 | |||
[44] | Review on increased rates of depression in chronic pain | RDC; DSM-III; DSM-III-R; DSM-IV | Reviewed in a non-structured way the literature on the connection between depression and chronic pain | Point prevalence rates of 30–54% MDD were highlighted by employing RDC and DSM criteria in diagnosing MDD in clinical samples involving chronic pain patients-indicated by 9 studies (see review). Two other studies indicated lower rates (8–21% MDD) and 2 other higher range (64–87% MDD) of MDD. 6-months and life-time MDD prevalence in 97 chronic low back pain patients indicate a 22% rate at 6-month and a 32% lifetime prevalence (Atkinson, Slater, Patterson, Grant and Garfin, 1999). | Cardiac disease: 17–18% MDD rates soon after MI; 14% MDD prevalence after 3–4 month MI; 18% MDD rates before cardiac catheterization due to suspected coronary artery disease; 27%-co-occurrence of MDD in patients scheduled for elective cardiac catheterization because of suspected coronary artery disease. Malignancy: 4–42% variability of MDD prevalence rate; Neurological conditions: 7–27% MDD rates in post-stroke patients; 22% MDD rates in Parkinson‘s disease patients. 10% MDD or another affective disorder in patients with diabetes. | No indications. | y/31 |
[45] | Assess chronic pain and depression influences on return to work rates | Pain: SF-MPQ; Depression: BDI; | N = 185; 84 women, 101 men; age:21–62 years; Patients could not work due to injuries: 69% back or neck injuries, 21.2% upper extremity, 0.8% lower extremity injury | Depression highly correlates with affective pain levels: r = 0.46→r = 0.43, p < 0.01 as compared to sensory pain rates: r = 0.36→r = 0.43, p < 0.01. The significant connection between the severity of depression vs. severity of pain in relation to timeframe; return to work rates were influenced by depression and pain levels. | Occupational injury | No indication. | y/31 |
Reference | Animal Model Employed | Tests Applied | Description | Results | Conclusions |
---|---|---|---|---|---|
Depression in pain | |||||
[51] | Neuropathic pain- Chronic constriction injury (CCI) of the sciatic nerve | Electronic von Frey test (eVF): records mechanical sensitivity Elevated plus maze (EPM) test: records anxious behavior Forced swim test (FST): records depressive behavior | N = 64; Substance tested: tramadol 4 groups of 16 animals: sham + saline (S + S); sham + tramadol (S + T); CCI + saline (CCI + S); CCI + tramadol (CCI + T) | eVF: ↓PWT in CCI + S rats compared to S + S – hyper-nociception in CCI + S rats; ↑PWT in CCI + T rats compared to CCI + S (336%); ↑PWT in S + T rats compared to S + S (16%)—tramadol reduces mechanical sensitivity. EPM: ↓time in open arms in CCI + S vs. S + S -increased anxiety behavior in CCI + S rats; ↑time in open arms in CCI + T vs. CCI + S –tramadol reduces anxiety-behavior. FST: ↑ CCI immobility time (28%)-indicating depressive behavior; ↓ CCI + T immobility time- reduced depressive behavior; No significant effect of tramadol on sham rats. | Increased pain sensitivity in neuropathic pain animal model, along with anxious behaviour and depressive manifestations. Administration of tramadol reduces pain sensitivity, anxious behavior, and depressive manifestations. |
[52] | Inflammatory pain- induction of monoarthritis (ARTH) by injecting kaolin and carrageenan into the synovial cavity of the right knee joint | Nociceptive behavior-occurrence of vocalizations at flexion-extension maneuver Pressure application measurement- limb withdrawal threshold(LWT) after noxious stimulus application Elevated plus maze(EPM): records anxious behavior Open-field test(OF): assesses locomotion ability and anxious behavior The forced swim test, Sucrose preference test: records depressive behavior following anhedonic manifestations | N = 44 Substance tested: amitriptyline; 2 experiments: one followed the development of mood-like disorders in ARTH rat model, second followed the amitriptyline effects on nociceptive and emotional features of the ARTH model | Experiment 1: LWT significantly decreased in ARTH rats; OF: no locomotor differences were recorded between sham and ARTH animals; ARTH rats presented with anxiety-like features; depressive-like behavior registered in ARTH animals. Experiment 2: ARTH rats treated with amitriptyline showed higher LWT compared to the saline ARTH group. Locomotor activity did not differ between ARTH with amitriptyline and ARTH without. No difference in results between ARTH with drug and without were signaled in OF or EPM; amitriptyline treated animals did not show improved depressive behavior in the FST, although ARTH rats with amitriptyline increased the climbing time but just compared to SHAM rats. | Induced experimental monoarthritis resulted in the occurrence of depressive and anxiety-like behaviors in rats. Amitriptyline administration decreased mechanical pain sensitivity but had a partial effect on depressive-like behavior. |
[53] | Neuropathic pain: chronic constriction injury (CCI) of the sciatic nerve | Mechanical pain: automated algometer; Depression assessment: FST | Male Wistar rats; Substance tested: duloxetine, fluoxetine, 8-OH-DPAT | CCI vs. sham: ↓paw withdrawal thresholds; CCI + duloxetine: ↓pain sensitivity; CCI + fluoxetine: NO change; CCI-OH-DPAT: ↓pain sensitivity(from 14 ± 1 g to 25 ± 1 g, p < 0.001) FST: CCI vs. sham: ↑immobility time –sham +saline 115 ± 9 s vs. CCI + saline 183 ± 10 s; p < 0.001; CCI + duloxetine vs. CCI + saline: ↓immobility time; CCI + 8-OH-DPAT: ↓immobility time; CCI + fluoxetine: No significant changes in depression-like behaviors; CCI vs. sham: ↓climbing (sham + saline 129 ± 13 s vs. CCI + saline 62 ± 9 s); CCI + duloxetine vs. CCI + saline: No differences in climbing; CCI vs. sham: Equivalent time of swimming; CCI + duloxetine: ↑ time of swimming CCI + 8-OH-DPAT: ↑time of swimming | CCI rats presented with ↑ depressive behavior, ↑mechanical pain sensitivity. CCI + duloxetine and CCI + 8-OH-DPAT ↓depression and ↓mechanical pain, while CCI + fluoxetine had induced no significant changes. |
Pain in depression | |||||
[54] | Model of social defeat confrontation-induction of depressive/anxiety-like behavior. | Sweet water consumption: records anhedonic behavior-accounted for in depression; Formalin test: a model for nociception study; | There were followed the effects of the induced animal model on physiological indicators; afterward the effect of formalin in controls vs. animal model; the effects of morphine pretreatment on nociceptive formalin test, and lastly, the effects of CI-998 pretreatment or chlordiazepoxide chronic administration on the nociceptive model | Bodyweight of defeated rats was lower than of non-defeated ones (day9; 432.50 ± 7.32 g vs. 472.60 ± 6.13 g; n = 10; F(1,18) = 17.63; p < 0.001). A decrease of sucrose consumption was clearly registered in defeated rats (approx. 70% less than in undefeated ones). Five days following the conditioning sessions, increased corticosterone levels (56.59 ± 12.74 ng/mL vs. undefeated 8.84 ± 2.44 ng/mL; n = 10; F(1,18) = 13.41, p < 0.002) and adrenal glands weight in defeated rats (13.65 ± 0.25 mg/100 g vs. undefeated 9.89 ± 0.41 mg/100 g, n = 10, F(1,18) = 66.85, p < 0.0001), indicative of the increased level of stress, proof of hyperactivity of HPA axis, thus of generalized depression or anxiety manifestations. In the formalin test, defeated rats registered significantly increased pain levels in between the two phases of the nociceptive behavioral reaction and during the second phase (2.5% formalin, +205%; 6–20 min) (2.5% formalin, +47%, n = 113) as compared to non-defeated rats (n = 9). Although undefeated rats injected with formalin did not show a significant change in CCKLM cortical outflow, the defeated rats injected with formalin presented with a significant increase of dialysate CCKLM rates noted in the fifth microdialysate fraction (+46 ± 8%. t(12) = −4.3, p < 0.001, n = 13; after 2.5% formalin administration) and in the next fraction (+79 ± 10%, t(12) = −5.69, p < 0.0001, n = 13).Morphine doses on total pain rates: 2 mg/kg—a decrease of total pain scores in phase II undefeated rats(−31%) and defeated ones (−27%) | |
[55] | Model of chronic depression: bilateral olfactory bulbectomy (OB) | Tail-flick test: spinal thermal pain test; | Thermal latency time was tested in naive, and either fluoxetine or morphine injected male Sprague-Dawley rats. Determinations of the autoradiographic density of specific spinal receptors (5-HT1A, µ-opioid) were performed | OB rats presented with increased thermal pain sensitivity compared with sham rats (n = 16–18, OB = 4.30 ± 0.38 s vs. n = 17–20, sham = 6.07 ± 0.38 s, p < 0.01). In the acute administration of morphine and fluoxetine, no significant differences concerning thermal pain sensitivity were recorded (n = 8–10 rats/group). Fluoxetine: ↑tail-flick latency until it almost matched the baseline in sham counterparts |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antioch, I.; Ilie, O.-D.; Ciobica, A.; Doroftei, B.; Fornaro, M. Preclinical Considerations about Affective Disorders and Pain: A Broadly Intertwined, yet Often Under-Explored, Relationship Having Major Clinical Implications. Medicina 2020, 56, 504. https://doi.org/10.3390/medicina56100504
Antioch I, Ilie O-D, Ciobica A, Doroftei B, Fornaro M. Preclinical Considerations about Affective Disorders and Pain: A Broadly Intertwined, yet Often Under-Explored, Relationship Having Major Clinical Implications. Medicina. 2020; 56(10):504. https://doi.org/10.3390/medicina56100504
Chicago/Turabian StyleAntioch, Iulia, Ovidiu-Dumitru Ilie, Alin Ciobica, Bogdan Doroftei, and Michele Fornaro. 2020. "Preclinical Considerations about Affective Disorders and Pain: A Broadly Intertwined, yet Often Under-Explored, Relationship Having Major Clinical Implications" Medicina 56, no. 10: 504. https://doi.org/10.3390/medicina56100504
APA StyleAntioch, I., Ilie, O. -D., Ciobica, A., Doroftei, B., & Fornaro, M. (2020). Preclinical Considerations about Affective Disorders and Pain: A Broadly Intertwined, yet Often Under-Explored, Relationship Having Major Clinical Implications. Medicina, 56(10), 504. https://doi.org/10.3390/medicina56100504