Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism
Abstract
:1. Introduction
2. Materials and Methods
2.1. VPA Exposure and OXT Treatment
2.2. Behavioral Testing
2.3. Y-Maze test
2.4. The Elevated Plus Maze Test (EPM)
2.5. Forced Swim Test
2.6. Intestinal Transit Assessement
2.7. Tissue Collection
2.8. Biochemical Analysis
2.9. Statistical Analysis
3. Results
3.1. Spontaneous Alternation Percentage in the Y-Maze Task
3.2. Effects of Oxytocin on Anxiety-Like Manifestations in the Elevated Plus Maze Task
3.2.1. Time Spent in the Opened Arms of the EPM
3.2.2. Number of Entrances in the Opened and Closed Arms of the EPM
3.2.3. Number of Head Dips in the Opened Arms of the EPM
3.3. Effect of Oxytocin on Depressive-Like Manifestations in the Forced-Swimming Task
3.4. Effect of Oxytocin on Oxidative Stress Biomarkers
3.5. Pearson Correlations
3.6. Effects of VPA Prenatal Exposure and Oxytocin Treatment on the Intestinal Transit
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Brunsdon, V.E.; Colvert, E.; Ames, C.; Garnett, T.; Gillan, N.; Hallett, V.; Lietz, S.; Woodhouse, E.; Bolton, P.; Happé, F. Exploring the cognitive features in children with autism spectrum disorder, their co-twins, and typically developing children within a population-based sample. J. Child Psychol. Psychiatry 2015, 56, 893–902. [Google Scholar] [PubMed] [Green Version]
- Alokla, S. Non-Verbal Communication Skills of Children with Autism Spectrum Disorder. Electron. Theses Proj. Diss. 2018, 6, 727. [Google Scholar]
- Joseph, R.M.; Tager-Flusberg, H.; Lord, C. Cognitive profiles and social-communicative functioning in children with autism spectrum disorder. J. Child Psychol. Psychiatry 2002, 43, 807–821. [Google Scholar] [PubMed] [Green Version]
- Van Ommeren, T.B.; Begeer, S.; Scheeren, A.M.; Koot, H.M. Measuring reciprocity in high functioning children and adolescents with autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lartseva, A.; Dijkstra, T.; Buitelaar, J.K. Emotional language processing in autism spectrum disorders: A systematic review. Front. Hum. Neurosci. 2015, 6, 991. [Google Scholar]
- Southwick, J.S.; Bigler, E.D.; Froehlich, A.; DuBray, M.B.; Alexander, A.L.; Lange, N.; Lainhart, J.E. Memory functioning in children and adolescents with autism. Neuropsychology 2011, 25, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, G.; Petty, C.; Wozniak, J.; Henin, A.; Fried, R.; Galdo, M.; Kotarski, M.; Walls, S.; Biederman, J. The heavy burden of psychiatric comorbidity in youth with autism spectrum disorders: A large comparative study of a psychiatrically referred population. J. Autism Dev. Disord. 2010, 40, 1361–1370. [Google Scholar]
- Doshi-Velez, F.; Ge, Y.; Kohane, I. Comorbidity clusters in autism spectrum disorders: An electronic health record time-series analysis. Pediatrics 2014, 133, e54–e63. [Google Scholar]
- Hepburn, S.L.; Stern, J.A.; Blakeley-Smith, A.; Kimel, L.K.; Reaven, J.A. Complex Psychiatric Comorbidity of Treatment-Seeking Youth With Autism Spectrum Disorder and Anxiety Symptoms. J. Ment. Health Res. Intellect. Disabil. 2014, 7, 359–378. [Google Scholar] [CrossRef]
- Xu, M.; Xu, X.; Li, J.; Li, F. Association Between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front. Psychiatry 2019, 10, 473. [Google Scholar]
- Dinan, T.G.; Cryan, J.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017, 595, 489–503. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, J. The amygdala. Curr. Biol. 2007, 17, R868–R874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour Spectrum Disorder: A Systematic Review and Meta-Analysis. Genes Brain Behav. 2014, 13, 69–86. [Google Scholar] [PubMed]
- Ogbonnaya, E.S.; Clarke, G.; Shanahan, F.; Dinan, T.G.; Cryan, J.F.; O’Leary, O.F. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry 2015, 78, e7–e9. [Google Scholar] [CrossRef]
- Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol. 2010, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.; Grønborg, T.K.; Sørensen, M.J.; Schendel, D.; Parner, E.T.; Pedersen, L.H.; Vestergaard, M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013, 309, 1696–1703. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, T.; Perrodin, C.; Markram, H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Front. Neural Circuits 2008, 2, 4. [Google Scholar] [CrossRef]
- Sui, L.; Chen, M. Prenatal exposure to valproic acid enhances synaptic plasticity in the medial prefrontal cortex and fear memories. Brain Res. Bull. 2012, 87, 556–563. [Google Scholar] [CrossRef]
- Schneider, T.; Przewlocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology 2005, 30, 80–89. [Google Scholar] [CrossRef]
- Favre, M.R.; Barkat, T.R.; Lamendola, D.; Khazen, G.; Markram, H.; Markram, K. General developmental health in the VPA-rat model of autism. Front. Behav. Neurosci. 2013, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.; Chauhan, V.; Brown, W.T.; Cohen, I. Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—The antioxidant proteins. Life Sci. 2004, 75, 2539–2549. [Google Scholar] [CrossRef]
- Söğüt, S.; Zoroğlu, S.S.; Ozyurt, H.; Yilmaz, H.R.; Ozuğurlu, F.; Sivasli, E.; Yetkin, O.; Yanik, M.; Tutkun, H.; Savaş, H.A.; et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin. Chim. Acta 2003, 331, 111–117. [Google Scholar] [CrossRef]
- Meguid, N.A.; Dardir, A.A.; Abdel-Raouf, E.R.; Hashish, A. Evaluation of oxidative stress in autism: Defective antioxidant enzymes and increased lipid peroxidation. Biol. Trace Elem. Res. 2011, 143, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Audhya, T.; Chauhan, V. Brain region-specific glutathione redox imbalance in autism. Neurochem. Res. 2012, 37, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.G.; Frye, R.E.; James, S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry 2012, 2, e134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, T.A.; Siedlak, S.L.; Lu, L.; Fu, X.; Wang, Z.; McGinnis, W.R.; Fakhou, R.J.; Hazen, S.L.; Walsh, W.L.; Lewis, A.T.; et al. The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am. J. Biochem. Biotechnol. 2008, 4, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology 2006, 13, 171–181. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Aldinger, K.A.; Ashwood, P.; Bauman, M.L.; Blaha, C.D.; Blatt, G.J.; Chauhan, A.; Chauhan, V.; Dager, S.R.; Dickson, P.E.; et al. Consensus paper: Pathological role of the cerebellum in autism. Cerebellum 2012, 11, 777–807. [Google Scholar] [CrossRef] [Green Version]
- Tung, E.W.; Winn, L.M. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects. Mol. Pharmacol. 2011, 80, 979–987. [Google Scholar] [CrossRef]
- Anagnostou, E.; Soorya, L.; Chaplin, W.; Bartz, J.; Halpern, D.; Wasserman, S.; Wang, A.T.; Pepa, L.; Tanel, N.; Kushki, A.; et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: A randomized controlled trial. Mol. Autism 2012, 3, 16. [Google Scholar] [PubMed] [Green Version]
- Jones, C.; Barrera, I.; Brothers, S.; Ring, R.; Wahlestedt, C. Oxytocin and social functioning. Dialog-Clin. Neurosci. 2017, 19, 193–201. [Google Scholar]
- Wu, S.; Jia, M.; Ruan, Y.; Liu, J.; Guo, Y.; Shuang, M.; Gong, X.; Zhang, Y.; Yang, X.; Zhang, D. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 2005, 58, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, H.F.; Han, J.S.; Han, S.P. Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci. Bull. 2017, 33, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaseen, A.; Shrivastava, K.; Zuri, Z.; Hatoum, O.A.; Maroun, M. Prefrontal Oxytocin is Involved in Impairments in Prefrontal Plasticity and Social Memory Following Acute Exposure to High Fat Diet in Juvenile Animals. Cereb. Cortex 2018, 29, 1900–1909. [Google Scholar] [CrossRef]
- Leonzino, M.; Ponzoni, L.; Braida, D.; Gigliucci, V.; Busnelli, M.; Ceresini, I.; Duque-Wilckens, N.; Nishimori, K.; Trainor, B.C.; Sala, M.; et al. Impaired approach to novelty and striatal alterations in the oxytocin receptor deficient mouse model of autism. Horm. Behav. 2019, 114, 104543. [Google Scholar] [CrossRef]
- Sala, M.; Braida, D.; Donzelli, A.; Martucci, R.; Busnelli, M.; Bulgheroni, E.; Rubino, T.; Parolaro, D.; Nishimori, K.; Chini, B. Mice heterozygous for the oxytocin receptor gene (Oxtr(+/)) show impaired social behaviour but not increased aggression or cognitive inflexibility: Evidence of a selective haploinsufficiency gene effect. J. Neuroendocrinol. 2013, 25, 107–118. [Google Scholar] [PubMed]
- Dai, Y.C.; Zhang, H.F.; Schön, M.; Böckers, T.M.; Han, S.P.; Han, J.S.; Zhang, R. Neonatal Oxytocin Treatment Ameliorates Autistic-Like Behaviors and Oxytocin Deficiency in Valproic Acid-Induced Rat Model of Autism. Front. Cell. Neurosci. 2018, 12, 355. [Google Scholar]
- Moosmann, B.; Behl, C. Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Eur. J. Biochem. 2000, 267, 5687–5692. [Google Scholar] [CrossRef] [Green Version]
- Havranek, T.; Alanazi, M.M.; Bakos, J.; Bacova, Z.; Cubeddu, L.X.; Castejon, A.M. Protective Effect of Oxytocin Against Apoptosis and Oxidative Stress: Role of Extracellular Signal Regulating Kinases. FASEB J. 2019, 33, 736.3. [Google Scholar]
- Ibrahim, M.N.; Alghannam, M.A.; Goma, R.S.; Elsayed, N.A. Value of oxytocin in modifying metabolic changes and atherosclerosis in rat model of diet-induced obesity. Al-Azhar. Assiut. Med. J. 2017, 15, 78–84. [Google Scholar]
- Deing, V.; Roggenkamp, D.; Kühnl, J.; Gruschka, A.; Stäb, F.; Wenck, H.; Bürkle, A.; Neufang, G. Oxytocin modulates proliferation and stress responses of human skin cells: Implications for atopic dermatitis. Exp. Dermatol. 2013, 22, 399–405. [Google Scholar] [PubMed] [Green Version]
- Szeto, A.; Nation, D.A.; Mendez, A.J.; Dominguez-Bendala, J.; Brooks, L.G.; Schneiderman, N.; McCabe, P.M. Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1495–E1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, M.; Klein, B. Possible Mechanism Involving Intestinal Oxytocin, Oxidative Stress, and Signaling Pathways in a Subset of Autism with Gut Symptoms. In Autism; Chauhan, A., Chauhan, V., Brown, T.W., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group, 2009; pp. 154–196. [Google Scholar]
- Wang, T.; Shi, C.; Li, X.; Zhang, P.; Liu, B.; Wang, H.; Wang, Y.; Yang, Y.; Wu, Y.; Li, H.; et al. Injection of oxytocin into paraventricular nucleus reverses depressive-like behaviors in the postpartum depression rat model. Behav. Brain Res. 2018, 336, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Peñagarikano, O.; Lázaro, M.T.; Lu, X.H.; Gordon, A.; Dong, H.; Lam, H.A.; Peles, E.; Maidment, N.T.; Murphy, N.P.; Yang, X.W.; et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 2015, 7, 271ra8. [Google Scholar] [PubMed] [Green Version]
- Bales, K.L.; Carter, C.S. Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster). Behav. Neurosci. 2003, 117, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Cushing, B.S.; Kramer, K.M.; Epperson, P.D.; Hoffman, G.E.; Carter, C.S. Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience 2004, 125, 947–955. [Google Scholar] [CrossRef]
- Smith, A.S.; Korgan, A.C.; Young, W.S. Oxytocin delivered nasally or intraperitoneally reaches the brain and plasma of normal and oxytocin knockout mice. Pharmacol. Res. 2019, 146, 104324. [Google Scholar]
- Lee, S.Y.; Park, S.H.; Chung, C.; Kim, J.J.; Choi, S.Y.; Han, J.S. Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress. Sci. Rep. 2015, 5, 18540. [Google Scholar] [CrossRef]
- Guastella, A.J.; Einfeld, S.L.; Gray, K.M.; Rinehart, N.J.; Tonge, B.J.; Lambert, T.J.; Hickie, I.B. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry 2010, 67, 692–694. [Google Scholar] [CrossRef]
- Kim, J.W.; Choi, C.S.; Kim, K.C.; Park, J.H.; Seung, H.; Joo, S.H.; Yang, S.M.; Shin, C.Y.; Park, S.H. Gastrointestinal tract abnormalities induced by prenatal valproic Acid exposure in rat offspring. Toxicol. Res. 2013, 29, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Horton-Sparks, K.; Hull, V.; Li, R.W.; Martínez-Cerdeño, V. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol. Autism 2018, 9, 61. [Google Scholar] [PubMed] [Green Version]
- Balmus, I.M.; Lefter, R.; Ciobica, A.; Antioch, I.; Ababei, D.; Dobrin, R. Preliminary Data on Some Behavioral Changes Induced by Short-Term Intraperitoneal Oxytocin Administration in Aged Rats. Psychiatr. Danub. 2018, 30, 91–98. [Google Scholar] [PubMed]
- Pădurariu, M.; Balmuș, M.; Ciobîcă, A.; Lefter, R.; Cojocaru, S.; Antioch, I.; Foyet, H.S.; Dobrin, R.; Ababei, D.; Bild, V. Oxytocin administration improves memory, anxiety and some oxidative stress parameters in a methionine-induced rat model of schizophrenia. Farmacia 2018, 66, 421–431. [Google Scholar] [CrossRef]
- Modi, M.E.; Majchrzak, M.J.; Fonseca, K.R.; Doran, A.; Osgood, S.; Vanase-Frawley, M.; Feyfant, E.; McInnes, H.; Darvari, R.; Buhl, D.L.; et al. Peripheral Administration of a Long-Acting Peptide Oxytocin Receptor Agonist Inhibits Fear-Induced Freezing. J. Pharmacol. Exp. Ther. 2016, 358, 164–172. [Google Scholar]
- Zoratto, F.; Sbriccoli, M.; Martinelli, A.; Glennon, J.C.; Macrì, S.; Laviola, G. Intranasal oxytocin administration promotes emotional contagion and reduces aggression in a mouse model of callousness. Neuropharmacology 2018, 143, 250–267. [Google Scholar] [CrossRef]
- Pagani, M.; De Felice, A.; Montani, C.; Galbusera, A.; Papaleo, F.; Gozzi, A. Acute and Repeated Intranasal Oxytocin Differentially Modulate Brain-wide Functional Connectivity. Neuroscience 2020. [CrossRef]
- Bild, W.; Hritcu, L.; Stefanescu, C.; Ciobica, A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 43, 79–88. [Google Scholar] [CrossRef]
- Ciobica, A.; Olteanu, Z.; Padurariu, M.; Hritcu, L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson’s disease. J. Physiol. Biochem. 2012, 68, 59–69. [Google Scholar] [CrossRef]
- Balmuș, I.M.; Strungaru, S.A.; Ciobica, A.; Nicoara, M.N.; Dobrin, R.; Plavan, G.; Ștefănescu, C. Preliminary Data on the Interaction between Some Biometals and Oxidative Stress Status in Mild Cognitive Impairment and Alzheimer’s Disease Patients. Oxid. Med. Cell Longev. 2017, 57, 7156928. [Google Scholar]
- Hollander, E.; Bartz, J.; Chaplin, W.; Phillips, A.; Sumner, J.; Soorya, L.; Anagnostou, E.; Wasserman, S. Oxytocin increases retention of social cognition in autism. Biol. Psychiatry 2007, 61, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Barendse, E.M.; Hendriks, M.P.; Jansen, J.F.; Backes, W.H.; Hofman, P.A.; Thoonen, G.; Kessels, R.P.; Aldenkamp, A.P. Working memory deficits in high-functioning adolescents with autism spectrum disorders: Neuropsychological and neuroimaging correlates. J. Neurodev. Disord. 2013, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, A.; Harris, L.; Pollick, F.; Melville, C. A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE 2019, 14, e0216198. [Google Scholar] [CrossRef] [Green Version]
- Steele, S.D.; Minshew, N.J.; Luna, B.; Sweeney, J.A. Spatial working memory deficits in autism. J. Autism Dev. Disord. 2007, 37, 605–612. [Google Scholar] [CrossRef]
- Luna, B.; Doll, S.K.; Hegedus, S.J.; Minshew, N.J.; Sweeney, J.A. Maturation of executive function in autism. Biol. Psychiatry 2007, 61, 474–481. [Google Scholar] [CrossRef]
- Vogan, V.M.; Morgan, B.R.; Smith, M.L.; Taylor, M.J. Functional changes during visuo-spatial working memory in autism spectrum disorder: 2-year longitudinal functional magnetic resonance imaging study. Autism 2019, 23, 639–652. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Sun, H.; Cao, Y.; Liang, S.; Wang, H.; Wang, Y.; Yang, F.; Zhang, F.; Wu, L. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model. Int. J. Dev. Neurosci. 2016, 49, 67–78. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Y.; Li, Y.; Chen, D.; Yang, F.; Wang, S. A Developmental Study of Abnormal Behaviors and Altered GABAergic Signaling in the VPA-Treated Rat Model of Autism. Front. Behav. Neurosci. 2018, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wu, H.; Zhang, Q.; Gao, J.; Sun, C.; Wang, J.; Xia, W.; Cao, Y.; Hao, Y.; Wu, L. Modulation of sphingosine 1-phosphate (S1P) attenuates spatial learning and memory impairments in the valproic acid rat model of autism. Psychopharmacology 2018, 235, 873–886. [Google Scholar] [CrossRef]
- Seo, T.B.; Cho, H.S.; Shin, M.S.; Kim, C.J.; Ji, E.S.; Baek, S.S. Treadmill exercise improves behavioral outcomes and spatial learning memory through up-regulation of reelin signaling pathway in autistic rats. J. Exerc. Rehabil. 2013, 9, 220–229. [Google Scholar] [CrossRef]
- Edalatmanesh, M.A.; Nikfarjam, H.; Vafaee, F.; Moghadas, M. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Res. 2013, 1526, 15–25. [Google Scholar] [CrossRef]
- Gonzales, E.L.; Jang, J.H.; Mabunga, D.F.; Kim, J.W.; Ko, M.J.; Cho, K.S.; Bahn, G.H.; Hong, M.; Ryu, J.H.; Kim, H.J.; et al. Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism. Food Nutr. Res. 2016, 60, 29245. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.T.; Hsieh, T.Y.; Tsai, T.C.; Chen, C.C.; Huang, C.C.; Hsu, K.S. Conditional Deletion of Hippocampal CA2/CA3a Oxytocin Receptors Impairs the Persistence of Long-Term Social Recognition Memory in Mice. J. Neurosci. 2018, 38, 1218–1231. [Google Scholar]
- Park, S.H.; Kim, Y.J.; Park, J.C.; Han, J.S.; Choi, S.Y. Intranasal Oxytocin following Uncontrollable Stress Blocks Impairments in Hippocampal Plasticity and Recognition Memory in Stressed Rats. Int. J. Neuropsychopharmacol. 2017, 20, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Owen, S.F.; Tuncdemir, S.N.; Bader, P.L.; Tirko, N.N.; Fishell, G.; Tsien, R.W. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 2013, 500, 458–462. [Google Scholar] [CrossRef]
- Maniezzi, C.; Talpo, F.; Spaiardi, P.; Toselli, M.; Biella, G. Oxytocin Increases Phasic and Tonic GABAergic Transmission in CA1 Region of Mouse Hippocampus. Front. Cell Neurosci. 2019, 13, 178. [Google Scholar] [CrossRef] [Green Version]
- Dayi, A.; Cetin, F.; Sisman, A.R.; Aksu, I.; Tas, A.; Gönenc, S.; Uysal, N. The effects of oxytocin on cognitive defect caused by chronic restraint stress applied to adolescent rats and on hippocampal VEGF and BDNF levels. Med. Sci. Monit. 2015, 21, 69–75. [Google Scholar]
- Hara, Y.; Ago, Y.; Higuchi, M.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism. Horm. Behav. 2017, 96, 130–136. [Google Scholar] [CrossRef]
- Tomizawa, K.; Iga, N.; Lu, Y.F.; Moriwaki, A.; Matsushita, M.; Li, S.T.; Miyamoto, O.; Itano, T.; Matsui, H. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat. Neurosci. 2003, 6, 384–390. [Google Scholar]
- Zhang, L.; Jope, R.S. Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol. Aging 1999, 20, 271–278. [Google Scholar] [CrossRef]
- Hollocks, M.J.; Lerh, J.W.; Magiati, I.; Meiser-Stedman, R.; Brugha, T.S. Anxiety and depression in adults with autism spectrum disorder: A systematic review and meta-analysis. Psychol. Med. 2019, 49, 559–572. [Google Scholar] [CrossRef]
- Olexová, L.; Štefánik, P.; Kršková, L. Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats—An animal model of autism. Neurosci. Lett. 2016, 629, 9–14. [Google Scholar] [CrossRef]
- Markram, K.; Rinaldi, T.; La Mendola, D.; Sandi, C.; Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 2008, 33, 901–912. [Google Scholar] [CrossRef]
- Nakasato, A.; Nakatani, Y.; Seki, Y.; Tsujino, N.; Umino, M.; Arita, H. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism. Brain Res. 2008, 1193, 128–135. [Google Scholar]
- Yan, Y.; Wang, Y.-L.; Su, Z.; Zhang, Y.; Guo, S.-X.; Liu, A.-J.; Wang, C.; Sun, F.-J.; Yang, J. Effect of oxytocin on the behavioral activity in the behavioral despair depression rat model. Neuropeptides 2014, 48, 83–89. [Google Scholar] [CrossRef]
- Sobota, R.; Mihara, T.; Forrest, A.; Featherstone, R.E.; Siegel, S.J. Oxytocin reduces amygdala activity, increases social interactions, and reduces anxiety-like behavior irrespective of NMDAR antagonism. Behav. Neurosci. 2015, 129, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Amico, J.A.; Mantella, R.C.; Vollmer, R.R.; Li, X. Anxiety and stress responses in female oxytocin deficient mice. J. Neuroendocrinol. 2004, 16, 319–324. [Google Scholar] [CrossRef]
- Han, R.T.; Kim, Y.B.; Park, E.H.; Kim, J.Y.; Ryu, C.; Kim, H.Y.; Lee, J.; Pahk, K.; Shanyu, C.; Kim, H.; et al. Long-Term Isolation Elicits Depression and Anxiety-Related Behaviors by Reducing Oxytocin-Induced GABAergic Transmission in Central Amygdala. Front. Mol. Neurosci. 2018, 11, 246. [Google Scholar] [CrossRef] [Green Version]
- Neumann, I.D.; Krömer, S.A.; Toschi, N.; Ebner, K. Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: Involvement of hypothalamic and limbic brain regions. Regul. Pept. 2000, 96, 31–38. [Google Scholar]
- Varghese, F.P.; Brown, E.S. The Hypothalamic-Pituitary-Adrenal Axis in Major Depressive Disorder: A Brief Primer for Primary Care Physicians. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 151–155. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Liu, X.; Zheng, Y.; Li, L.; Meng, S. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother. 2018, 107, 262–269. [Google Scholar] [CrossRef]
- Tang, G.; Gutierrez Rios, P.; Kuo, S.H.; Akman, H.O.; Rosoklija, G.; Tanji, K.; Dwork, A.; Schon, E.A.; Dimauro, S.; Goldman, J.; et al. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol. Dis. 2013, 54, 349–361. [Google Scholar] [PubMed]
- Tanaka, A.; Furubayashi, T.; Arai, M.; Inoue, D.; Kimura, S.; Kiriyama, A.; Kusamori, K.; Katsumi, H.; Yutani, R.; Sakane, T.; et al. Delivery of Oxytocin to the Brain for the Treatment of Autism Spectrum Disorder by Nasal Application. Mol. Pharm. 2018, 15, 1105–1111. [Google Scholar]
- Quintana, D.S.; Guastella, A.J.; Westlye, L.T.; Andreassen, O.A. The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol. Psychiatry 2015, 21, 29–38. [Google Scholar]
- Leng, G.; Ludwig, M. Intranasal Oxytocin: Myths and Delusions. Biol. Psychiatry 2016, 79, 243–250. [Google Scholar]
- Freeman, S.M.; Samineni, S.; Allen, P.C.; Stockinger, D.; Bales, K.L.; Hwa, G.G.; Roberts, J.A. Plasma and CSF oxytocin levels after intranasal and intravenous oxytocin in awake macaques. Psychoneuroendocrinology 2016, 66, 185–194. [Google Scholar] [CrossRef]
- Neumann, I.D.; Maloumby, R.; Beiderbeck, D.I.; Lukas, M.; Landgraf, R. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 2013, 38, 1985–1993. [Google Scholar] [CrossRef]
- Martins, D.; Mazibuko, N.; Zelaya, F.; Vasilakopoulou, S.; Loveridge, J.; Oates, A.; Maltezos, S.; Mehta, M.; Howard, M.; McAlonan, G.; et al. Do direct nose-to-brain pathways underlie intranasal oxytocin-induced changes in regional cerebral blood flow in humans? BioRxiv 2019, 563056. [Google Scholar] [CrossRef]
- Ferris, C.F.; Yee, J.R.; Kenkel, W.M.; Dumais, K.M.; Moore, K.; Veenema, A.H.; Kulkarni, P.; Perkybile, A.M.; Carter, C.S. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats. Front. Behav. Neurosci. 2015, 9, 245. [Google Scholar]
- Ring, R.H.; Malberg, J.E.; Potestio, L.; Ping, J.; Boikess, S.; Luo, B.; Schechter, L.E.; Rizzo, S.; Rahman, Z.; Rosenzweig-Lipson, S. Anxiolytic-like activity of oxytocin in male mice: Behavioral and autonomic evidence, therapeutic implications. Psychopharmacology 2006, 185, 218–225. [Google Scholar]
- Yamamoto, Y.; Liang, M.; Munesue, S.; Deguchi, K.; Harashima, A.; Furuhara, K.; Yuhi, T.; Zhong, J.; Akther, S.; Goto, H.; et al. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun. Biol. 2019, 2, 76. [Google Scholar] [CrossRef]
- Correia Lima, J.P.; Rodrigues, A.L. Nasal Oxytocin: Facts and Routes. Acta Psychopathol. 2019, 5. [Google Scholar] [CrossRef]
- Hsiao, E.Y. Gastrointestinal issues in autism spectrum disorder. Harv. Rev. Psychiatry 2014, 22, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, H.; Babygirija, R.; Shi, B.; Sun, W.; Zheng, X.; Zheng, J. Intranasal Administration of Oxytocin Attenuates Stress Responses Following Chronic Complicated Stress in Rats. J. Neurogastroenterol. Motil. 2019, 25, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlsson, B.; Truedsson, M.; Djerf, P.; Sundler, F. Oxytocin is expressed throughout the human gastrointestinal tract. Regul. Pept. 2006, 135, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, M.; Margolis, K.G.; Li, Z.; Gershon, M.D. Oxytocin regulates gastrointestinal motility, inflammation, macromolecular permeability, and mucosal maintenance in mice. Am. J. Physiol. Gastrointest Liver Physiol. 2014, 307, G848–G862. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, B.; Truedsson, M.; Bengtsson, M.; Torstenson, R.; Sjölund, K.; Björnsson, E.S.; Simrèn, M. Effects of long-term treatment with oxytocin in chronic constipation; a double blind, placebo-controlled pilot trial. Neurogastroenterol. Motil. 2005, 17, 697–704. [Google Scholar] [CrossRef]
- Borg, J.; Ohlsson, B. Oxytocin prolongs the gastric emptying time in patients with diabetes mellitus and gastroparesis, but does not affect satiety or volume intake in patients with functional dyspepsia. BMC Res. Notes. 2012, 5, 148. [Google Scholar] [CrossRef] [Green Version]
Spontaneous Alternation | Mobility | Open Arms Time | Closed Arms Entry | Head Dipping | MDA | SOD | GPx | ||
---|---|---|---|---|---|---|---|---|---|
Spontaneous alternation | Pearson Correlation | 1 | 0.506 * | 0.455 * | 0.591 ** | 0.191 | −0.727 ** | 0.538 * | 0.660 ** |
Sig. (2-tailed) | 0.023 | 0.044 | 0.006 | 0.420 | 0.000 | 0.014 | 0.002 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Mobility | Pearson Correlation | 0.506 * | 1 | 0.514 * | 0.228 | 0.262 | −0.449 * | 0.750 ** | 0.446 * |
Sig. (2-tailed) | 0.023 | 0.020 | 0.334 | 0.264 | 0.047 | 0.000 | 0.049 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Open Arms time | Pearson Correlation | 0.455 * | 0.514 * | 1 | 0.160 | 0.470 * | −0.387 | 0.504 * | 0.288 |
Sig. (2-tailed) | 0.044 | 0.020 | 0.499 | 0.037 | 0.092 | 0.023 | 0.219 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Closed Arms entry | Pearson Correlation | 0.591 ** | 0.228 | 0.160 | 1 | 0.450 * | −0.387 | 0.202 | 0.272 |
Sig. (2-tailed) | 0.006 | 0.334 | 0.499 | 0.046 | 0.092 | 0.393 | 0.246 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Head Dipping | Pearson Correlation | 0.191 | 0.262 | 0.470 * | 0.450 * | 1 | −0.090 | 0.139 | −0.088 |
Sig. (2-tailed) | 0.420 | 0.264 | 0.037 | 0.046 | 0.706 | 0.560 | 0.712 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Malondialdehyde (MDA) | Pearson Correlation | −0.727 ** | −0.449 * | −0.387 | −0.387 | −0.090 | 1 | −0.539 * | −0.622 ** |
Sig. (2-tailed) | 0.000 | 0.047 | 0.092 | 0.092 | 0.706 | 0.014 | 0.003 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Superoxide dismutase (SOD) | Pearson Correlation | 0.538 * | 0.750 ** | 0.504 * | 0.202 | 0.139 | −0.539 * | 1 | 0.460 * |
Sig. (2-tailed) | 0.014 | 0.000 | 0.023 | 0.393 | 0.560 | 0.014 | 0.041 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
Glutathione peroxidase (GPx) | Pearson Correlation | 0.660 ** | 0.446 * | 0.288 | 0.272 | −0.088 | −0.622 ** | 0.460 * | 1 |
Sig. (2-tailed) | 0.002 | 0.049 | 0.219 | 0.246 | 0.712 | 0.003 | 0.041 | ||
N | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Response Variable (Dependent Variable Y) | Model Summary | Factor (Independent Variable X) | |||||||
---|---|---|---|---|---|---|---|---|---|
Spontaneous Alternation | Mobility | Open Arms Time | Closed Arms Time | Head Dipping | MDA | SOD | GPx | ||
Spontaneous Alternation | Unstandardized Coefficients | ----------- | Y = 50.584 + 0.123 × X | Y = 68.277 + 0.234 * X | Y = 55.730 + 1.964 × X | Y = 112.947 − 0.471 × X | Y = 62.768 + 1.375 × X | Y = 59.614 + 7.407 × X | |
Sig. (Coefficients) | ----------- | 0.000 0.023 | 0.000 0.044 | 0.000 0.006 | 0.000 0.000 | 0.000 0.014 | 0.000 0.002 | ||
R Square | ----------- | 0.256 | 0.207 | 0.349 | 0.529 | 0.290 | 0.435 | ||
Mobility | Unstandardized Coefficients | Y = 25.942 + 2.080 × X | ------------ | Y = 157.612 + 1.088 × X | Y = 279.379 − 1.149 × X | Y = 121.687 + 7.874 × X | Y = 141.052 + 20.577 × X | ||
Sig. (Coefficients) | 0.675 0.023 | ------------ | 0.000 0.020 | 0.000 0.047 | 0.000 0.000 | 0.000 0.049 | |||
R Square | 0.256 | ------------ | 0.256 | 0.201 | 0.563 | 0.199 | |||
Open Arms time | Unstandardized Coefficients | Y = −46.748 + 0.884 × X | Y = −25.686 + 0.243 × X | --------- | Y = 7.788 + 2.507 × X | Y = −0.163 + 2.501 × X | |||
Sig. (Coefficients) | 0.133 0.044 | 0.152 0.020 | --------- | 0.166 0.037 | 0.984 0.023 | ||||
R Square | 0.207 | 0.265 | --------- | 0.221 | 0.254 | ||||
Closed Arms time | Unstandardized Coefficients | Y = −4.425 + 0.178 × X | --------- | Y = 7.046 + 0.372 × X | |||||
Sig. (Coefficients) | 0.302 0.006 | --------- | 0.000 0.046 | ||||||
R Square | 0.349 | --------- | 0.203 | ||||||
Head Dipping | Unstandardized Coefficients | Y = 2.236 + 0.088 × X | Y = −0.847+ 0.545 × X | --------- | |||||
Sig. (Coefficients) | 0.027 0.037 | 0.710 0.046 | --------- | ||||||
R Square | 0.221 | 0.203 | --------- | ||||||
MDA | Unstandardized Coefficients | Y = 167.575 − 1.123 × X | Y = 116.106 − 0.169 × X | --------- | Y = 101.098 − 2.126 × X | Y = 104.843 − 10.793 × X | |||
Sig. (Coefficients) | 0.000 0.000 | 0.000 0.047 | --------- | 0.000 0.014 | 0.000 0.003 | ||||
R Square | 0.529 | 0.201 | --------- | 0.290 | 0.387 | ||||
SOD | Unstandardized Coefficients | Y = −8.300 + 0.211 × X | Y = −5.669 + 0.071 × X | Y = 5.191 + 0.102 × X | Y = 18.725 − 0.137 × X | --------- | Y = 3.473 + 2.022 × X | ||
Sig. (Coefficients) | 0.160 0.014 | 0.048 0.000 | 0.000 0.023 | 0.000 0.014 | --------- | 0.059 0.041 | |||
R Square | 0.290 | 0.563 | 0.245 | 0.290 | --------- | 0.212 | |||
GPx | Unstandardized Coefficients | Y = −2.536 + 0.059 × X | Y = 0.008 + 0.010 × X | Y = 4.812 −0.036 × X | Y = 0.987 + 0.105 × X | --------- | |||
Sig. (Coefficients) | 0.040 0.002 | 0.992 0.049 | 0.000 0.003 | 0.015 0.041 | --------- | ||||
R Square | 0.435 | 0.199 | 0.387 | 0.212 | --------- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefter, R.; Ciobica, A.; Antioch, I.; Ababei, D.C.; Hritcu, L.; Luca, A.-C. Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism. Medicina 2020, 56, 267. https://doi.org/10.3390/medicina56060267
Lefter R, Ciobica A, Antioch I, Ababei DC, Hritcu L, Luca A-C. Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism. Medicina. 2020; 56(6):267. https://doi.org/10.3390/medicina56060267
Chicago/Turabian StyleLefter, Radu, Alin Ciobica, Iulia Antioch, Daniela Carmen Ababei, Luminita Hritcu, and Alina-Costina Luca. 2020. "Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism" Medicina 56, no. 6: 267. https://doi.org/10.3390/medicina56060267
APA StyleLefter, R., Ciobica, A., Antioch, I., Ababei, D. C., Hritcu, L., & Luca, A. -C. (2020). Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism. Medicina, 56(6), 267. https://doi.org/10.3390/medicina56060267