Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Study Population
2.2. Data Collection
2.3. Ethical Considerations
2.4. Potential Predictors
2.5. Statistical Analysis
3. Results
3.1. Patient Selection
3.2. Significant Independent Variable Selection
3.3. Comparisons of the Two Models
3.4. Significant Predictors in the ANN Model
3.5. External Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Pan, J.; Qian, Y. Home-based physical therapy for older adults after hip fracture. JAMA 2020, 323, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.N.; Salar, O.; Ollivere, B.J.; Forward, D.P.; Weerasuriya, N.; Moppett, I.K.; Moran, C.G. Evolution of the hip fracture population: Time to consider the future? A retrospective observational analysis. BMJ. Open. 2014, 4, e004405. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Tang, C.H.; Chen, K.C.; Huang, K.C.; Huang, K.C. The mortality and direct medical costs of osteoporotic fractures among postmenopausal women in Taiwan. Osteoporos. Int. 2016, 27, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, R.; Barbera, L. Comparing an artificial neural network to logistic regression for predicting ED visit risk among patients with cancer: A population-based cohort study. J. Pain Symptom Manag. 2020. [Google Scholar] [CrossRef]
- Spelt, L.; Nilsson, J.; Andersson, R.; Andersson, B. Artificial neural networks--A method for prediction of survival following liver resection for colorectal cancer metastases. Eur. J. Surg. Oncol. 2013, 39, 648–654. [Google Scholar] [CrossRef]
- Ntinas, V.; Vourkas, I.; Abusleme, A.; Sirakoulis, G.C.; Rubio, A. Experimental study of artificial neural networks using a digital memristor simulator. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5098–5110. [Google Scholar] [CrossRef]
- Saez, A.; Sanchez-Monedero, J.; Gutierrez, P.A.; Hervas-Martinez, C. Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans. Med. Imaging. 2016, 35, 1036–1045. [Google Scholar] [CrossRef]
- Brown, S.F.; Branford, A.J.; Moran, W. On the use of artificial neural networks for the analysis of survival data. IEEE Trans. Neural Netw. 1997, 8, 1071–1077. [Google Scholar] [CrossRef]
- Rodrigues, L.; Cornelis, F.H.; Reina, N.; Chevret, S. Prevention of pathological fracture of the proximal femur: A systematic review of surgical and percutaneous image-guided techniques used in interventional oncology. Medicina (Kaunas) 2019, 55, 755. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Liang, Y.; Zhang, P.; Liang, X.; He, J.; Wang, J.; Wang, Y. Association between postoperative delirium and mortality in elderly patients undergoing hip fractures surgery: A meta-analysis. Osteoporos. Int. 2020, 31, 317–326. [Google Scholar] [CrossRef]
- Sheehan, K.J.; Sobolev, B.; Guy, P. Mortality by timing of hip fracture surgery: Factors and relationships at play. J. Bone Joint Surg. Am. 2017, 99, e106. [Google Scholar] [CrossRef] [Green Version]
- Yip, W.C.; Lee, Y.C.; Tsai, S.L.; Chen, B. Managing health expenditure inflation under a single-payer system: Taiwan’s national health insurance. Soc. Sci. Med. 2019, 233, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Cherkin, D.C.; Ciol, M.A. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J. Clin. Epidemiol. 1992, 45, 613–619. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global sensitivity analysis: The primer; Wiley: Chichester, UK, 2008. [Google Scholar]
- Kristensen, T.B.; Dybvik, E.; Kristoffersen, M.; Dale, H.; Engesæter, L.B.; Furnes, O.; Gjertsen, J.E. Cemented or uncemented hemiarthroplasty for femoral neck fracture? Data from the Norwegian hip fracture register. Clin. Orthop. Relat. Res. 2020, 478, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Hendrika, J.M.S.; Sjaak, P.; Alper, C.; Adarsh, G.; Johannes, F.S. Assessment of Physical Fitness after Bariatric Surgery and Its Association with Protein Intake and Type of Cholecalciferol Supplementation. Medicina (Kaunas) 2019, 55, 281. [Google Scholar]
- Metcalfe, D.; Costa, M.L.; Parsons, N.R.; Achten, J.; Masters, J.; Png, M.E.; Lamb, S.E.; Griffin, X.L. Validation of a prospective cohort study of older adults with hip fractures. Bone Joint J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ching, T.; Zhu, X.; Garmire, L.X. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput. Biol. 2018, 14, e1006076. [Google Scholar] [CrossRef]
- Panesar, S.S.; D’Souza, R.N.; Yeh, F.C.; Fernandez-Miranda, J.C. Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database. World Neurosurg. X. 2019, 2, 100012. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Hsieh, M.J.; Chen, C.M.; Hsieh, C.C.; Chao, C.M.; Lai, C.C. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units. Sci. Rep. 2018, 8, 17116. [Google Scholar] [CrossRef]
- Lu, T.C.; Yu, G.R.; Juang, J.C. Quantum-based algorithm for optimizing artificial neural networks. IEEE. Trans. Neural. Netw. Learn. Syst. 2013, 24, 1266–1278. [Google Scholar] [CrossRef]
- Lapuerta, P.; Azen, S.P.; LaBree, L. Use of neural networks in predicting the risk of coronary artery disease. Comput. Biomed. Res. 1995, 28, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Srinivasagopalan, S.; Barry, J.; Gurupur, V.; Thankachan, S.V. A Deep learning approach for diagnosing schizophrenic patients. J. Exp. Theor. Artif. In. 2019, 31, 803–816. [Google Scholar] [CrossRef]
- Gurupur, V.; Kulkarni, S.A.; Liu, X.; Desai, U.; Nasir, A. Analysing the power of deep learning techniques over the traditional methods using medicare utilization and provider data. J. Exp. Theor. Artif. In. 2019, 31, 99–115. [Google Scholar] [CrossRef]
- Taktak, A.; Antolini, L.; Aung, M.; Boracchi, P.; Campbell, I.; Damato, B.; Ifeachor, E.; Lama, N.; Lisboa, P.; Setzkorn, C.; et al. Double-blind evaluation and benchmarking of survival models in a multi-centre study. Comput. Biol. Med. 2007, 37, 1108–1120. [Google Scholar] [CrossRef]
- Ansari, D.; Nilsson, J.; Andersson, R.; Regnér, S.; Tingstedt, B.; Andersson, B. Artificial neural networks predict survival from pancreatic cancer after radical surgery. Am. J. Surg. 2013, 205, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Xu, X. Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network. Medicine (Baltimore) 2019, 98, e15642. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rahman, M.; Trivedi, A.N.; Resnik, L.; Gozalo, P.; Mor, V. Comparing post-acute rehabilitation use, length of stay, and outcomes experienced by Medicare fee-for-service and Medicare advantage beneficiaries with hip fracture in the United States: A secondary analysis of administrative data. PLoS Med. 2018, 15, e1002592. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hsien, H.H.; Hung, K.W.; Lin, H.F.; Chiou, H.Y.; Yeh, S.J.; Yeh, Y.J.; Shi, H.Y. Multidiscipline stroke post-acute care transfer system: Propensity-score-based comparison of functional status. J. Clin. Med. 2019, 8, 1233. [Google Scholar] [CrossRef] [Green Version]
- Browne, J.A.; Pietrobon, R.; Olson, S.A. Hip fracture outcomes: Does surgeon or hospital volume really matter? J. Trauma. 2009, 66, 809–814. [Google Scholar] [CrossRef]
- Malik, A.T.; Panni, U.Y.; Masri, B.A.; Noordin, S. The impact of surgeon volume and hospital volume on postoperative mortality and morbidity after hip fractures: A systematic review. Int. J. Surg. 2018, 54, 316–327. [Google Scholar] [CrossRef]
- Wilson, M.Z.; Soybel, D.I.; Hollenbeak, C.S. Operative volume in colon surgery: A matched cohort analysis. Am. J. Med. Qual. 2015, 30, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Swart, E.; Vasudeva, E.; Makhni, E.C.; Macaulay, W.; Bozic, K.J. Dedicated Perioperative Hip Fracture Comanagement Programs are Cost-effective in High-volume Centers: An Economic Analysis. Clin. Orthop. Relat. Res. 2016, 474, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.; Pelpola, K.; Ball, M.; Ong, A.; Myint, P.K. Pre-operative indicators for mortality following hip fracture surgery: A systematic review and meta-analysis. Age Ageing 2014, 43, 464–471. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean ± Standard Deviation or N (%) | |
---|---|---|
Age, years | 68.3 ± 14.6 | |
Gender | Male | 4469 (42.4) |
Female | 6065 (57.6) | |
Urbanization of residence area | Rural | 3622 (34.4) |
Urban | 6912 (65.6) | |
Socioeconomic status | Genus or being raised | 4099 (38.9) |
NT$0–19,999/year | 2863 (27.2) | |
NT$20,000–39,999/year | 3292 (31.3) | |
Over NT$40,000/year | 280 (2.7) | |
Charlson co-morbidity index (CCI), scores | 0.6 ± 1.1 | |
Intracapsular fracture | Yes | 5730 (54.4) |
No | 4804 (45.6) | |
Hospital level | Medical center | 2989 (28.4) |
Regional hospital | 4058 (38.5) | |
District hospital | 3487 (33.1) | |
Hospital volume (cases/ year) | 29.9 ± 15.7 | |
Surgeon volume (cases/ year) | 22.4 ± 46.4 | |
Readmission in 30 days | Yes | 1126 (10.7) |
No | 9408 (89.3) | |
Readmission in 90 days | Yes | 1953 (18.5) |
No | 8581 (81.5) | |
Infection | Yes | 456 (4.3) |
No | 10,078 (95.7) | |
Dislocation | Yes | 650 (6.2) |
No | 9884 (93.8) | |
Total joint revision | Yes | 147 (1.4) |
No | 10,387 (98.6) | |
Mortality | Yes | 2931 (27.8) |
No | 7603 (72.2) |
Variables | Hazard Ratio (95%, CI) | p Value |
---|---|---|
Referral to lower-level medical institutions (yes vs. no) | 0.81 (0.74–0.89) | <0.001 |
Age | 1.05 (1.04–1.05) | <0.001 |
Gender | ||
male vs. female | 1.35 (1.22–1.49) | <0.001 |
Urbanization of residence area | ||
urban vs. rural | 0.88 (0.79–0.97) | 0.011 |
Socioeconomic status | ||
NT$0-19,999/year vs. genus or being raised | 0.69 (0.45–1.09) | 0.111 |
NT$20,0000-39,999/year vs. genus or being raised | 0.37 (0.34–0.40) | <0.001 |
over NT$40,000/year vs. genus or being raised | 0.47 (0.43–0.51) | <0.001 |
Charlson co-morbidity index | 1.21 (1.17–1.26) | <0.001 |
Intracapsular fracture (yes vs. no) | 0.01 (0.01–0.02) | <0.001 |
Hospital level | ||
regional hospital vs. medical center | 0.98 (0.86–1.11) | 0.730 |
district hospital vs. medical center | 1.11 (0.96–1.29) | 0.175 |
Hospital volume (cases/ year) | 0.98 (0.97–0.98) | <0.001 |
Surgeon volume (cases/ year) | 0.98 (0.97–0.98) | <0.001 |
Sensitivity | Specificity | PPV | NPV | Accuracy | AUROC | |
---|---|---|---|---|---|---|
Training dataset (n = 7374) | ||||||
ANN (95% CI) | 0.94 (0.91–0.98) | 0.78 (0.75–0.82) | 0.89 (0.85–0.93) | 0.82 (0.78–0.86) | 0.93 (0.90–0.96) | 0.93 (0.90–0.95) |
Cox (95% CI) | 0.90 (0.86–0.94) | 0.67 (0.62–0.72) | 0.80 (0.74–0.86) | 0.73 (0.67–0.80) | 0.88 (0.84–0.92) | 0.89 (0.84–0.94) |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Testing dataset (n = 1580) | ||||||
ANN (95% CI) | 0.96 (0.92–0.99) | 0.76 (0.72–0.80) | 0.88 (0.85–0.92) | 0.84 (0.80–0.88) | 0.93 (0.89–0.97) | 0.93 (0.90–0.96) |
Cox (95% CI) | 0.92 (0.88–0.97) | 0.64 (0.59–0.69) | 0.78 (0.72–0.84) | 0.77 (0.71–0.83) | 0.90 (0.86–0.94) | 0.88 (0.83–0.93) |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Dependent Variable | Variable Sensitivity Ratio | |||
---|---|---|---|---|
Rank 1st | Rank 2nd | Rank 3rd | Rank 4th | |
Mortality | Referral to lower-level medical institutions | Surgeon Volume | Hospital Volume | Charlson co-morbidity index |
1.61 | 1.59 | 1.57 | 1.45 |
Sensitivity | Specificity | PPV | NPV | Accuracy | AUROC | |
---|---|---|---|---|---|---|
ANN (95% CI) | 0.97 (0.95–0.99) | 0.74 (0.70–0.78) | 0.89 (0.86–0.92) | 0.84 (0.81–0.87) | 0.93 (0.90–0.96) | 0.93 (0.90–0.96) |
COX (95% CI) | 0.92 (0.89–0.95) | 0.68 (0.63–0.73) | 0.79 (0.74–0.84) | 0.79 (0.74–0.84) | 0.88 (0.84–0.92) | 0.88 (0.84–0.92) |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Chen, Y.-F.; Chen, H.-Y.; Hung, C.-T.; Shi, H.-Y. Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison. Medicina 2020, 56, 243. https://doi.org/10.3390/medicina56050243
Chen C-Y, Chen Y-F, Chen H-Y, Hung C-T, Shi H-Y. Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison. Medicina. 2020; 56(5):243. https://doi.org/10.3390/medicina56050243
Chicago/Turabian StyleChen, Cheng-Yen, Yu-Fu Chen, Hong-Yaw Chen, Chen-Tsung Hung, and Hon-Yi Shi. 2020. "Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison" Medicina 56, no. 5: 243. https://doi.org/10.3390/medicina56050243
APA StyleChen, C. -Y., Chen, Y. -F., Chen, H. -Y., Hung, C. -T., & Shi, H. -Y. (2020). Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison. Medicina, 56(5), 243. https://doi.org/10.3390/medicina56050243