Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Group Classification
2.3. Organization of the Study
2.4. Familiarization and Warm-Up
2.5. Cycling Exercise
2.6. Measurements of HR and Lactate Concentration
2.7. Measurement of Torque
2.8. VO2peak Test
3. Statistics
4. Results
4.1. Anthropometric Data
4.2. Power Production during Training
4.3. HR and Blood Lactate Concentration
4.4. MVC
4.5. Aerobic Capacity (VO2peak)
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Dalle Grave, R.; Calugi, S.; Centis, E.; Ghoch, M.E.; Marchesini, G. Cognitive-Behavioral Strategies to Increase the Adherence to Exercise in the Management of Obesity. Available online: https://www.hindawi.com/journals/jobe/2011/348293/ (accessed on 16 March 2020).
- Lin, H.-H.; Hung, Y.-P.; Weng, S.-H.; Lee, P.-Y.; Sun, W.-Z. Effects of parent-based social media and moderate exercise on the adherence and pulmonary functions among asthmatic children. Kaohsiung J. Med. Sci. 2020, 36, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Timmons, J.A.; Knudsen, S.; Rankinen, T.; Koch, L.G.; Sarzynski, M.; Jensen, T.; Keller, P.; Scheele, C.; Vollaard, N.B.J.; Nielsen, S.; et al. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J. Appl. Physiol. 2010, 108, 1487–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, C.; Blair, S.N.; Church, T.S.; Earnest, C.P.; Hagberg, J.M.; Häkkinen, K.; Jenkins, N.T.; Karavirta, L.; Kraus, W.E.; Leon, A.S.; et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS ONE 2012, 7, e37887. [Google Scholar] [CrossRef]
- Krustrup, P.; Hellsten, Y.; Bangsbo, J. Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. J. Physiol. 2004, 559, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Whyte, L.J.; Gill, J.M.R.; Cathcart, A.J. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010, 59, 1421–1428. [Google Scholar] [CrossRef]
- Freese, E.C.; Acitelli, R.M.; Gist, N.H.; Cureton, K.J.; Evans, E.M.; O’Connor, P.J. Effect of six weeks of sprint interval training on mood and perceived health in women at risk for metabolic syndrome. J. Sport Exerc. Psychol. 2014, 36, 610–618. [Google Scholar] [CrossRef]
- Venckunas, T.; Krusnauskas, R.; Snieckus, A.; Eimantas, N.; Baranauskiene, N.; Skurvydas, A.; Brazaitis, M.; Kamandulis, S. Acute effects of very low-volume high-intensity interval training on muscular fatigue and serum testosterone level vary according to age and training status. Eur. J. Appl. Physiol. 2019, 119, 1725–1733. [Google Scholar] [CrossRef]
- Bagley, L.; Slevin, M.; Bradburn, S.; Liu, D.; Murgatroyd, C.; Morrissey, G.; Carroll, M.; Piasecki, M.; Gilmore, W.S.; McPhee, J.S. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO 2 max during exercise. BMJ Open Sport Exerc. Med. 2016, 2, e000056. [Google Scholar] [CrossRef] [Green Version]
- Ito, S. High-intensity interval training for health benefits and care of cardiac diseases—The key to an efficient exercise protocol. World J. Cardiol. 2019, 11, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.A.; Felippe, L.C.; Bertuzzi, R.; Bishop, D.J.; Barreto, E.; Oliveira, F.R.D.; Silva, A.E.L. The effects of acute and chronic sprint-interval training on cytokine responses are independent of prior caffeine intake. Front. Physiol. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minghetti, A.; Faude, O.; Hanssen, H.; Zahner, L.; Gerber, M.; Donath, L. Sprint interval training (SIT) substantially reduces depressive symptoms in major depressive disorder (MDD): A randomized controlled trial. Psychiatry Res. 2018, 265, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Krusnauskas, R.; Venckunas, T.; Snieckus, A.; Eimantas, N.; Baranauskiene, N.; Skurvydas, A.; Brazaitis, M.; Liubinskiene, A.; Kamandulis, S. Very low volume high-intensity interval exercise is more effective in young than old women. Biol. Med. Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Levinger, I.; Shaw, C.S.; Stepto, N.K.; Cassar, S.; McAinch, A.J.; Cheetham, C.; Maiorana, A.J. What doesn’t kill you makes you fitter: A systematic review of high-intensity interval exercise for patients with cardiovascular and metabolic diseases. Clin. Med. Insights Cardiol. 2015, 9, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Bonafiglia, J.T.; Nelms, M.W.; Preobrazenski, N.; LeBlanc, C.; Robins, L.; Lu, S.; Lithopoulos, A.; Walsh, J.J.; Gurd, B.J. Moving beyond threshold-based dichotomous classification to improve the accuracy in classifying non-responders. Physiol. Rep. 2018, 6, e13928. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Blomqvist, C.G.; Saltin, B. Cardiovascular adaptations to physical training. Annu. Rev. Physiol. 1983, 45, 169–189. [Google Scholar] [CrossRef]
- Bouchard, C.; An, P.; Rice, T.; Skinner, J.S.; Wilmore, J.H.; Gagnon, J.; Pérusse, L.; Leon, A.S.; Rao, D.C. Familial aggregation of VO(2max) response to exercise training: Results from the HERITAGE family study. J. Appl. Physiol. 1999, 87, 1003–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, J.R.; Thomas, E.L.; Jenkinson, G.; Mierisová, S.; Iles, R.; Bell, J.D. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by (1)H-MRS. J. Appl. Physiol. 1999, 87, 2068–2072. [Google Scholar] [CrossRef] [PubMed]
- Fagard, R.; Bielen, E.; Amery, A. Heritability of aerobic power and anaerobic energy generation during exercise. J. Appl. Physiol. 1991, 70, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Vinogradova, O.L.; Williams, A.G. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Lamboley, C.R.; Rouffet, D.M.; Dutka, T.L.; McKenna, M.J.; Lamb, G.D. Effects of high-intensity intermittent exercise on the contractile properties of human type I and type II skeletal muscle fibers. J. Appl. Physiol. 2020, 128, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Nederveen, J.P.; Gillen, J.B.; Joanisse, S.; Parise, G.; Tarnopolsky, M.A.; Gibala, M.J. Skeletal muscle fiber-type-specific changes in markers of capillary and mitochondrial content after low-volume interval training in overweight women. Physiol. Rep. 2018, 6, e13597. [Google Scholar] [CrossRef]
- Jami, L.; Murthy, K.S.; Petit, J.; Zytnicki, D. After-effects of repetitive stimulation at low frequency on fast-contracting motor units of cat muscle. J. Physiol. 1983, 340, 129–143. [Google Scholar] [CrossRef]
- Powers, R.K.; Binder, M.D. Effects of low-frequency stimulation on the tension-frequency relations of fast-twitch motor units in the cat. J. Neurophysiol. 1991, 66, 905–918. [Google Scholar] [CrossRef]
- Lievens, E.; Klass, M.; Bex, T.; Derave, W. Muscle fiber typology substantially influences time to recover from high-intensity exercise. J. Appl. Physiol. 2020, 128, 648–659. [Google Scholar] [CrossRef]
- Schiaffino, S.; Sandri, M.; Murgia, M. Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiollogy 2007, 22, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Siline, L.; Stasiule, L.; Stasiulis, A. The effect of age and training status on oxygen uptake kinetics in women. Respir. Physiol. Neurobiol. 2020, 278, 103439. [Google Scholar] [CrossRef] [PubMed]
High Responders (n = 17) | Low Responders (n = 9) | |
---|---|---|
Age (years) | 25.9 ± 6.4 | 25.3 ± 5.4 |
Height (cm) | 182.8 ± 7.3 | 183.8 ± 9.9 |
Weight (kg) | 78.9 ± 11.1 | 84.5 ± 16.6 |
Body mass index (kg/m2) | 23.5 ± 2.4 | 24.7 ± 3.2 |
Fat mass (%) | 15.9 ± 3.6 | 16.3 ± 5.6 |
VO2peak (mL/kg/min) | 47 ± 7 | 43.9 ± 8.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krusnauskas, R.; Eimantas, N.; Baranauskiene, N.; Venckunas, T.; Snieckus, A.; Brazaitis, M.; Westerblad, H.; Kamandulis, S. Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level. Medicina 2020, 56, 395. https://doi.org/10.3390/medicina56080395
Krusnauskas R, Eimantas N, Baranauskiene N, Venckunas T, Snieckus A, Brazaitis M, Westerblad H, Kamandulis S. Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level. Medicina. 2020; 56(8):395. https://doi.org/10.3390/medicina56080395
Chicago/Turabian StyleKrusnauskas, Raulas, Nerijus Eimantas, Neringa Baranauskiene, Tomas Venckunas, Audrius Snieckus, Marius Brazaitis, Hakan Westerblad, and Sigitas Kamandulis. 2020. "Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level" Medicina 56, no. 8: 395. https://doi.org/10.3390/medicina56080395
APA StyleKrusnauskas, R., Eimantas, N., Baranauskiene, N., Venckunas, T., Snieckus, A., Brazaitis, M., Westerblad, H., & Kamandulis, S. (2020). Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level. Medicina, 56(8), 395. https://doi.org/10.3390/medicina56080395