Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Biological Samples and Clinical Data
2.3. RNA Isolation and cDNA Synthesis
2.4. Gene Selection and Primer Design
2.5. Quantitative Real-Time Polymerase Chain Reaction
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanson, S.G.; Nigro, J.F. Pediatric dermatology. Med. Clin. N. Am. 1998, 82, 1381–1403. [Google Scholar] [CrossRef]
- Blessmann Weber, M.; Sponchiado de Ávila, L.; Albaneze, R.; Magalhães de Oliveira, O.; Sudhaus, B.; Ferreira Cestari, T. Pityriasis alba: A study of pathogenic factors. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 463–468. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model Prescribing Information: Drugs Used in Skin Diseases. Available online: https://apps.who.int/medicinedocs/en/d/Jh2918e/ (accessed on 22 January 2020).
- Jadotte, Y.T.; Janniger, C.K. Pityriasis alba revisited: Perspectives on an enigmatic disorder of childhood. Cutis 2011, 87, 66–72. [Google Scholar]
- Castillo-Mori, Y.; Puescas Sánchez, P.; Díaz-Vélez, C.; Maldonado-Gómez, W.; Mendoza-Mego, B.; Alcóser-Arcila, A. Características clínico-epidemiológicas de pitiriasis alba en población de 6 a 16 años en colegios nacionales del distrito de Manuel A. Mesones Muro, Lambayeque, Perú. Acta Méd. Peru. 2011, 28, 73–78. [Google Scholar]
- Guareschi, E.; Di Lernia, V. Infantile pityriasis alba and comorbid disorders. Pediatr. Health 2009, 3, 75–79. [Google Scholar] [CrossRef] [Green Version]
- In, S.I.; Yi, S.W.; Kang, H.Y.; Lee, E.S.; Sohn, S.; Kim, Y.C. Clinical and histopathological characteristics of pytiriasis alba. Clin. Exp. Dermatl. 2008, 34, 591–597. [Google Scholar] [CrossRef]
- Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Tsatmali, M.; Ancans, J.; Thody, A.J. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 2002, 50, 125–133. [Google Scholar] [CrossRef]
- Vaccaro, M.; Bagnato, G.; Cristani, M.; Borgia, F.; Spatari, G.; Tigano, V.; Saja, A.; Guarneri, F.; Cannavo, S.P.; Gangemi, S. Oxidation products are increased in patients affected by non-segmental generalized vitiligo. Arch. Dermatol. Res. 2017, 309, 485–490. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Montaudié, H.; Bertolotto, C.; Ballotti, R.; Passeron, T. Fisiología del sistema pigmentario. Melanogénesis. EMC Dermatol. 2014, 48, 1–11. [Google Scholar] [CrossRef]
- Hubackova, S.; Kučerová, A.; Michlits, G.; Kyjacova, L.; Reinis, M.; Korolov, O.; Bartek, J.; Hodny, Z. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 2015, 35, 1236–1249. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Arambula, A.; Torres-Alvarez, B.; Cortes-Garcia, D.; Fuentes-Ahumada, C.; Castanedo-Cazares, J.P. CD4, IL-17, and COX-2 are associated with subclinical inflammation in malar melasma. Am. J. Dermatopathol. 2015, 37, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Miazek, N.; Michalek, I.; Pawlowska-Kisiel, M.; Olszewska, M.; Rudnicka, L. Pityriasis Alba—Common disease, enigmatic entity: Up-to-date review of the literature. Pediatric Dermatol. 2015, 32, 786–791. [Google Scholar] [CrossRef]
- Pityriasis Alba. Available online: https://dermnetnz.org/topics/pityriasis-alba/ (accessed on 30 March 2020).
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Natarajan, V.T.; Ganju, P.; Ramkumar, A.; Grover, R.; Gokhale, R.S. Multifaceted pathways protect human skin from UV radiation. Nat. Chem. Biol. 2014, 10, 542–551. [Google Scholar] [CrossRef]
- Cannavo, S.P.; Riso, G.; Di Salvo, E.; Casciaro, M.; Giuffrida, R.; Minciullo, P.L.; Guarneri, F.; Nettis, E.; Gangemi, S. Oxidative stress involvement in urticaria. J. Biol. Regul. Homeost. Agents 2020, 34, 675–678. [Google Scholar] [CrossRef]
- Obrador, E.; Liu-Smith, F.; Dellinger, R.W.; Salvador, R.; Meyskens, F.L.; Estrela, J.M. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol. Chem. 2019, 400, 589–612. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Troy, C.M.; D, D.; Prochiantz, A.; Greene, L.A.; Shelanskil, M.L. Downregulation of Cu/Zn superoxide dismutase leads to cell death v& the nitric oxide-peroxynitrite pathway. J. Neurosci. 1996, 16, 253–261. [Google Scholar]
- Kristal, L.; Klein, P.A. Atopíc dermatitis in infants and children: An update. Pediatr. Clin. N. Am. 2000, 47, 877–895. [Google Scholar] [CrossRef]
- Castanet, J.; Ortonne, J.P. Pigmentary changes in aged and photoaged skin. Arch. Dermatol. 1997, 133, 1296–1299. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Muñoz, J.L.; Garcia-Molina, F.; Varón, R.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J.N. Generation of hydrogen peroxide in the melanin biosynthesis pathway. Biochim. Biophys. Acta 2009, 1795, 1017–1029. [Google Scholar] [CrossRef]
- Podda, M.; Traber, M.G.; Weber, C.; Yan, L.-J.; Packer, L. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic. Biol. Med. 1998, 24, 55–65. [Google Scholar] [CrossRef]
- Vachtenheim, J.; Borovanský, J. “Transcription physiology” of pigment formation in melanocytes: Central role of MITF. Exp. Dermatol. 2010, 19, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Corvera, C.U.; Thoma, M.S.; Kong, W.; McAlpine, B.E.; Caughey, G.H.; Ansel, J.C.; Bunnett, N.W. Proteinase-activated receptor-2 in human skin: Tissue distribution and activation of keratinocytes by mast cell tryptase. Exp. Dermatol. 1999, 8, 282–294. [Google Scholar] [CrossRef]
- Ramsden, C.A.; Riley, P.A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 2014, 22, 2388–2395. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age—Related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef]
- Moreno-Cruz, B.; Torres-Alvarez, B.; Hernandez-Blanco, D.; Castanedo-Cazares, J.P. Double-blind, placebo-controlled, randomized study comparing 0.0003% calcitriol with 0.1% tacrolimus ointments for the treatment of endemic pityriasis alba. Dermatol. Res. Pract. 2012, 2012, 303275. [Google Scholar] [CrossRef]
- Costin, G.-E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 2007, 21, 976–994. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Svobodova, A.; Vostalova, J. Solar radiation induced skin damage: Review of protective and preventive options. Int. J. Radiat. Biol. 2010, 86, 999–1030. [Google Scholar] [CrossRef]
Gene Symbol | GenBank Number | Primer Sequence (5′-3′) | Tm (°C) | Product Size (bp) |
---|---|---|---|---|
IL-4 | NM_000589 | F: GACATCTTTGCTGCCTCCAA | 60 | 128 |
R: GTGCGACTGCACAGCAGTT | ||||
IL-6 | NM_000600 | F: CCCTGAGAAAGGAGACATGT | 60 | 111 |
R: TGAAAAAGATGGATGCTTCCAA | ||||
IL-17A | NM_002190 | F: TGGAATCTCCACCGCAATGA | 60 | 116 |
R: GTGGACTACCACATGAACTC | ||||
TNF-α | NM_000594 | F: CAGGCAGTCAGATCATCTTC | 60 | 121 |
R: CCAATGCCCTCCTGGCCA | ||||
IFN-γ | NM_000619 | F: AGGAAGACATGAATGTCAAGTT | 60 | 108 |
R: GAATGTCCAACGCAAAGCAAT | ||||
IL-1β | NM_000576 | F: GGAGCAACAAGTGGTGTTCT | 60 | 116 |
R: ACCTGTCCTGCGTGTTGAAA | ||||
SOD1 | NM_000454 | F: GAGGCATGTTGGAGACTTGG | 60.5 | 205 |
R: ACAAGCCAAACGACTTCCAG | ||||
HMOX1 | NM_002133 | F: GCTCAACATCCAGCTCTTTGA | 60.5 | 196 |
R: TGTAAGGACCCATCGGAGAA | ||||
GAPDH | NM_002046 | F: GAGTCAACGGATTTGGTCGT | 60.1 | 214 |
Variable | Patients (n = 16) |
---|---|
Gender | |
Male, n (%) | 12 (75) |
Female, n (%) | 4 (25) |
Age (years) | 8.9 ± 3.1 |
Weight (kg) | 32.3 ± 11.8 |
Height (cm) | 125.4 ± 14.3 |
Body mass index (kg/m²) | 20.0 ± 4.5 |
Hemoglobin (mg/dL) | 13.4 ± 1.5 |
Leucocytes (103/μL) | 7.3 ± 2.5 |
Lymphocytes (103/μL) | 3103.8 ± 1932.3 |
Neutrophils (103/μL) | 3674.4 ± 2406.5 |
Creatinine (mg/dL) | 0.41 ± 0.10 |
Sun exposure (h/day) | 6.31 ± 1.44 |
Variable 1 | Variable 2 | Correlation Coefficient | p-Value |
---|---|---|---|
IL-4 | HMOX1 | 0.611 | 3.5 × 10−2 |
IL-6 | IL-17 | 0.924 | 3.1 × 10−7 |
INF-γ | 0.955 | 9.3 × 10−9 | |
IL-1B | 0.915 | 6.8 × 10−7 | |
SOD1 | 0.944 | 4.2 × 10−8 | |
HMOX1 | 0.564 | 3.6 × 10−2 | |
IL-17 | INF-γ | 0.936 | 9.6 × 10−8 |
IL-1B | 0.953 | 1.2 × 10−8 | |
SOD1 | 0.892 | 3.5 × 10−6 | |
TNF-α | HMOX1 | 0.769 | 1.3 × 10−3 |
INF-γ | IL-1B | 0.854 | 2.5 × 10−5 |
SOD1 | 0.922 | 3.8 × 10−7 | |
HMOX1 | 0.549 | 4.2 × 10−2 | |
IL-1B | SOD1 | 0.857 | 2.3 × 10−5 |
SOD1 | HMOX1 | 0.567 | 3.5 × 10−2 |
HMOX1 | Weight | 0.718 | 3.8 × 10−3 |
Height | 0.673 | 8.3 × 10−3 | |
Body mass index | 0.565 | 3.5 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Fierro, M.L.; Cabral-Pacheco, G.A.; Garza-Veloz, I.; Campuzano-García, A.E.; Díaz-Alonso, A.P.; Flores-Morales, V.; Rodriguez-Sanchez, I.P.; Delgado-Enciso, I.; Rios-Jasso, J. Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba. Medicina 2020, 56, 359. https://doi.org/10.3390/medicina56070359
Martinez-Fierro ML, Cabral-Pacheco GA, Garza-Veloz I, Campuzano-García AE, Díaz-Alonso AP, Flores-Morales V, Rodriguez-Sanchez IP, Delgado-Enciso I, Rios-Jasso J. Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba. Medicina. 2020; 56(7):359. https://doi.org/10.3390/medicina56070359
Chicago/Turabian StyleMartinez-Fierro, Margarita L., Griselda A. Cabral-Pacheco, Idalia Garza-Veloz, Andrés E. Campuzano-García, Alma P. Díaz-Alonso, Virginia Flores-Morales, Iram P. Rodriguez-Sanchez, Ivan Delgado-Enciso, and Jorge Rios-Jasso. 2020. "Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba" Medicina 56, no. 7: 359. https://doi.org/10.3390/medicina56070359
APA StyleMartinez-Fierro, M. L., Cabral-Pacheco, G. A., Garza-Veloz, I., Campuzano-García, A. E., Díaz-Alonso, A. P., Flores-Morales, V., Rodriguez-Sanchez, I. P., Delgado-Enciso, I., & Rios-Jasso, J. (2020). Expression Levels of Inflammatory and Oxidative Stress-Related Genes in Skin Biopsies and Their Association with Pityriasis Alba. Medicina, 56(7), 359. https://doi.org/10.3390/medicina56070359