Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment
Abstract
:1. Introduction
2. pH of the Intact Skin
3. Wound Healing
3.1. Inflammation
3.2. Hemostasis and Coagulation
3.3. Provisional Matrix and the Proliferative Phase
3.4. The Proliferative and Regenerative Phase
3.4.1. Fibroblasts
3.4.2. Keratinocytes
3.5. The Remodeling (Maturation) Phase
4. Aspects of the Pathophysiology of the Skin Injury
4.1. Chronic Wounds
4.2. Persistent Inflammation, an MMP and TIMP Disbalance
4.3. What Is the Difference between Chronic Wounds and Acute Wounds
4.4. Oxygen Tension
4.5. Underlying Mechanism for the Influence of Lactate and pH on Cytokine Production and Enzyme Activities
4.6. Accumulation of Lactate
4.7. Alkalinity of Wounds
4.8. Lactate as Fuel for the Cells
5. Essential Components of Acute and Chronic Wound Healing
5.1. Lactate
5.2. Lactate as an Energy Source
5.3. Lactate as the Preferred Energy Source
5.4. Lactate Pretending Pseudohypoxia
5.5. Lactate Incites Angiogenesis
5.6. Lactate Stimulates Collagen Synthesis and the Synthesis of ECM
5.7. Lactate Is a Radical Scavenger
5.8. Lactate Toxicity
6. The Role of TGF-β
7. Methods to Improve Wound Healing
7.1. Effects of Topically Applied Lactate
7.1.1. Trabold et al.
7.1.2. Rendl et al.
7.1.3. Porporato et al.
7.1.4. Hunt et al.
7.1.5. Ring et al.
7.1.6. Gürünlüoglu et al.
7.2. Topical Acidification
7.2.1. Leveen et al.
7.2.2. Kaufman et al.
7.2.3. Strohal et al.
7.2.4. Smith et al.
7.3. Reducing the Bioburden
7.3.1. Gethin et al.
7.3.2. Silvetti et al.
8. General Questions
8.1. What Is the Optimal pH for Optimized Wound Healing from the Cell Perspective?
8.2. What Is the Optimal Take-Rate of Skin Grafts with Respect to the pH?
8.3. What about the Killing Ability of Leukocytes Dependent on pH?
8.4. What Is the Relationship of Matrix Metalloproteinases and pH?
9. Results
9.1. Topical Lactate Application
9.2. Topical Acidification
9.3. The Optimum pH for Wound Healing
9.4. The Optimum Wound pH for Grafting
9.5. What Is the Optimum pH for the Bacterial Killing Capacity of Leukocytes?
10. Discussion
10.1. MMPs and Biofilms
10.2. Correcting the pH:
10.3. Improving Hypoxia and Lactate Accumulation
11. Conclusions
12. Additional Information on Request
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Las Heras, K.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release 2020, 328, 532–550. [Google Scholar] [CrossRef] [PubMed]
- The Global Wound Care Market is Projected to Reach USD 27.8 n.d. Available online: https://www.globenewswire.com/en/news-release/2021/04/29/2219343/0/en/The-global-wound-care-market-is-projected-to-reach-USD-27-8-billion-by-2026-from-USD-19-3-billion-in-2021-at-a-CAGR-of-7-6.html (accessed on 30 July 2021).
- Burn Wound Chronicity Myth or Reality-Wounds International. Jacky Edwards n.d. Available online: https://www.woundsinternational.com/resources/details/burn-wound-chronicity-myth-reality (accessed on 18 August 2021).
- Saaiq, M. Marjolin’s ulcers in the post-burned lesions and scars. World J. Clin. Cases 2014, 2, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care 2019, 8, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fife, C.E.; Eckert, K.A.; Carter, M.J. Publicly Reported Wound Healing Rates: The Fantasy and the Reality. Adv. Wound Care 2018, 7, 77–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluhr, J.W.; Elias, P.M. Stratum corneum pH: Formation and function of the “acid mantle”. Exog Dermatol. 2002, 1, 163–175. [Google Scholar] [CrossRef]
- Wallace, L.A.; Gwynne, L.; Jenkins, T. Challenges and opportunities of pH in chronic wounds. Ther. Deliv. 2019, 10, 719–735. [Google Scholar] [CrossRef]
- Cañedo-Dorantes, L.; Cañedo-Ayala, M. Skin acute wound healing: A comprehensive review. Int. J. Inflamm. 2019, 2019, 3706315. [Google Scholar] [CrossRef] [PubMed]
- Pakyari, M.; Farrokhi, A.; Maharlooei, M.K.; Ghahary, A. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Adv. Wound Care 2013, 2, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, T.K.; Aslam, R.S.; Beckert, S.; Wagner, S.; Ghani, Q.P.; Hussain, M.Z.; Roy, S.; Sen, C.K. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid. Redox Signal. 2007, 9, 1115–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teller, P.; White, T.K. The Physiology of Wound Healing: Injury Through Maturation. Surg. Clin. N. Am. 2009, 89, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Reyhani, V.; Seddigh, P.; Guss, B.; Gustafsson, R.; Rask, L.; Rubin, K. Fibrin binds to collagen and provides a bridge for αVβ3 integrin-dependent contraction of collagen gels. Biochem. J. 2014, 462, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.A.F.; Lanigan, J.M.; DellaPelle, P.; Manseau, E.; Dvorak, H.F.; Colvin, R.B. Fibronectin and Fibrin Provide a Provisional Matrix for Epidermal Cell Migration During Wound Reepithelialization. J. Investig. Dermatol. 1982, 79, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, A.E.; Kajava, A.V.; Steinert, P.M. Epithelial barrier function: Assembly and structural features of the cornified cell envelope. BioEssays 2002, 24, 789–800. [Google Scholar] [CrossRef]
- Freedberg, I.M.; Tomic-Canic, M.; Komine, M.; Blumenberg, M. Keratins and the keratinocyte activation cycle. J. Investig. Dermatol. 2001, 116, 633–640. [Google Scholar] [CrossRef] [Green Version]
- McKelvey, K.; Jackson, C.J.; Xue, M. Activated protein C: A regulator of human skin epidermal keratinocyte function. World J. Biol. Chem. 2014, 5, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Rousselle, P.; Braye, F.; Dayan, G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 2019, 146, 344–365. [Google Scholar] [CrossRef]
- Safferling, K.; Sütterlin, T.; Westphal, K.; Ernst, C.; Breuhahn, K.; James, M.; Jäger, D.; Halama, N.; Grabe, N. Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. J. Cell. Biol. 2013, 203, 691–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007, 127, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, R.; Akaishi, S. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis—Keloids and hypertrophic scars may be vascular disorders. Med. Hypotheses 2016, 96, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 2017, 18, 606. [Google Scholar] [CrossRef] [Green Version]
- Gangemi, E.N.; Gregori, D.; Berchialla, P.; Zingarelli, E.; Cairo, M.; Bollero, D.; Ganem, J.; Capocelli, R.; Cuccuru, F.; Cassano, P.; et al. Epidemiology and Risk Factors for Pathologic Scarring After Burn Wounds. Arch. Facial Plast. Surg. 2008, 12, 205–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, R.; Astifidis, R.P.; McClinton, M.A. Hand and Upper Extremity Rehabilitation, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Broughton, G.; Janis, J.E.; Attinger, C.E.; Broughton, I.I.G.; Janis, J.E.; Attinger, C.E.; Christopher, E.M.D. The basic science of wound healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef]
- Judge, J.L.; Lacy, S.H.; Kub, W.-Y.; Owensb, K.M.; Hernadya, E.; Thatcher, T.H.; Williams, J.P.; Phipps, R.P.; Sime, P.J.; Kottmann, R.M. The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis. Radiat. Res. 2017, 188, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Knighton, D.R.; Silver, I.A.; Hunt, T.K. Regulation of wound-healing angiogenesis-Effect of oxygen gradients and inspired oxygen concentration. Surgery 1981, 90, 262–270. [Google Scholar] [PubMed]
- Nguyen, T.T.; Mobashery, S.; Chang, M. Roles of Matrix Metalloproteinases in Cutaneous Wound Healing. In Wound Healing-New Insights into Ancient Challenges; Alexandrescu, V.A., Ed.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Rayment, E.A.; Upton, Z. Review: Finding the culprit: A review of the influences of proteases on the chronic wound environment. Int. J. Low. Extrem. Wounds 2009, 8, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Stojadinovic, O.; Pastar, I.; Vukelic, S.; Mahoney, M.G.; Brennan, D.; Krzyzanowska, A.; Golinko, M.; Brem, H.; Tomic-Camic, M. Deregulation of keratinocyte differentiation and activation: A hallmark of venous ulcers. J. Cell. Mol. Med. 2008, 12, 2675–2690. [Google Scholar] [CrossRef] [Green Version]
- Schreml, S.; Szeimies, R.M.; Prantl, L.; Karrer, S.; Landthaler, M.; Babilas, P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010, 163, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Hunt, T.K.; Aslam, R.; Hussain, Z.; Beckert, S. Lactate, with oxygen, incites angiogenesis. Adv. Exp. Med. Biol. 2008, 614, 73–80. [Google Scholar] [CrossRef] [PubMed]
- LaVan, F.B.; Hunt, T.K. Oxygen and Wound Healing. Clin. Plast. Surg. 1990, 17, 463–472. [Google Scholar] [CrossRef]
- Marcinek, D.J.; Kushmerick, M.J.; Conley, K.E. Lactic acidosis in vivo: Testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J. Appl. Physiol. 2010, 108, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Trabold, O.; Wagner, S.; Wicke, C.; Scheuenstuhl, H.; Hussain, M.Z.; Rosen, N.; Seremetiev, A.; Becker, H.D.; Hunt, T.K. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen. 2003, 11, 504–509. [Google Scholar] [CrossRef]
- Aslam, R.S.; Beckert, S.; Scheuenstuhl, H.; Hussain, Z.; Hunt, T. High lactate in wounds may initiate vasculogenesis via stem cell homing. Am. Coll. Surg. 2005, 201, S58. [Google Scholar] [CrossRef]
- Stern, R.; Shuster, S.; Neudecker, B.A.; Formby, B. Lactate stimulates fibroblast expression of hyaluronan and CD44: The Warburg effect revisited. Exp. Cell. Res. 2002, 276, 24–31. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, R.J.; Chandel, N.S. We need to talk about the Warburg effect. Nat. Metab. 2020, 2, 127–129. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef] [PubMed]
- Gertz, E.W.; Wisneski, J.A.; Stanley, W.C.; Neese, R.A. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J. Clin. Investig. 1988, 82, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Gertz, E.W.; Wisneski, J.A.; Morris, D.L.; Neese, R.A.; Brooks, G.A. Systemic lactate kinetics during graded exercise in man. Am. J. Physiol. Metab. 1985, 249, E595–E602. [Google Scholar] [CrossRef]
- Brooks, G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020, 35, 101454. [Google Scholar] [CrossRef]
- Brooks, G.A. The Science and Translation of Lactate Shuttle Theory. Cell. Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitz, J.D.; Enerbäck, S. Lactate: The ugly duckling of energy metabolism. Nat. Metab. 2020, 2, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Liguori, C.; Stefani, A.; Sancesario, G.; Sancesario, G.M.; Marciani, M.G.; Pierantozzi, M. CSF lactate levels, τ proteins, cognitive decline: A dynamic relationship in Alzheimer’s disease. J. Neurol. Neurosurg. Psych. 2015, 86, 655–659. [Google Scholar] [CrossRef]
- Draoui, N.; Feron, O. Lactate shuttles at a glance: From physiological paradigms to anti-cancer treatments. DMM Dis. Model. Mech. 2011, 4, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Juel, G.; Halestrap, A.P. Lactate transport in skeletal muscle—Role and regulation of the monocarboxylate transporter. J. Physiol. 1999, 517, 633–642. [Google Scholar] [CrossRef]
- Glancy, B.; Kane, D.A.; Kavazis, A.N.; Goodwin, M.L.; Willis, W.T.; Gladden, L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol. 2021, 599, 863–888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Kim, S.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Ring, A.; Goertz, O.; Al-Benna, S.; Ottomann, C.; Langer, S.; Steinstraesser, L.; Schmitz, I.; Tilkorn, D. Accelerated angiogenic induction and vascular integration in a novel synthetic scaffolding matrix for tissue replacement. Int. J. Artif. Organs 2010, 33, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Ring, A.; Langer, S.; Homann, H.H.; Kuhnen, C.; Schmitz, I.; Steinau, H.U.; Drücke, D. Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb/c-mice. Burns 2006, 32, 35–41. [Google Scholar] [CrossRef]
- Ring, A.; Steinstraesser, L.; Muhr, G.; Steinau, H.U.; Hauser, J.; Langer, S. Improved neovascularization of PEGT/PBT copolymer matrices in response to surface modification by biomimetic coating. Eur. Surg. Res. 2007, 39, 75–81. [Google Scholar] [CrossRef]
- Hunt, T.K.; Conolly, W.B.; Aronson, S.B.; Goldstein, P. Anaerobic metabolism and wound healing: An hypothesis for the initiation and cessation of collagen synthesis in wounds. Am. J. Surg. 1978, 135, 328–332. [Google Scholar] [CrossRef]
- Liu, Q.; Berchner-Pfannschmidt, U.; Möller, U.; Brecht, M.; Wotzlaw, C.; Acker, H.; Jungermann, K.; Kietzmann, T. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc. Natl. Acad. Sci. USA 2004, 101, 4302–4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vural, E.; Berbée, M.; Acott, A.; Blagg, R.; Fan, C.Y.; Hauer-Jensen, M. Skin graft take rates, granulation, and epithelialization: Dependence on myeloid cell hypoxia-inducible factor 1α. Arch. Otolaryngol. Head. Neck. Surg. 2010, 136, 720–723. [Google Scholar] [CrossRef] [Green Version]
- Groussard, C.; Morel, I.; Chevanne, M.; Monnier, M.; Cillard, J.; Delamarche, A. Free radical scavenging and antioxidant effects of lactate ion: An in vitro study. J. Appl. Physiol. 2000, 89, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Herz, H.; Blake, D.R.; Grootveld, M. Multicomponent investigations of the hydrogen peroxide-and hydroxyl radical-scavenging antioxidant capacities of biofluids: The roles of endogenous pyruvate and lactate. Free Radic. Res. 1997, 26, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Beckert, S.; Farrahi, F.; Aslam, R.S.; Scheuenstuhl, H.; Königsrainer, A.; Hussain, M.Z.; Hunt, T.K. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006, 14, 321–324. [Google Scholar] [CrossRef]
- Liarte, S.; Bernabé-García, Á.; Nicolás, F.J. Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Dalton, S.J.; Whiting, C.V.; Bailey, J.R.; Mitchell, D.C.; Tarlton, J.F. Mechanisms of chronic skin ulceration linking lactate, transforming growth factor-beta, vascular endothelial growth factor, collagen remodeling, collagen stability, and defective angiogenesis. J. Investig. Dermatol. 2007, 127, 958–968. [Google Scholar] [CrossRef] [Green Version]
- Lyons, R.M.; Keski-Oja, J.; Moses, H.L. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell. Biol. 1988, 106, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Barcellos-Hoff, M.H.; Dix, T.A. Redox-mediated activation of latent transforming growth factor-β1. Mol. Endocrinol. 1996, 10, 1077–1083. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E.; Suto, M.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 2018, 68–69, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B. TGF-β signaling from receptors to the nucleus. Microbes Infect. 1999, 1, 1265–1273. [Google Scholar] [CrossRef]
- Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Rendl, M.; Mayer, C.; Weninger, W.; Tschachler, E. Topically applied lactic acid increases spontaneous secretion of vascular endothelial growth factor by human reconstructed epidermis. Br. J. Dermatol. 2001, 145, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Porporato, P.E.; Payen, V.L.; De Saedeleer, C.J.; Préat, V.; Thissen, J.-P.; Feron, O.; Sonveaux, P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 2012, 15, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Fong, T.A.T.; Shawver, L.K.; Sun, L.; Tang, C.; App, H.; Powell, T.J.; Kim, Y.H.; Schreck, R.; Wang, X.; Risau, W.; et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59, 99–106. [Google Scholar]
- Gürünlüoğlu, K.; Demircan, M.; Taşçi, A.; Üremiş, M.M.; Türköz, Y.; Bağ, H.G. The effects of different burn dressings on length of telomere and expression of telomerase in children with thermal burns. J. Burn Care Res. 2019, 40, 302–311. [Google Scholar] [CrossRef]
- Gürünlüoğlu, K.; Demircan, M.; Taşçı, A.; Üremiş, M.M.; Türköz, Y.; Bağ, H.G.; Akinci, A.; Bayrakçı, E. The Effects of Two Different Burn Dressings on Serum Oxidative Stress Indicators in Children with Partial Burn. J. Burn Care Res. 2019, 40, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Demircan, M.; Gürünlüoğlu, K.; Gözükara Bağ, H.G.; Koçbıyık, A.; Gül, M.; Üremiş, N.; Gül, S.; Gürünlüoğlu, S.; Türköz, Y.; Taşçı, A. Impaction of the polylactic membrane or hydrofiber factor-α, transforming growth factor-b3 with silver dressings on the interleukin-6, tumor necrosis and tissues of pediatric patients with burns. Ulus. Travma Acil Cerrahi Derg. 2020, 27, 122–131. [Google Scholar] [CrossRef]
- Leveen, H.H.; Falk, G.; Borek, B.; Diaz, C.; Lynfield, Y.; Wynkoop, B.J.; Mabunda, C.; Rubricius, I.; Ieanette, L.M.D.; Christoudias, G. Chemical acidification of wounds. An adjuvant to healing and the unfavorable action of alkalinity and ammonia. Ann. Surg. 1973, 178, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.A.; Mickel, R.E.; Kritzinger, N.A. Topical treatment of burns using Aserbine. Burns 1989, 15, 125–128. [Google Scholar] [CrossRef]
- Kaufman, T.; Eichenlaub, E.H.H.; Angel, M.F.F.; Levin, M.; Futrell, J.W.W. Topical acidification promotes healing of experimental deep partial thickness skin burns: A randomized double-blind preliminary study. Burns 1985, 12, 84–90. [Google Scholar] [CrossRef]
- Strohal, R.; Mittlböck, M.; Hämmerle, G. The Management of Critically Colonized and Locally Infected Leg Ulcers with an Acid-Oxidizing Solution: A Pilot Study. Adv. Skin Wound Care 2018, 31, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.F.; Blasi, D.; Dayton, S.L.; Chipps, D.D. Effects of sodium hypochlorite on the microbial flora of burns and normal skin. J. Trauma Inj. Infect. Crit. Care 1974, 14, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Heling, I.; Rotstein, I.; Dinur, T.; Szwec-Levine, Y.; Steinberg, D. Bactericidal and cytotoxic effects of sodium hypochlorite and sodium dichloroisocyanurate solutions in vitro. J. Endod. 2001, 27, 278–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, T.K.; Gimbel, M.; Sen, C.K. Revascularization of Wounds: The oxygen-Hypoxia Paradox. In Angiogenesis; Figg, W.D., Folkman, J., Eds.; Springer: Boston, MA, USA, 2008; pp. 541–559. [Google Scholar] [CrossRef]
- Gethin, G.T.; Cowman, S.; Conroy, R.M. The impact of Manuka honey dressings on the surface pH of chronic wounds. Int. Wound J. 2008, 5, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, A.N. An Effective Method of Treating Long-Enduring Wounds and Ulcers by Topical Applications of Solutions of Nutrients. J. Dermatol. Surg. Oncol. 1981, 7, 501–508. [Google Scholar] [CrossRef]
- Bergman, A.; Yanai, J.; Weiss, J.; Bell, D.; David, M.P. Acceleration of wound healing by topical application of honey. An animal model. Am. J. Surg. 1983, 145, 374–376. [Google Scholar] [CrossRef]
- Kruse, C.R.; Singh, M.; Targosinski, S.; Sinha, I.; Sørensen, J.A.; Eriksson, E.; Nuutila, K. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair Regen. 2017, 25, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, J.R.; Harris, K.L.; Jubin, K.; Bainbridge, N.J.; Jordan, N.R. The effect of pH in modulating skin cell behaviour. Br. J. Dermatol. 2009, 161, 671–673. [Google Scholar] [CrossRef]
- Lönnqvist, S.; Emanuelsson, P.; Kratz, G. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds. J. Plast. Surg. Hand Surg. 2015, 49, 346–352. [Google Scholar] [CrossRef]
- Chai, J.K. The pH value of granulating wound and skin graft in burn patients. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi Chin. J. Plast. Surg. Burns 1992, 8, 177–178. [Google Scholar]
- Richard, C.Y. The relationship of ph of the granulation tissue and the take of the skin graft. Plast. Reconstr. Surg. 1957, 19, 213–217. [Google Scholar] [CrossRef]
- Allen, D.B. Wound Hypoxia and Acidosis Limit Neutrophil Bacterial Killing Mechanisms. Arch. Surg. 1997, 132, 991. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Jain, P.C. Production and partial characterization of collagenase of Streptomyces exfoliatus CFS 1068 using poultry feather. Indian J. Exp. Biol. 2010, 48, 174–178. [Google Scholar]
- Weimer, M.S. Purification and Kinetics of Gelatinase Obtained from an Obligately Psychrophilic Marine Vibrio. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1967. [Google Scholar]
- Makinen, P.L.; Clewell, D.B.; An, F.; Makinen, K.K. Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (‘gelatinase’) from Streptococcus faecalis (strain 0G1-10). J. Biol. Chem. 1989, 264, 3325–3334. [Google Scholar] [CrossRef]
- Cha, J.; Pedersen, M.V.; Auld, D.S. Metal and pH dependence of heptapeptide catalysis by human matrilysin. Biochemistry 1996, 35, 15831–18538. [Google Scholar] [CrossRef] [PubMed]
- Ring, A.; Tilkorn, D.; Ottomann, C.; Geomelas, M.; Steinstraesser, L.; Langer, S.; Goertz, O. Intravital monitoring of microcirculatory and angiogenic response to lactocapromer terpolymer matrix in a wound model. Int. Wound J. 2011, 8, 112–117. [Google Scholar] [CrossRef]
- Demircan, M.; Gürünluoglu, K.; Gözde, H.; Bağ, G.; Koçbıyık, A.; Gül, M.; Üremiş, N.; Gül, S.; Gürünlüoğlu, S.; Türköz, Y.; et al. Impaction of the polylactic membrane or hydrofiber with silver dressings on the Interleukin-6, Tumor necrosis factor-α, Transforming growth factor-3 levels in the blood and tissues of pediatric patients with burns. Ulus. Travma Acil Cerrahi Derg. 2021, 27, 122–131. [Google Scholar]
- Jacobsen, J.A.; Major Jourden, J.L.; Miller, M.T.; Cohen, S.M. To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta. Mol. Cell. Res. 2010, 1803, 72–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, G.B. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019, 8, 984. [Google Scholar] [CrossRef] [Green Version]
- Greener, B.; Hughes, A.A.; Bannister, N.P.; Douglass, J. Proteases and pH in chronic wounds. J. Wound Care 2005, 14, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Trengove, N.J.; Stacey, M.C.; Macauley, S.; Bennett, N.; Gibson, J.; Burslem, F.; Murphy, G.; Schultz, G. Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Repair Regen. 1999, 7, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Schultz, G.; Mozingo, D.; Romanelli, M.; Claxton, K. Wound healing and TIME; new concepts and scientific applications. Wound Repair Regen. 2005, 13, S1–S11. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.; Edwards-Jones, V. The role of ActicoatTM with nanocrystalline silver in the management of burns. Burns 2004, 30 (Suppl. S1), S1–S9. [Google Scholar] [CrossRef]
- Ryssel, H.; Kloeters, O.; Germann, G.; Schäfer, T.; Wiedemann, G.; Oehlbauer, M. The antimicrobial effect of acetic acid-An alternative to common local antiseptics? Burns 2009, 35, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Ryssel, H.; Andreas Radu, C.; Germann, G.; Kloeters, O.; Riedel, K.; Otte, M.; Kremer, T. Suprathel-antiseptic matrix: In vitro model for local antiseptic treatment? Adv. Skin Wound Care 2011, 24, 64–67. [Google Scholar] [CrossRef]
- Blome-Eberwein, S.A.; Amani, H.; Lozano, D.D.; Gogal, C.; Boorse, D.; Pagella, P. A bio-degradable synthetic membrane to treat superficial and deep second degree burn wounds in adults and children—4 year experience. Burns 2021, 47, 838–846. [Google Scholar] [CrossRef]
- Braverman, I.M. The cutaneous microcirculation. J. Investig. Dermatol. Symp. Proc. 2000, 5, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Gladden, L.B. Current Trends in Lactate Metabolism: Introduction. Med. Sci. Sports Exerc. 2008, 40, 475–476. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Sohn, H.A.; Park, Z.Y.; Oh, S.; Kang, Y.K.; Lee, K.M.; Kang, M.; Jang, J.Y.; Yang, S.-J.; Noh, H.; et al. A lactate-induced response to hypoxia. Cell 2015, 161, 595–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falanga, V.; Zhou, L.; Yufit, T. Low oxygen tension stimulates collagen synthesis and COL1A1 transcription through the action of TGF-β1. J. Cell. Physiol. 2002, 191, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Chatham, J.C. Lactate-The forgotten fuel! J. Physiol. 2002, 542, 333. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wahl, L.M. Oxidative Stress Augments the Production of Matrix Metalloproteinase-1, Cyclooxygenase-2, and Prostaglandin E 2 through Enhancement of NF-κB Activity in Lipopolysaccharide-Activated Human Primary Monocytes. J. Immunol. 2005, 175, 5423–5429. [Google Scholar] [CrossRef] [Green Version]
- Marty, P.; Chatelain, B.; Lihoreau, T.; Tissot, M.; Dirand, Z.; Humbert, P.; Senez, C.; Secomandi, E.; Isidoro, C.; Rolin, G. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction. Biomed. Pharmacother. 2021, 135, 111182. [Google Scholar] [CrossRef]
- Nischwitz, S.; Popp, D.; Shubitidze, D.; Luze, H.; Haller, H.; Kamolz, L. The successful use of polylactide wound dressings for chronic lower leg wounds—A retrospective analysis. Int. Wound J. 2021, in press. [Google Scholar]
- Haller, H.L.; Blome-Eberwein, S.E.; Branski, L.K.; Carson, J.S.; Crombie, R.E.; Hickerson, W.L.; Kamolz, L.P.; King, B.T.; Nischwitz, S.P.; Popp, D.; et al. Porcine xenograft and epidermal fully synthetic skin substitutes in the treatment of partial-thickness burns: A literature review. Medicina 2021, 57, 432. [Google Scholar] [CrossRef] [PubMed]
Literature (First Author) | Fibroblasts | Keratinocytes | Function Tested | Kind of Testing |
---|---|---|---|---|
Kruse | 7.5–11 | 7.5 | Vitality | In vitro |
Sharpe | 8.55 | Migration | Explants in tissue cultures | |
Sharpe | 7.58–8.55 | 7.58–8.55 | Proliferation | |
8.5 | 8.3 | Attachment | ||
Lönnqvist | 5 | No epithelialization | In vitro | |
6 | Moderate epithelialization | |||
7 | Normal epithelialization |
Study (First Author) | Optimal Take Rate at pH | Method | Remarks |
---|---|---|---|
Chai | 7.2–7.5 | Human | |
Sayegh | 7.2 (n = 2) | Animal study, n = 15 | |
7.2 (Take rate 90%), n = 2 | Human, n = 25 deep second or 3rd degree burns | ||
>7.4 (n = 18) | Chronic ulcers n = 24 | Total loss in pH < 7.4 | |
Cesny | 6.8 to 7.4 | ||
Richard | >7.4 (Take rate: 99%) | No takes between 6.8 to 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haller, H.L.; Sander, F.; Popp, D.; Rapp, M.; Hartmann, B.; Demircan, M.; Nischwitz, S.P.; Kamolz, L.P. Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. Medicina 2021, 57, 1190. https://doi.org/10.3390/medicina57111190
Haller HL, Sander F, Popp D, Rapp M, Hartmann B, Demircan M, Nischwitz SP, Kamolz LP. Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. Medicina. 2021; 57(11):1190. https://doi.org/10.3390/medicina57111190
Chicago/Turabian StyleHaller, Herbert Leopold, Frank Sander, Daniel Popp, Matthias Rapp, Bernd Hartmann, Mehmet Demircan, Sebastian Philipp Nischwitz, and Lars Peter Kamolz. 2021. "Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment" Medicina 57, no. 11: 1190. https://doi.org/10.3390/medicina57111190
APA StyleHaller, H. L., Sander, F., Popp, D., Rapp, M., Hartmann, B., Demircan, M., Nischwitz, S. P., & Kamolz, L. P. (2021). Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. Medicina, 57(11), 1190. https://doi.org/10.3390/medicina57111190