Inherited Risk Factors of Thromboembolic Events in Patients with Primary Nephrotic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients’ Characteristics
2.2. Diagnosis of Venous Thromboembolic Events
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Venous Thromboembolic Events: Frequency
3.3. Venous Thromboembolic Events: Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kerlin, B.; Ayoob, R.; Smoyer, W.E. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glassock, R.J. Prophylactic anticoagulation in nephrotic syndrome: A clinical conundrum. J. Am. Soc. Nephrol. 2007, 18, 2221–2225. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Brimble, K.S. Thromboembolic complications in the nephrotic syndrome: Pathophysiology and clinical management. Thromb. Res. 2006, 118, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Rostoker, G.; Durand-Zaleski, I.; Petit-Phar, M.; Maadi, A.B.; Jazaerli, N.; Radier, C.; Rahmouni, A.; Mathieu, D.; Vasile, N.; Rosso, J.; et al. Prevention of thrombotic complications of the nephrotic syndrome by low molecular weight heparin enoxaparin. Nephron 1995, 69, 20–28. [Google Scholar] [CrossRef] [PubMed]
- KDIGO Working Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int. Suppl. 2012, 2, 1–274. [Google Scholar]
- Reich, L.M.; Bower, M.; Key, N.S. Role of the geneticist in testing and counseling for inherited thrombophilia. Genet. Med. 2003, 5, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Ismail, G.; Mircescu, G.; Ditoiu, A.V.; Tacu, B.D.; Jurubita, R.; Harza, M. Risk factors for predicting venous thromboembolism in patients with nephrotic syndrome: Focus on haemostasis-related parameters. Int. Urol. Nephrol. 2014, 46, 787–792. [Google Scholar] [CrossRef]
- Barbour, S.J.; Greenwald, A.; Djurdjev, O.; Levin, A.; Hladunewich, M.; Nachman, P.H.; Hogan, S.L.; Cattran, D.C.; Reich, H.N. Disease-specific risk of venous thromboembolic events is increased in idiopathic glomerulonephritis. Kidney Int. 2012, 81, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Chapagain, A.; Nitsch, D.; Yaqoob, M.M. Proteinuria and hypoalbuminemia are risk factors for thromboembolic events in patients with idiopathic membranous nephropathy: An observational study. BMC Nephrol. 2012, 13, 107. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, B.K.; Ten Kate, M.K.; Waanders, F.; Veeger, N.J.G.M.; Brouwer, J.L.P.; Vogt, L.; Navis, G.; Van Der Meer, J. High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome: Results from a large retrospective cohort study. Circulation 2008, 117, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Beyan, C. Methylenetetrahydrofolate reductase gene polymorphisms in patients with nephrotic syndrome. Clin. Nephrol. 2013, 80, 311. [Google Scholar] [CrossRef] [PubMed]
- Sahin, M.; Ozkurt, S.; Degirmenci, N.A.; Musmul, A.; Temiz, G.; Soydan, M. Assessment of genetic risk factors for thromboembolic complications in adults with idiopathic nephrotic syndrome. Clin. Nephrol. 2013, 79, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Fabri, D.; Belangero, V.M.S.; Annichino-Bizzacchi, J.M.; Arruda, V.R. Inherited risk factors for thrombophilia in children with nephrotic syndrome. Eur. J. Pediatr. 1998, 157, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Irish, B. The factor V Leiden mutation and risk of renal vein thrombosis in patients with nephrotic syndrome. Nephrol. Dial. Transplant. 1997, 12, 1680–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, D.T. Factor V Leiden Mutation and the Risks for Thromboembolic Disease: A Clinical Perspective. Ann. Intern. Med. 1997, 127, 895. [Google Scholar] [CrossRef] [PubMed]
- Fay, W.P. Homocysteine and thrombosis: Guilt by association? Blood 2012, 119, 2977–2978. [Google Scholar] [CrossRef] [Green Version]
- Dahlback, B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood 2008, 112, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Medjeral-Thomas, N.; Ziaj, S.; Condon, M.; Galliford, J.; Levy, J.; Cairns, T.; Griffith, M. Retrospective analysis of a novel regimen for the prevention of venous thromboembolism in nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2014, 9, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Llach, F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of nephrotic syndrome: Editorial review. Kidney Int. 1985, 28, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Rinaldo Bellomo, R.A. Membranous nephropathy and thromboembolism: Is prophylactic anticoagulation warranted? Nephron 1993, 63, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, R.D.; Stanson, W.; Holley, K.E.; Winter, C.S. Renal vein thrombosis in idiopathic membranous glomerulopathy and nephrotic syndrome: Incidence and significance. Kidney Int. 1983, 23, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasquez Forero, F.; Garcia Prugue, N.; Ruiz Morales, N. Idiopathic Nephrotic Syndrome of the Adult with Asymptomatic Thrombosis of the Renal Vein. Am. J. Nephrol. 1988, 8, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Pincus, K.J.; Hynicka, L.M. Prophylaxis of thromboembolic events in patients with nephrotic syndrome. Ann. Pharm. 2013, 47, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Harza, M.; Ismail, G.; Mitroi, G.; Gherghiceanu, M.; Preda, A.; Mircescu, G.; Sinescu, I. Histological diagnosis and risk of renal vein thrombosis and other thrombotic complications in primitive nephrotic syndrome. Rom. J. Morphol. Embryol. 2013, 54, 555–560. [Google Scholar]
- Balta, G.; Altay, C.; Gurgey, A. PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am. J. Hematol. 2002, 71, 89–93. [Google Scholar] [CrossRef]
- Den Heijer, M.; Lewington, S.; Clarke, R. Homocysteine, MTHFR and risk of venous thrombosis: A meta-analysis of published epidemiological studies. J. Thromb. Haemost. 2005, 3, 292–299. [Google Scholar] [CrossRef]
- Adams, R.L.C.; Bird, R.J. Coagulation cascade and therapeutics update: Relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology 2009, 14, 462–470. [Google Scholar] [CrossRef]
- Joffe, M.V.; Goldhaber, S.Z. Laboratory thrombophilias and venous thromboembolism. Vasc. Med. 2002, 7, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.K.; Hankey, G.J.; Quinlan, D.J.; Eikelboom, J.W. Risk of Recurrent Venous Thromboembolism in Patients With Common Thrombophilia. Arch. Intern. Med. 2006, 166, 729. [Google Scholar] [CrossRef]
- Brotman, D.J.; Necochea, A.J.; Wilson, L.M.; Crim, M.T.; Bass, E.B. Prothrombin G20210A in Adults With Venous Thromboembolism and in A Systematic Review. JAMA 2014, 301, 2472–2485. [Google Scholar]
- Lijfering, W.M.; Middeldorp, S.; Veeger, N.J.G.M.; Hamulyák, K.; Prins, M.H.; Büller, H.R.; Van Der Meer, J. Risk of recurrent venous thrombosis in homozygous carriers and double heterozygous carriers of factor v leiden and prothrombin G20210A. Circulation 2010, 121, 1706–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, S.M.; Woller, S.C.; Bauer, K.; Kasthuri, R.; Cushman, M.; Streiff, M.; Lim, W.; Douketis, J.D. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J. Thromb. Thrombolysis 2016, 41, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stefano, V.; Martinelli, I.; Mannucci, P.M.; Paciaroni, K.; Chiusolo, P.; Casorelli, I.; Rossi, E.; Leone, G. The risk of recurrent deep vein thrombosis among heterozygous carriers of both Factor V Leiden and the G20210A Prothrombin mutation. N. Eng. J. Med. 1999, 341, 801–806. [Google Scholar] [CrossRef] [PubMed]
- González-Porras, J.R.; García-Sanz, R.; Alberca, I.; López, M.L.; Balanzategui, A.; Gutierrez, O.; Lozano, F.; San Miguel, J. Risk of recurrent venous thrombosis in patients with G20210A mutation in the prothrombin gene or factor V Leiden mutation. Blood Coagul. Fibrinolysis 2006, 17, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Palareti, G.; Legnani, C.; Cosmi, B.; Valdré, L.; Lunghi, B.; Bernardi, F.; Coccheri, S. Predictive value of D-dimer test for recurrent venous thromboembolism after anticoagulation withdrawal in subjects with a previous idiopathic event and in carriers of congenital thrombophilia. Circulation 2003, 108, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Overall | MN | MCD | FSGS | IgAN | p-Value |
---|---|---|---|---|---|---|
Number of patients | 36 | 14 | 7 | 5 | 10 | |
Number of VTEs | 10 | 5 | 2 | 1 | 2 | 0.827 |
Age (y) | 43.4 ± 14.2 | 47.7 ± 14 | 40.5 ± 19.8 | 44.4 ± 12.4 | 39.2 ± 11 | 0.52 |
Serum albumin (g/dL) | 2.58 ± 0.62 | 2.75 ± 0.52 | 2.2 ± 0.64 | 2.52 ± 1 | 2.66 ± 0.48 | 0.28 |
Proteinuria (g/day) | 7.29 ± 2.4 | 6.2 ± 1.42 | 10.1 ± 0.7 | 7 ± 2.1 | 7 ± 3 | 0.002 |
Serum creatinine (mg/dL) | 1.5 ± 0.9 | 1.37 ± 0.9 | 1.71 ± 1.2 | 1.07 ± 0.25 | 1.75 ± 0.88 | 0.48 |
Estimated GFR (mL/min/1.73 m2) | 66.2 ± 32.7 | 75.2 ± 38.1 | 63.4 ± 30.1 | 70.8 ± 20.6 | 53.3 ± 30.5 | 0.44 |
Patient | Factor V (G1691A) | PAI 4G/5G | MTHFR (A1298C) | MTHFR (C667T) | Prothrombin G20210A |
---|---|---|---|---|---|
1 | Homozygote | - | - | - | Heterozygote |
2 | Heterozygote | Heterozygote | - | Homozygote | - |
3 | Heterozygote | Homozygote | Homozygote | - | - |
4 | - | Homozygote | Homozygote | - | - |
5 | Heterozygote | Homozygote | - | - | - |
6 | - | Homozygote | Heterozygote | Heterozygote | - |
7 | - | Homozygote | Homozygote | Homozygote | - |
8 | - | Heterozygote | - | Homozygote | - |
9 | - | Homozygote | Homozygote | Homozygote | - |
10 | - | Heterozygote | Homozygote | - | - |
11 | - | Homozygote | Homozygote | - | - |
12 | Heterozygote | Homozygote | - | - | - |
Parameter | With VTE | Without VTE | p-Value |
---|---|---|---|
Age (years) | 41.9 ± 18 | 44 ± 12.8 | 0.742 |
Proteinuria (g/day) | 8.62 ± 2.27 | 6.78 ± 2.29 | 0.045 |
Serum Albumin (g/dL) | 2 ± 0.6 | 2.8 ± 0.48 | 0.002 |
Serum creatinine (mg/dL) | 1.56 ± 0.9 | 1.48 ± 0.92 | 0.808 |
eGFR (mL/min) | 66.5 ± 37.61 | 66.1 ± 3.44 | 0.978 |
MTHFR (A1298C) (%) | 50% | 19.2% | 0.1 |
MTHFR (C677T) (%) | 60% | 15.4% | 0.01 |
Factor V (G1691A) (%) | 60% | 3.8% | 0.015 |
Prothrombin G20210A (%) | 10% | 3.8% | 0.48 |
PAI 4G/5G mutation (%) | 80% | 30.8% | 0.011 |
Association of two mutations (%) | 80% | 15.4% | 0.001 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Serum Albumin (for each 1 g/dL) | 0.25 (0.11–0.58) | 0.001 | 0.43 (0.1–1.89) | 0.27 |
24-h proteinuria (for each 1 g/day) | 1.33 (1.009–1.75) | 0.04 | 1.14 (0.79–1.64) | 0.46 |
MTHFR (A1298C) (presence vs. absence) | 2.91 (0.84–10.11) | 0.09 | 0.49 (0.07–3.11) | 0.45 |
MTHFR (C677T) (presence vs. absence) | 4.51 (1.27–16.02) | 0.02 | 1.38 (0.23–8.36) | 0.72 |
Factor V (G1691A) (presence vs. absence) | 6.4 (1.77–23.08) | 0.005 | 0.92 (0.12–6.83) | 0.94 |
Prothrombin G20210A (presence vs. absence) | 2.68 (0.33–21.38) | 0.35 | 3.23 (0.26–39.9) | 0.36 |
Association of two mutations (presence vs. absence) | 10.51 (2.21–49.92) | 0.003 | 8.92 (1.001–79.58) | 0.05 |
History | Age, smoking history, previous or family history of VTE, pregnancy, prolonged immobilization, surgery, review of concomitant medication, neoplasia, chronic heart of pulmonary disorders, presence of central venous catheters, presence of inflammatory conditions |
Laboratory predictors of VTE | Serum albumin level, 24-h proteinuria, D-dimers level, complete blood cell count, serum ionized calcium |
Hemostasis-related protein disturbances | Coagulation parameters (prothrombin time, activated partial thromboplastin time, serum fibrinogen, antithrombin III, protein C and S, assessment of individual coagulation and fibrinolytic factors) |
Genetic background | Protein C and S deficiency, antithrombin III deficiency, screening for polymorphisms of Factor V gene, PAI gene, methylene tetrahydrofolate reductase (MTHFR) gene and prothrombin gene (G20210A mutation). |
Other inherited or acquired hypercoagulable states | Antiphospholipid syndrome (lupus anticoagulant, anticardiolipin antibodies, anti-β2-glycoprotein 1 antibodies), screening for other autoimmune or connective tissue disorders associated with an increased risk for VTE depending on the clinical scenario (e.g., inflammatory bowel disease). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, G.; Obrișcă, B.; Jurubiță, R.; Andronesi, A.; Sorohan, B.; Hârza, M. Inherited Risk Factors of Thromboembolic Events in Patients with Primary Nephrotic Syndrome. Medicina 2020, 56, 242. https://doi.org/10.3390/medicina56050242
Ismail G, Obrișcă B, Jurubiță R, Andronesi A, Sorohan B, Hârza M. Inherited Risk Factors of Thromboembolic Events in Patients with Primary Nephrotic Syndrome. Medicina. 2020; 56(5):242. https://doi.org/10.3390/medicina56050242
Chicago/Turabian StyleIsmail, Gener, Bogdan Obrișcă, Roxana Jurubiță, Andreea Andronesi, Bogdan Sorohan, and Mihai Hârza. 2020. "Inherited Risk Factors of Thromboembolic Events in Patients with Primary Nephrotic Syndrome" Medicina 56, no. 5: 242. https://doi.org/10.3390/medicina56050242
APA StyleIsmail, G., Obrișcă, B., Jurubiță, R., Andronesi, A., Sorohan, B., & Hârza, M. (2020). Inherited Risk Factors of Thromboembolic Events in Patients with Primary Nephrotic Syndrome. Medicina, 56(5), 242. https://doi.org/10.3390/medicina56050242