Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Research Ethics
2.3. Body Composition Measurements
2.4. Forward and backward Flexibilities of Lumbosacral Joint Measurements
2.5. Static Muscle Contraction Measurements
2.6. Dynamic Muscle Contraction Measurements
2.7. Back Pain Measurements
2.8. Rehabilitation Program through 3D Platform Intervention Measurements
2.9. Data Analysis
3. Results
3.1. Difference in Anthropometric Indices
3.2. Effect of 3D Platform Exercise On Static Muscle Contraction
3.3. Effect of 3d Platform Exercise on Dynamic Muscle Contraction
3.4. Effect of 3D Platform Exercise on Trunk Flexibilities
3.5. Effect of 3D Platform Exercise on Visual Analogue Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Itz, C.J.; Geurts, J.W.; van Kleef, M.; Nelemans, P. Clinical course of non-specific low back pain: A systematic review of prospective cohort studies set in primary care. Eur. J. Pain 2013, 17, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Noormohammadpour, P.; Mansournia, M.A.; Koohpayehzadeh, J.; Asgari, F.; Rostami, M.; Rafei, A.; Kordi, R. Prevalence of chronic neck pain, low back pain, and knee pain and their related factors in community-dwelling adults in Iran: A population-based national study. Clin. J. Pain 2017, 33, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Holmes, B.; Leggett, S.; Mooney, V.; Nichols, J.; Negri, S.; Hoeyberghs, A. Comparison of female geriatric lumbar-extension strength: Asymptotic versus chronic low back pain patients and their response to active rehabilitation. J. Spinal Disord. 1996, 9, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Thorbjörnsson, C.O.; Alfredsson, L.; Fredriksson, K.; Köster, M.; Michélsen, H.; Vingård, E.; Torgén, M.; Kilbom, A. Psychosocial and physical risk factors associated with low back pain: A 24 year follow up among women and men in a broad range of occupations. Occup. Environ. Med. 1998, 55, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Koumantakis, G.A.; Watson, P.J.; Oldham, J.A. Trunk muscle stabilization training plus general exercise versus general exercise only: Randomized controlled trial of patients with recurrent low back pain. Phys. Ther. 2005, 85, 209–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, J.; Mooney, V.; Dagenais, S. Evidence-informed management of chronic low back pain with lumbar extensor strengthening exercises. Spine J. 2008, 8, 96–113. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences. J. Bone Joint Surg. Am. 2006, 88, 21–24. [Google Scholar] [CrossRef]
- Meakin, J.R.; Smith, F.W.; Gilbert, F.J.; Aspden, R.M. The effect of axial load on the sagittal plane curvature of the upright human spine in vivo. J. Biomech. 2008, 41, 2850–2854. [Google Scholar] [CrossRef] [Green Version]
- Kingma, I.; van Dieën, J.H. Static and dynamic postural loadings during computer work in females: Sitting on an office chair versus sitting on an exercise ball. Appl. Ergon. 2009, 40, 199–205. [Google Scholar] [CrossRef]
- Hodges, P.W. Core stability exercise in chronic low back pain. Orthop. Clin. N. Am. 2003, 34, 245–254. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zheng, J.J.; Yu, Z.W.; Bi, X.; Lou, S.J.; Liu, J.; Cai, B.; Hua, Y.H.; Wu, M.; Wei, M.L.; et al. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. PLoS ONE 2012, 7, e52082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliziene, I.; Sipaviciene, S.; Klizas, S.; Imbrasiene, D. Effects of core stability exercises on multifidus muscles in healthy women and women with chronic low-back pain. J. Back Musculoskelet. Rehabil. 2015, 28, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.H.; Paungmali, A.; Sitilertpisan, P.; Pirunsan, U.; Uthaikhup, S. Changes in transversus abdominis muscle thickness after lumbo-pelvic core stabilization training among chronic low back pain individuals. Clin. Ter. 2015, 166, e312–e316. [Google Scholar] [CrossRef]
- Ogon, M.; Krismer, M.; Söllner, W.; Kantner-Rumplmair, W.; Lampe, A. Chronic low back pain measurement with visual analogue scales in different settings. Pain 1996, 64, 425–428. [Google Scholar] [CrossRef]
- Cha, J.Y.; Jee, Y.S. Wushu Nanquan training is effective in preventing obesity and improving heart function in youth. J. Exerc. Rehabil. 2018, 14, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.D.; Oh, H.W.; Lee, J.H.; Cha, J.Y.; Ko, I.G.; Jee, Y.S. The effect of inversion traction on pain sensation, lumbar flexibility and trunk muscles strength in patients with chronic low back pain. Isokinet. Exerc. Sci. 2013, 21, 237–246. [Google Scholar] [CrossRef]
- Krizaj, D.; Simunic, B.; Zagar, T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kinesiol. 2008, 18, 645–651. [Google Scholar] [CrossRef]
- Dahmane, R.; Djordjevic, S.; Simunic, B.; Valencic, V. Spatial fiber type distribution in normal human muscle Histochemical and tensiomyographical evaluation. J. Biomech. 2005, 38, 2451–2459. [Google Scholar] [CrossRef]
- Dahmane, R.; Valenčič, V.; Knez, N.; Eržen, I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med. Biol. Eng. Comput. 2001, 39, 51–55. [Google Scholar] [CrossRef]
- Zouita, A.B.M.; Salah, F.Z.B.; Dziri, C.; Beardsley, C. Comparison of isokinetic trunk flexion and extension torques and powers between athletes and nonathletes. J. Exerc. Rehabil. 2018, 14, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jee, Y.S. The efficacy and safety of whole-body electromyostimulation in applying to human body: Based from graded exercise test. J. Exerc. Rehabil. 2018, 14, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core stability exercise principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Brumitt, J.; Matheson, J.W.; Meira, E.P. Core stabilization exercise prescription, part I: Current concepts in assessment and intervention. Sports Health 2013, 5, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Oh, H.W.; Park, E.K.; Ko, I.G.; Kim, S.E.; Kim, J.D.; Jin, J.J.; Jee, Y.S. Effects of rehabilitation program on functional scores and isokinetic torques of knee medial plica-operated patients. Isokinet. Exerc. Sci. 2013, 21, 19–28. [Google Scholar] [CrossRef]
- Ogden, L.G.; Stroebele, N.; Wyatt, H.R.; Catenacci, V.A.; Peters, J.C.; Stuht, J.; Wing, R.R.; Hill, J.O. Cluster analysis of the national weight control registry to identify distinct subgroups maintaining successful weight loss. Obesity (Silver Spring Md.) 2012, 20, 2039–2047. [Google Scholar] [CrossRef] [Green Version]
- Roffey, D.M.; Budiansky, A.; Coyle, M.J.; Wai, E.K. Obesity and Low Back Pain: Is There a Weight of Evidence to Support a Positive Relationship? Curr. Obes. Rep. 2013, 2, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.; Karpe, F.; Lafontan, M.; Frayn, K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol. Rev. 2012, 92, 157–191. [Google Scholar] [CrossRef] [Green Version]
- Noormohammadpour, P.; Kordi, M.; Mansournia, M.A.; Akbari-Fakhrabadi, M.; Kordi, R. The role of a multi-step core stability exercise program in the treatment of nurses with chronic low back pain: A single-blinded randomized controlled trial. Asian Spine J. 2018, 12, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Norris, C.; Matthews, M. The role of an integrated back stability program in patients with chronic low back pain. Complement Ther. Clin. Pract. 2008, 14, 255–263. [Google Scholar] [CrossRef]
- Pišot, R.; Narici, M.V.; Šimunič, B.; De Boer, M.; Seynnes, O.; Jurdana, M.; Mekjavić, I.B. Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur. J. Appl. Physiol. 2008, 104, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Valenčič, V.; Knez, N. Measuring of skeletal muscles’ dynamic properties. Artif. Organs. 1997, 21, 240–242. [Google Scholar] [CrossRef] [PubMed]
- van der Velde, G.; Mierau, D. The effect of exercise on percentile rank aerobic capacity, pain, and self-rated disability in patients with chronic low-back pain: A retrospective chart review. Arch. Phys. Med. Rehabil. 2000, 81, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Wittink, H.; Rogers, W.; Gascon, C.; Sukiennik, A.; Cynn, D.; Carr, D.B. Relative contribution of mental health and exercise-related pain increments to treadmill test intolerance in patients with chronic low back pain. Spine 2001, 26, 2368–2374. [Google Scholar] [CrossRef]
- Rainville, J.; Hartigan, C.; Martinez, E.; Limke, J.; Jouve, C.; Finno, M. Exercise as a treatment for chronic low back pain. Spine J. 2004, 4, 106–115. [Google Scholar] [CrossRef]
- Kennedy, D.J.; Noh, M.Y. The role of core stabilization in lumbosacral radiculopathy. Phys. Med. Rehabil. Clin. N. Am. 2011, 22, 91–103. [Google Scholar] [CrossRef]
- Rissanen, A.; Kalimo, H.; Alaranta, H. Effect of intensive training on the isokinetic strength and structure of lumbar muscles in patients with chronic low back pain. Spine 1995, 20, 333–340. [Google Scholar] [CrossRef]
- Mayer, T.G.; Gatchel, R.J.; Mayer, H.; Kishino, N.D.; Keeley, J.; Mooney, V. A prospective two-year study of functional restoration in industrial low back injury. An objective assessment procedure. JAMA 1987, 258, 1763–1767. [Google Scholar] [CrossRef]
- Rainville, J.; Ahern, D.K.; Phalen, L.; Childs, L.A.; Sutherland, R. The association of pain with physical activities in chronic low back pain. Spine 1992, 17, 1060–1064. [Google Scholar] [CrossRef]
- Manniche, C.; Lundberg, E.; Christiansen, I.; Bentzen, L.; Hesselsoe, G. Intensive dynamic back exercises for chronic low back pain. Spine 1993, 18, 560–567. [Google Scholar] [CrossRef]
- Risch, S.; Norvell, N.; Pollock, M.L.; Risch, E.D.; Langer, H.; Fulton, M.; Graves, J.E.; Leggett, S.H. Lumbar strengthening in chronic low back pain patients: Physiological and psychosocial benefits. Spine 1993, 18, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadam, N.; Ghaffari, M.S.; Noormohammadpour, P.; Rostam, M.; Zarei, M.; Moosavi, M.; Kordi, R. Comparison of the recruitment of transverse abdominis through drawing-in and bracing in different core stability training positions. J. Exerc. Rehabil. 2019, 15, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Augeard, N.; Carroll, S.P. Core stability and low-back pain: A causal fallacy. J. Exerc. Rehabil. 2019, 15, 493–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Kim, T.H. Comparison of the effects of stability exercise and balance exercise on muscle activity in female patients with chronic low back pain. J. Exerc. Rehabil. 2018, 14, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Paungmali, A.; Henry, L.J.; Sitilertpisan, P.; Pirunsan, U.; Uthaikhup, S. Improvements in tissue blood flow and lumbopelvic stability after lumbopelvic core stabilization training in patients with chronic non-specific low back pain. J. Phys. Ther. Sci. 2016, 28, 635–640. [Google Scholar] [CrossRef] [Green Version]
Variables (Unit) | Groups | ||
---|---|---|---|
3DEG (n = 14) | CON (n = 15) | Z | |
Age (y) | 20.42 ± 0.67 | 20.00 ± 0.01 | −1.871 |
Height (cm) | 167.83 ± 2.21 | 168.11 ± 2.98 | −0.322 |
Weight (kg) | 54.41 ± 5.85 | 55.67 ± 4.93 | −0.355 |
LBP history (month) | 14.23 ± 1.36 | 14.52 ± 0.95 | −1.425 |
Types (Periods) | Program Types | Explanation (Intensity/Time) |
---|---|---|
Warm-up (Day 1 to Week 8) | Stretching in upper and lower extremity on a standing posture | |
1st work-out (Day 1 to Week 2) | Platform angle/speed for trunk stabilization: 2~4/4~12 Lie in a supine position on a round platform while their knees are bent. Contract lumbar paraspinal muscles while lifting left arm and right leg off the platform. Hold it for 10 s, take rest for 10 s, and repeat 10 times. | |
Platform angle/speed for strengthening hip and hamstrings: 2~4/4~12 Lie in a supine position on a round platform and lie on the back with knees bent. Contract lumbar paraspinal muscles while lifting buttocks off the rotating platform. Hold it for 10 s, take rest for 10 s, and repeat 10 times. | ||
Platform angle/speed for trunk stabilization: 2~4/4~12 Stay on their hands and knees. At this time, the posture is maintained while the platform rotates so that the vertebrae are not bent or stretched. Hold it for 10 s, take rest for 10 s, and repeat 10 times. | ||
Platform angle/speed for stretching piriformis and gluteus: 3~6/3~6 Sit on the platform while their knees are overlaid, and their back should be straightened. Tilt pelvis from front to back and vice versa while the platform is rotating and contract the lumbar paraspinal muscles. When the platform is tilted backward, stretch their body forward. Prevent the pelvis from tilting and lumbar rotation and angulation. Hold it for 5 min. | ||
2nd work-out (Week 3 to Week 5) | Platform angle/speed for strengthening hip adductors: 3~6/3~6 Lie on their back while putting their legs on the platform. Raise their feet on the railing. Maintain their squeezing a ball by legs while rotating the platform. Hold it for 10 s, take rest for 10 s, and repeat 10 times. | |
Platform angle/speed for trunk stabilization: 2~4/4~12 Take a plank posture with both arms on the platform. Keep the trunk straight while the platform is rotating. Hold it for 15 s, take rest for 10 s, and repeat 10 times. | ||
Platform angle/speed for pelvic tilt coordination: 2~6/4~6 Sit on the platform with the two legs straight. Place an air cushion on the plate, and place a ball on the feet to induce an unstable condition. Maintain their postures while the platform is rotating and contracting lumbar paraspinal muscles. Hold it for 5 min. | ||
Platform angle/speed for core muscle and motor control: 3~4/3~4 Sit on the Swiss ball in the platform. Try to keep their balance and hold to lumbar paraspinal muscles contraction for 10 s while keeping their back straight. Then lift both of their arms. Hold it for 15 s, take rest for 10 s, and repeat 10 times. | ||
3rd work-out (Week 6 to Week 8) | Platform angle/speed for posterior chain activation: 4~6/4~6 Stand on the platform. The sling is put on the abdomen and remains standing straight. Hold it for 40 s, take rest for 15 s, and repeat 10 times. | |
Platform angle/speed for anterior chain activation: 4~6/4~6 Stand on the platform. The sling is put on the back and remains standing straight. Hold it for 40 s, take rest for 15 s, and repeat 10 times. | ||
Platform angle/speed for lateral chain activation: 4~6/4~6 Stand on the platform. The sling is put on the lateral pelvis and remains standing straight. Hold it for 40 s, take rest for 15 s, and repeat 10 times. | ||
Cool-down (Day 1 to Week 8) | Stretching in upper and lower extremity on a supine posture |
Items (Units) | Time (T) | Group (G) | ANOVA (F) | |||
---|---|---|---|---|---|---|
3DEG | CON | G | T | G × T | ||
Weight | Pre | 54.41 ± 5.85 | 55.67 ± 4.93 | 0.291 | 1.208 | 0.008 |
(kg) | Post | 54.13 ± 5.76 | 55.43 ± 4.66 | |||
Muscle mass | Pre | 21.07 ± 1.91 | 21.32 ± 1.23 | 0.092 | 1.799 | 0.072 |
(kg) | Post | 21.32 ± 1.80 | 21.48 ± 0.87 | |||
Fat mass | Pre | 15.36 ± 4.58 | 16.12 ± 4.29 | 0.197 | 5.795 * | 0.356 |
(kg) | Post | 14.75 ± 4.67 | 15.75 ± 4.34 | |||
Body mass index | Pre | 19.27 ± 1.85 | 19.67 ± 1.49 | 0.271 | 0.717 | 0.034 |
(kg/m2) | Post | 19.22 ± 1.84 | 19.60 ± 1.46 | |||
Percent fat | Pre | 27.81 ± 6.14 | 28.64 ± 5.22 | 0.155 | 4.212 | 0.239 |
(%) | Post | 26.84 ± 6.47 | 28.04 ± 5.38 | |||
Waist/hip ratio | Pre | 0.80 ± 0.03 | 0.79 ± 0.02 | 0.009 | 19.997 ** | 6.703 * |
Post | 0.79 ± 0.03 | 0.79 ± 0.32 |
Items (Units) | Time (T) | Group (G) | ANOVA (F) | ||||
---|---|---|---|---|---|---|---|
3DEG | CON | G | T | G × T | |||
Rectus | left Tc | Pre | 23.73 ± 11.06 | 26.22 ± 7.80 | 0.007 | 0.741 | 0.592 |
abdominis | (ms) | Post | 29.61 ± 13.81 | 26.55 ± 10.67 | |||
muscle | left Dm | Pre | 0.92 ± 0.76 | 1.97 ± 1.61 | 3.130 | 3.004 | 0.294 |
(mm) | Post | 1.86 ± 1.55 | 2.47 ± 1.66 | ||||
right Tc | Pre | 26.86 ± 6.55 | 28.97 ± 12.61 | 0.066 | 0.263 | 1.150 | |
(ms) | Post | 28.40 ± 9.98 | 24.61 ± 9.61 | ||||
right Dm | Pre | 1.13 ± 1.42 | 2.04 ± 1.37 | 3.573 | 0.684 | 0.019 | |
(mm) | Post | 1.38 ± 1.28 | 2.39 ± 1.59 | ||||
Erector | left Tc | Pre | 20.16 ± 18.19 | 25.67 ± 16.39 | 0.834 | 0.100 | 0.126 |
spinae | (ms) | Post | 20.00 ± 9.32 | 28.49 ± 31.95 | |||
muscle | left Dm | Pre | 0.60 ± 0.51 | 0.99 ± 0.79 | 0.129 | 0.140 | 2.149 |
(mm) | Post | 0.97 ± 0.96 | 0.77 ± 0.71 | ||||
right Tc | Pre | 13.17 ± 4.23 | 18.48 ± 11.43 | 1.279 | 7.421 * | 0.177 | |
(ms) | Post | 24.55 ± 15.50 | 34.01 ± 33.92 | ||||
right Dm | Pre | 0.54 ± 0.37 | 0.78 ± 0.85 | 0.016 | 0.378 | 1.581 | |
(mm) | Post | 0.84 ± 0.84 | 0.68 ± 0.68 |
Items (Units) | Time (T) | Group (G) | ANOVA (F) | ||||
---|---|---|---|---|---|---|---|
3DEG | CON | G | T | G × T | |||
Flexor | Pt | Pre | 129.33 ± 16.97 | 127.33 ± 16.87 | 0.607 | 3.757 | 0.468 |
(Nm) | Post | 137.41 ± 15.27 | 130.55 ± 12.74 | ||||
Extensor | Pt | Pre | 118.25 ± 28.81 | 132.00 ± 32.80 | 0.523 | 0.001 | 0.962 |
(Nm) | Post | 122.58 ± 30.04 | 127.88 ± 35.13 | ||||
Flexor | Wr | Pre | 109.16 ± 40.68 | 116.66 ± 36.47 | 0.602 | 3.820 | 0.381 |
(Nm) | Post | 116.33 ± 23.91 | 130.44 ± 32.34 | ||||
Extensor | Wr | Pre | 76.33 ± 34.96 | 89.11 ± 29.24 | 0.132 | 4.551 * | 2.283 |
(Nm) | Post | 93.50 ± 34.66 | 91.00 ± 36.49 |
Items (Units) | Time (T) | Group (G) | ANOVA (F) | |||
---|---|---|---|---|---|---|
3DEG | CON | G | T | G × T | ||
Forward flexibility | Pre | 12.31 ± 4.66 | 15.61 ± 4.04 | 2.161 | 0.324 | 1.059 |
(cm) | Post | 12.73 ± 5.30 | 15.49 ± 4.53 | |||
Backward flexibility | Pre | 44.92 ± 7.08 | 47.22 ± 7.95 | 0.096 | 5.204 * | 1.341 |
(cm) | Post | 49.00 ± 7.03 | 48.56 ± 7.45 |
Items | Time (T) | Group (G) | ANOVA (F) | |||
---|---|---|---|---|---|---|
3DEG | CON | G | T | G × T | ||
Back pain | Pre | 5.55 ± 2.41 | 5.93 ± 1.91 | 1.435 | 25.444 ** | 0.001 |
Post | 1.08 ± 1.11 | 5.28 ± 3.64 | ||||
Night pain | Pre | 3.20 ± 1.89 | 1.40 ± 1.57 | 5.194 * | 6.631 * | 0.869 |
Post | 1.66 ± 2.07 | 0.68 ± 0.75 | ||||
Exercise | Pre | 3.63 ± 3.16 | 4.14 ± 3.05 | 0.169 | 12.249 ** | 0.023 |
Post | 1.38 ± 2.16 | 1.69 ± 2.58 | ||||
Stiffness | Pre | 2.32 ± 2.26 | 1.24 ± 1.49 | 1.795 | 3.534 | 0.379 |
Post | 1.48 ± 1.41 | 0.82 ± 0.98 | ||||
Walking freedom | Pre | 2.05 ± 2.07 | 1.40 ± 1.20 | 0.609 | 3.297 | 0.200 |
Post | 1.43 ± 1.77 | 1.02 ± 1.15 | ||||
Walking discomfort | Pre | 2.20 ± 2.17 | 1.51 ± 1.41 | 0.680 | 5.172 * | 0.078 |
Post | 1.48 ± 1.89 | 0.94 ± 1.41 | ||||
Standing still | Pre | 2.53 ± 2.43 | 1.66 ± 2.33 | 0.886 | 2.643 | 0.077 |
Post | 1.60 ± 2.08 | 1.00 ± 1.05 | ||||
Twisting pain | Pre | 2.99 ± 2.40 | 1.92 ± 1.71 | 0.266 | 2.134 | 2.772 |
Post | 1.80 ± 1.98 | 2.00 ± 2.17 | ||||
Hard chair | Pre | 3.63 ± 2.69 | 3.59 ± 2.84 | 0.152 | 7.124 * | 0.858 |
Post | 1.98 ± 1.98 | 2.79 ± 2.26 | ||||
Soft chair | Pre | 2.63 ± 2.26 | 1.31 ± 1.35 | 2.244 | 5.732 * | 0.498 |
Post | 1.70 ± 1.78 | 0.81 ± 0.91 | ||||
Lying down | Pre | 3.96 ± 3.20 | 4.50 ± 3.85 | 0.162 | 6.950 * | 0.001 |
Post | 2.30 ± 2.67 | 2.81 ± 3.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jee, Y. Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain. Medicina 2020, 56, 351. https://doi.org/10.3390/medicina56070351
Kim S, Jee Y. Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain. Medicina. 2020; 56(7):351. https://doi.org/10.3390/medicina56070351
Chicago/Turabian StyleKim, Soochul, and Yongseok Jee. 2020. "Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain" Medicina 56, no. 7: 351. https://doi.org/10.3390/medicina56070351
APA StyleKim, S., & Jee, Y. (2020). Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain. Medicina, 56(7), 351. https://doi.org/10.3390/medicina56070351