Predicting Old-age Mortality Using Principal Component Analysis: Results from a National Panel Survey in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Design
2.2. Independent Variables
2.3. Dependent Variable
2.4. Control Variables
2.4.1. Socioeconomic and Demographic Factors
2.4.2. Health Status and Behavior Factors
2.5. Analytical Approach and Statistics
3. Results
3.1. Sample Characteristics
3.2. Principal Component Analysis for Grouping Chronic Medical Conditions
3.3. Association Between Grouped Principal Components and All-Cause Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, C.L.J.; Callender, C.S.K.H.; Kulikoff, X.R.; Srinivasan, V.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbasi, N.; Abbastabar, H.; Abdela, J.; et al. Population and fertility by age and sex for 195 countries and territories, 1950–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1995–2051. [Google Scholar] [CrossRef] [Green Version]
- OECD Health at a Glance 2017. In Health at a Glance; Economic Cooperation and Development: Paris, France, 2017. [CrossRef]
- Krinsley, J.S. Glycemic variability: A strong independent predictor of mortality in critically ill patients*. Crit. Care Med. 2008, 36, 3008–3013. [Google Scholar] [CrossRef] [PubMed]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2002, 57, B359–B365. [Google Scholar] [CrossRef] [PubMed]
- Mossey, J.M.; Shapiro, E. Self-rated health: A predictor of mortality among the elderly. Am. J. Public Heal. 1982, 72, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Rumsfeld, J.S.; Mawhinney, S.; McCarthy, J.M.; Shroyer, A.L.W.; Villanueva, C.B.; O’Brien, M.; Moritz, T.E.; Henderson, W.G.; Grover, F.L.; Sethi, G.K.; et al. Health-Related Quality of Life as a Predictor of Mortality Following Coronary Artery Bypass Graft Surgery. JAMA 1999, 281, 1298. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Gabriel, S.E.; Crowson, C.S.; O’Fallon, W. A comparison of two comorbidity instruments in arthritis. J. Clin. Epidemiol. 1999, 52, 1137–1142. [Google Scholar] [CrossRef]
- Zhang, J.X.; Iwashyna, T.J.; Christakis, N.A. The Performance of Different Lookback Periods and Sources of Information for Charlson Comorbidity Adjustment in Medicare Claims. Med. Care 1999, 37, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, S.K.; Christiansen, C.F.; Christensen, S.; Lash, T.L.; Soerensen, H.T. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med. Res. Methodol. 2011, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef]
- Ladha, K.S.; Zhao, K.; Quraishi, S.A.; Kurth, T.; Eikermann, M.; Kaafarani, H.M.A.; Klein, E.N.; Seethala, R.; Lee, J. The Deyo-Charlson and Elixhauser-van Walraven Comorbidity Indices as predictors of mortality in critically ill patients. BMJ Open 2015, 5, 008990. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Taylor-Adams, S.; Stanhope, N. Framework for analysing risk and safety in clinical medicine. BMJ 1998, 316, 1154–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, A. Systematicity, knowledge, and bias. How systematicity made clinical medicine a science. Synthese 2017, 196, 863–879. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.H.; Saha, S. Burden of non-communicable disease: Global overview. Diabetes Metab. Syndr. Clin. Res. Rev. 2010, 4, 41–47. [Google Scholar] [CrossRef]
- Hodgkins, C.E.; Egan, B.; Peacock, M.; Klepacz, N.; Miklavec, K.; Pravst, I.; Pohar, J.; Gracia, A.; Groeppel-Klein, A.; Rayner, M.; et al. Understanding How Consumers Categorise Health Related Claims on Foods: A Consumer-Derived Typology of Health-Related Claims. Nutrients 2019, 11, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.W.; Kim, J.-H.; Yoo, K.B. Subjective expectations for future and mortality among middle-aged and older adults. Medicine 2020, 99, e19421. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yoo, K.-B.; Lee, Y. Development and validation of the Korea Dementia Comorbidity Index (KDCI): A nationwide population-based cohort study from 2002 to 2013. Arch. Gerontol. Geriatr. 2017, 72, 195–200. [Google Scholar] [CrossRef]
- Ministry of Health, L., and Welfare. andbook of Health and Welfare Statistics 2017. Available online: https://www.mhlw.go.jp/english/database/db-hh/1-2.html (accessed on June 21 2019).
- Rhee, S.Y.; Chon, S.; Kwon, M.K.; Park, I.B.; Ahn, K.J.; Kim, I.J.; Kim, S.-H.; Lee, H.W.; Koh, K.S.; Kim, D.M.; et al. Prevalence of Chronic Complications in Korean Patients with Type 2 Diabetes Mellitus Based on the Korean National Diabetes Program. Diabetes Metab. J. 2011, 35, 504–512. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.J.; Hwang, S.Y.; Baik, S.H.; Lee, K.W.; Nam, M.S.; Park, Y.S.; Woo, J.T.; Kim, Y.S.; Park, S.; Park, S.-Y.; et al. Serum Magnesium Level Is Associated with Type 2 Diabetes in Women with a History of Gestational Diabetes Mellitus: The Korea National Diabetes Program Study. J. Korean Med. Sci. 2014, 29, 84–89. [Google Scholar] [CrossRef]
- Kim, Y.; Park, I.; Park, J.-S. Meta-Analysis of Effects on Adolescent Smoking Cessation Programs in Korea. J. Korean Acad. Nurs. 2008, 38, 204. [Google Scholar] [CrossRef]
- Park, E.J.; Koh, H.K.; Kwon, J.W.; Suh, M.K.; Kim, H.; Cho, S.-I. Secular trends in adult male smoking from 1992 to 2006 in South Korea: Age-specific changes with evolving tobacco-control policies. Public Heal. 2009, 123, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Beaglehole, R.; Yach, D. Globalisation and the prevention and control of non-communicable disease: The neglected chronic diseases of adults. Lancet 2003, 362, 903–908. [Google Scholar] [CrossRef]
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S.; et al. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Kelishadi, R.; Alikhani, S.; Delavari, A.; Alaedini, F.; Safaie, A.; Hojatzadeh, E. Obesity and associated lifestyle behaviours in Iran: Findings from the First National Non-communicable Disease Risk Factor Surveillance Survey. Public Heal. Nutr. 2008, 11, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lariscy, J.T. Smoking-attributable mortality by cause of death in the United States: An indirect approach. SSM Popul. Heal. 2019, 7, 100349. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.D.; Abnet, C.C.; Feskanich, D.; Freedman, N.D.; Hartge, P.; Lewis, C.E.; Ockene, J.K.; Prentice, R.L.; Speizer, F.E.; Thun, M.J.; et al. Smoking and Mortality — Beyond Established Causes. N. Engl. J. Med. 2015, 372, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Guo, Y.; Chatterji, S.; Zheng, Y.; Naidoo, N.; Jiang, Y.; Biritwum, R.B.; Yawson, A.; Minicuci, N.; Salinas-Rodríguez, A.; et al. Common risk factors for chronic non-communicable diseases among older adults in China, Ghana, Mexico, India, Russia and South Africa: The study on global AGEing and adult health (SAGE) wave 1. BMC Public Heal. 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Sarich, P.; Ding, D.; Sitas, F.; Weber, M.F.W. Co-occurrence of chronic disease lifestyle risk factors in middle-aged and older immigrants: A cross-sectional analysis of 264,102 Australians. Prev. Med. 2015, 81, 209–215. [Google Scholar] [CrossRef]
- Kinra, S.; Bowen, L.J.; Lyngdoh, T.; Prabhakaran, D.; Reddy, K.S.; Ramakrishnan, L.; Gupta, R.; Bharathi, A.V.; Vaz, M.; Kurpad, A.V.; et al. Sociodemographic patterning of non-communicable disease risk factors in rural India: A cross sectional study. BMJ 2010, 341, c4974. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.-W.; Won, Y.-J.; Kong, H.-J.; Oh, C.-M.; Cho, H.; Lee, D.H.; Lee, K.H. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2012. Cancer Res. Treat. 2015, 47, 127–141. [Google Scholar] [CrossRef]
- Lim, D.; Ha, M.; Song, I. Trends in the Leading Causes of Death in Korea, 1983-2012. J. Korean Med. Sci. 2014, 29, 1597–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matheny, M.E.; Whicher, D.; Israni, S.T. Artificial Intelligence in Health Care. JAMA 2020, 323, 509. [Google Scholar] [CrossRef] [PubMed]
- Gerke, S.; Babic, B.; Evgeniou, T.; Cohen, I.G. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. npj Digit. Med. 2020, 3, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Wan, T.T.H. Effects of hospitals’ structural clinical integration on efficiency and patient outcome. Heal. Serv. Manag. Res. 2002, 15, 234–244. [Google Scholar] [CrossRef]
- Gurupur, V.; Wan, T.T.H. Inherent Bias in Artificial Intelligence-Based Decision Support Systems for Healthcare. Medicina 2020, 56, 141. [Google Scholar] [CrossRef] [Green Version]
- Seong, S.C.; Kim, Y.-Y.; Park, S.K.; Khang, Y.-H.; Kim, H.C.; Park, J.H.; Kang, H.-J.; Do, C.-H.; Song, J.-S.; Lee, E.-J.; et al. Cohort profile: The National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS) in Korea. BMJ Open 2017, 7, e016640. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E. Value-Based Health Care Delivery. Trans. Meet. Am. Surg. Assoc. 2008, 126, 144–150. [Google Scholar] [CrossRef]
- Affairs, K.I.f.H.a.S. The Survey of Living Conditions and Welfare Needs of Korean Older Persons; Korea Institute for Health and Social Affairs: Sejong, Korea, 2018. [Google Scholar]
Total | Mortality | p−Value | |||||
---|---|---|---|---|---|---|---|
N | % | No | % | Yes | % | ||
Age | <0.0001 | ||||||
45–54 | 3288 | 32.18 | 3187 | 96.93 | 101 | 3.07 | |
55–64 | 2789 | 27.30 | 2580 | 92.51 | 209 | 7.49 | |
65–74 | 2671 | 26.14 | 2170 | 81.24 | 501 | 18.76 | |
≥75 | 1469 | 14.38 | 793 | 53.98 | 676 | 46.02 | |
Education | <0.0001 | ||||||
≤Elementary school | 4799 | 46.97 | 3752 | 78.18 | 1047 | 21.82 | |
Middle school | 1656 | 16.21 | 1500 | 90.58 | 156 | 9.42 | |
High school | 2705 | 26.48 | 2504 | 92.57 | 201 | 7.43 | |
≥College | 1057 | 10.35 | 974 | 92.15 | 83 | 7.85 | |
Gender | <0.0001 | ||||||
Male | 4451 | 43.56 | 3657 | 82.16 | 794 | 17.84 | |
Female | 5766 | 56.44 | 5073 | 87.98 | 693 | 12.02 | |
Residential Region | <0.0001 | ||||||
Urban | 6646 | 65.05 | 5790 | 87.12 | 856 | 12.88 | |
Rural | 3571 | 34.95 | 2940 | 82.33 | 631 | 17.67 | |
Marital Status | <0.0001 | ||||||
Married | 7936 | 77.67 | 7014 | 88.38 | 922 | 11.62 | |
Single (including Separated, divorced) | 2281 | 22.33 | 1716 | 75.23 | 565 | 24.77 | |
Labor | <0.0001 | ||||||
Yes | 3950 | 38.66 | 3694 | 93.52 | 256 | 6.48 | |
No | 6267 | 61.34 | 5036 | 80.36 | 1231 | 19.64 | |
National Health Insurance | <0.0001 | ||||||
Health insurance | 9577 | 93.74 | 8251 | 86.15 | 1326 | 13.85 | |
Medical aid | 640 | 6.26 | 479 | 74.84 | 161 | 25.16 | |
Smoking Status | <0.0001 | ||||||
Never | 7274 | 71.20 | 6352 | 87.32 | 922 | 12.68 | |
Former smoker | 976 | 9.55 | 750 | 76.84 | 226 | 23.16 | |
Smoker | 1967 | 19.25 | 1628 | 82.77 | 339 | 17.23 | |
Alcohol Use | <0.0001 | ||||||
Never | 3871 | 37.89 | 3397 | 87.76 | 474 | 12.24 | |
Former Drinker | 687 | 6.72 | 496 | 72.20 | 191 | 27.80 | |
Drinker | 5659 | 55.39 | 4837 | 85.47 | 822 | 14.53 | |
Total | 10217 | 100.00 | 8730 | 85.45 | 1487 | 14.55 |
PC 1 | PC 2 | PC 3 | PC 4 | |
---|---|---|---|---|
Cerebrovascular Disease | 0.179 | −0.118 | 0.748 | 0.006 |
Psychiatric Disease | −0.056 | 0.186 | 0.734 | 0.007 |
Difficulty in Daily Activities Due to Sight | 0.218 | 0.475 | 0.182 | 0.069 |
Heart Disease | 0.365 | 0.196 | 0.096 | 0.030 |
Hypertension | 0.707 | 0.105 | 0.080 | −0.004 |
Diagnosis of Cancer and Malignant Tumor (Excluding Slight Skin Cancer) | 0.023 | −0.080 | 0.031 | 0.512 |
Chronic Lung Disease | −0.180 | 0.397 | 0.024 | 0.497 |
Fall for the Last 2 Years | −0.060 | 0.593 | 0.014 | −0.083 |
Liver Disease (Except Fatty Liver) | 0.110 | −0.065 | −0.036 | 0.711 |
Diabetes | 0.729 | −0.047 | −0.046 | 0.038 |
Arthritis and Rheumatism | 0.269 | 0.594 | −0.096 | −0.079 |
Eigen Value | 1.621 | 1.080 | 1.049 | 1.012 |
Mortality | ||||||
---|---|---|---|---|---|---|
Total | 45-64 | ≥65 | ||||
HR | p-Value | HR | p-Value | HR | p-Value | |
PC 1 | 1.079 | 0.001 | 1.097 | 0.096 | 1.065 | 0.015 |
PC 2 | 0.968 | 0.158 | 0.982 | 0.762 | 0.968 | 0.196 |
PC 3 | 1.134 | <0.0001 | 1.088 | 0.051 | 1.140 | <0.0001 |
PC 4 | 1.172 | <0.0001 | 1.262 | <0.0001 | 1.132 | <0.0001 |
Age | ||||||
45–54 | 1.000 | 1.000 | N/A | |||
55–64 | 1.847 | <0.0001 | 1.690 | <0.0001 | ||
65–74 | 3.865 | <0.0001 | N/A | 1.000 | ||
≥75 | 10.278 | <0.0001 | 2.751 | <0.0001 | ||
Education (≥College) | ||||||
≤Elementary School | 1.561 | 0.000 | 2.095 | 0.001 | 1.331 | 0.046 |
Middle School | 1.133 | 0.365 | 1.444 | 0.126 | 0.994 | 0.972 |
High School | 1.064 | 0.634 | 1.348 | 0.184 | 0.945 | 0.727 |
Gender (vs Female) | ||||||
Male | 2.236 | <0.0001 | 3.338 | <0.0001 | 1.937 | <0.0001 |
Residential Region (vs Urban) | ||||||
Rural | 1.293 | <0.0001 | 1.449 | 0.002 | 1.247 | 0.000 |
Marital Status (vs Married) | ||||||
Single (including Separated, Divorced) | 1.491 | <0.0001 | 1.930 | <0.0001 | 1.327 | 0.000 |
Labor (vs No) | ||||||
Yes | 0.577 | <0.0001 | 0.486 | <0.0001 | 0.646 | <0.0001 |
National Health Insurance (vs Medical Aid) | ||||||
Health Insurance | 0.899 | 0.215 | 0.775 | 0.223 | 0.938 | 0.499 |
Smoking Status (vs Never) | ||||||
Former Smoker | 1.319 | 0.002 | 1.255 | 0.262 | 1.332 | 0.003 |
Smoker | 1.460 | <0.0001 | 1.302 | 0.108 | 1.458 | <0.0001 |
Alcohol use (vs Never) | ||||||
Former Drinker | 1.144 | 0.132 | 1.165 | 0.457 | 1.150 | 0.160 |
Drinker | 1.149 | 0.047 | 1.179 | 0.264 | 1.149 | 0.083 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Lee, K.-S.; Kim, J.-H. Predicting Old-age Mortality Using Principal Component Analysis: Results from a National Panel Survey in Korea. Medicina 2020, 56, 360. https://doi.org/10.3390/medicina56070360
Shin J, Lee K-S, Kim J-H. Predicting Old-age Mortality Using Principal Component Analysis: Results from a National Panel Survey in Korea. Medicina. 2020; 56(7):360. https://doi.org/10.3390/medicina56070360
Chicago/Turabian StyleShin, Jaeyong, Kwang-Soo Lee, and Jae-Hyun Kim. 2020. "Predicting Old-age Mortality Using Principal Component Analysis: Results from a National Panel Survey in Korea" Medicina 56, no. 7: 360. https://doi.org/10.3390/medicina56070360
APA StyleShin, J., Lee, K. -S., & Kim, J. -H. (2020). Predicting Old-age Mortality Using Principal Component Analysis: Results from a National Panel Survey in Korea. Medicina, 56(7), 360. https://doi.org/10.3390/medicina56070360